Clustering-based redshift estimation: application to VIPERS/CFHTLS

Authors: V. Scottez, Y. Mellier, B. Granett, T. Moutard, M. Kilbinger et al.
Journal: MNRAS
Year: 2016
Download: ADS | arXiv



We explore the accuracy of the clustering-based redshift estimation proposed by Ménard et al. when applied to VIMOS Public Extragalactic Redshift Survey (VIPERS) and Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) real data. This method enables us to reconstruct redshift distributions from measurement of the angular clustering of objects using a set of secure spectroscopic redshifts. We use state-of-the-art spectroscopic measurements with iAB < 22.5 from the VIPERS as reference population to infer the redshift distribution of galaxies from the CFHTLS T0007 release. VIPERS provides a nearly representative sample to a flux limit of iAB < 22.5 at a redshift of >0.5 which allows us to test the accuracy of the clustering-based redshift distributions. We show that this method enables us to reproduce the true mean colour-redshift relation when both populations have the same magnitude limit. We also show that this technique allows the inference of redshift distributions for a population fainter than the reference and we give an estimate of the colour-redshift mapping in this case. This last point is of great interest for future large-redshift surveys which require a complete faint spectroscopic sample.

The XXL Survey

First round of papers published

The XXL Survey is a deep X-ray survey observed with the XMM satellite, covering two fields of 25 deg2 each. Observations in many other wavelength, from radio to IR and optical, in both imaging and spectroscopy, complement the survey. The main science case is cosmology with X-ray selected galaxy clusters, but other fields such as galaxy evolution, AGNs, cluster physics, and the large-scale structure are being studied.

The main paper (Paper I) describing the survey and giving an overview of the science is arXiv:1512.04317 (Pierre et al. 2015). Paper IV (, Lieu et al. 2015) presents weak-lensing mass measurements of the brightest clusters in the Northern field, using CFHTLenS shapes and photometric redshifts.


The mass-temperature relation for XXL and other surveys (CCCP, COSMOS), Lieu et al (2015).

CFHTLenS: weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment

Authors: T. Schrabback et al.
Journal: MNRAS
Year: 2015
Download: ADS | arXiv


We present weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Using data from the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS), we measure the weighted-average ratio of the aligned projected ellipticity components of galaxy matter haloes and their embedded galaxies,


, split by galaxy type. We then compare our observations to measurements taken from the Millennium Simulation, assuming different models of galaxy-halo misalignment. Using the Millennium Simulation we verify that the statistical estimator used removes contamination from cosmic shear. We also detect an additional signal in the simulation, which we interpret as the impact of intrinsic shape-shear alignments between the lenses and their large-scale structure environment. These alignments are likely to have caused some of the previous observational constraints on


to be biased high. From CFHTLenS we find

fh=0.04±0.25f_\mathrm{h}=-0.04 \pm 0.25

for early-type galaxies, which is consistent with current models for the galaxy-halo misalignment predicting

fh0.20f_\mathrm{h}\simeq 0.20

. For late-type galaxies we measure


from CFHTLenS. This can be compared to the simulated results which yield

fh0.02f_\mathrm{h}\simeq 0.02

for misaligned late-type models.

Review: Cosmology from cosmic shear observations

Martin Kilbinger, CEA Saclay, Service d'Astrophysique (SAp), France

Find on this page general information and updates for my recent review article (arXiv:1411.0155) on cosmic shear, Reports on Progress in Physics 78 (2015) 086901 (ads link for two-column format).

Sigma 12/17
Fig. 7 of the review article: The quantity \Sigma = \sigma_8 \left( \Omega_{\rm m}/0.3 \right)^\alpha as function of publication year.
Updated figure!
02/2015: Added Stripe-82 and CFHTLenS peak counts
07/2015: Added DES-SV.
06/2016: Added DLS, two more CFHTLenS analyses, DES-SV peak counts, and KiDS-450.
08/2017: Added DES-Y1, and another KiDS-450 result.
12/2017: Added more KiDS-450 and DES-Y1 results (peak counts, lensing+clustering, density-split statistic).

In the video abstract of the article I talk about cosmic shear and the review for a broader audience.
Additional references, new papers
General papers, new reviews.
    • Another weak-lensing review has been published by my colleagues Liping Fu and Zu-Hui Fan (behind a pay wall, not available on the arXiv).
    • Rachel Mandelbaum's short, pedagogical review to instrumental systematics and WL

 Sect. 2: Cosmological background

 Sect. 5: Measuring weak lensing

    • News on ensemble shape measurement methods:
      An implementation of the Bernstein &amp; Armstrong (2014) Bayesian shape method has been published at arXiv:1403.7669. The team that participated at the great3 challenge with the Bayesian inference method "MBI" published their pipeline and results paper, see arXiv:1411.2608.
    • Okura & Futamase (arXiv:1405.1539) came up with an estimator of ellipticity that uses 0th instead of 2nd-order moments!
    • arXiv:1409.6273 discusses atmospheric chromatic effects for LSST.
    • Dust in spiral galaxies  as source of shape bias, but also astrophysical probe: arXiv:1411.6724.


Fig. 3 (b), derivatives of the convergence power spectrum with respect to various cosmological parameters.

Comments and suggestions are welcome! Please write to me at

Last updated 22 July 2015.

The galaxy-halo connection from a joint lensing, clustering and abundance analysis in the CFHTLenS/VIPERS field

Authors: J. Coupon et al.
Journal: MNRAS
Year: 2015
Download: ADS | arXiv


We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift


and over a volume of nearly 0.1~Gpc


. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by


secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at

Mh,peak=1.90.1+0.2×1012MM_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times10^{12} M_{\odot}

with an amplitude of


, which decreases to


for massive halos (

Mh>1014MM_{\rm h} > 10^{14} M_{\odot}

). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to


: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (

M<1011M{M}_{\star} < 10^{11} M_{\odot}

) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.

A new model to predict weak-lensing peak counts I. Comparison with N-body Simulations

Authors: C.-A. Lin, M. Kilbinger.
Journal: A&A 576, A24
Year: 2015
Download: ADS | arXiv



Weak-lensing peak counts has been shown to be a powerful tool for cosmology. It provides non-Gaussian information of large scale structures, complementary to second order statistics. We propose a new flexible method to predict weak lensing peak counts, which can be adapted to realistic scenarios, such as a real source distribution, intrinsic galaxy alignment, mask effects, photo-z errors from surveys, etc. The new model is also suitable for applying the tomography technique and non-linear filters. A probabilistic approach to model peak counts is presented. First, we sample halos from a mass function. Second, we assign them NFW profiles. Third, we place those halos randomly on the field of view. The creation of these "fast simulations" requires much less computing time compared to N-body runs. Then, we perform ray-tracing through these fast simulation boxes and select peaks from weak-lensing maps to predict peak number counts. The computation is achieved by our \textsc{Camelus} algorithm, which we make available at this http URL. We compare our results to N-body simulations to validate our model. We find that our approach is in good agreement with full N-body runs. We show that the lensing signal dominates shape noise and Poisson noise for peaks with SNR between 4 and 6. Also, counts from the same SNR range are sensitive to Ωm and σ8. We show how our model can discriminate between various combinations of those two parameters. In summary, we offer a powerful tool to study weak lensing peaks. The potential of our forward model is its high flexibility, making the use of peak counts under realistic survey conditions feasible.


A new, probabilistic model for weak-lensing peak counts is being proposed in this first paper of a series of three. The model is based on drawing halos from the mass function and, via ray-tracing, generating weak-lensing maps to count peaks. These simulated maps can directly be compared to observations, making this a forward-modelling approach of the cluster mass function, in contrast to many other traditional methods using cluster probes such as X-ray, optical richness, or SZ observations.

The model prediction is in very good agreement with N-body simulations.

It is very flexible, and can potentially include astrophysical and observational effects, such as intrinsic alignment, halo triaxiality, masking, photo-z errors, etc. Moreover, the pdf of the number of peaks can be output by the model, allowing for a very general likelihood calculation, without e.g. assuming a Gaussian distribution of the observables.


Review: Cosmology from cosmic shear observations

Mean and 68% error bars for the parameter  $\sigma_8 (\Omega_{\rm m}/0.3)^\alpha$, for various cosmic shear observations, plotted as function of their publication date (first arXiv submission). Data points are second-order statistics (circles), third-order (diamonds), 3D lensing (pentagons), galaxy-galaxy lensing (+ galaxy clustering; triangle), and CMB (squares).
Mean and 68% error bars for the parameter \sigma_8 (\Omega_{\rm m}/0.3)^\alpha, for various cosmic shear observations, plotted as function of their publication date (first arXiv submission). Data points are second-order statistics (circles), third-order (diamonds), 3D lensing (pentagons), galaxy-galaxy lensing (+ galaxy clustering; triangle), and CMB (squares).

A review on cosmology from cosmic shear observations has been submitted to ROPP, and has the arXiv reference arXiv:1411.0115. Comments are very welcome! Check also the accompanying web page for more information, updates, and errata.

Are the CMB anomalies real ?

Map of the CosmoStat secondary contributions to the diffuse background
Map of the CosmoStat secondary contributions to the diffuse background

A European team, involving researchers from the l'Ecole Polytechnique Fédérale de Lausanne (EPFL) and the Astrophysical Department Sap-AIM of CEA-Irfu, has found that some of the defects in the Cosmic Microwave Background of the universe present in the images obtained by the WMAP and Planck satellites may only be due to poor image reconstruction and incomplete subtraction of the contributions of our own galaxy. These results are published in the Journal of Cosmology and Astroparticle Physics August 2014.

Release of Planck + WMAP CMB map using sparsity.

Joint reconstruction from WMAP9 and Planck PR1 data with LGMCA
Joint reconstruction from WMAP9 and Planck PR1 data with LGMCA

The LGMCA method has been used to reconstruct the Cosmic Microwave Background (CMB) image from WMAP 9 year and Planck-PR1 data. Based on the sparse modeling of signals - a framework recently developed in applied mathematics - the proposed component separation method is well-suited for the extraction of foreground emissions.

A joint WMAP9 year and Planck PR1 CMB has been reconstructed for the first time and produce a very high quality CMB map, especially on the galactic center where it is the most difficult due to the strong foreground emissions of our Galaxy. This webpage provides some comparisons between the PR1 and WPR1 maps and codes to recompute the map in the spirit of reproducible research.

The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology

The effects of structure anisotropy on lensing observables in an exact general relativistic setting for precision cosmology


Authors: M. A. Troxel, M. Ishak, A. Peel
Journal: JCAP
Year: 2014
Download: ADS | arXiv


The study of relativistic, higher order, and nonlinear effects has become necessary in recent years in the pursuit of precision cosmology. We develop and apply here a framework to study gravitational lensing in exact models in general relativity that are not restricted to homogeneity and isotropy, and where full nonlinearity and relativistic effects are thus naturally included. We apply the framework to a specific, anisotropic galaxy cluster model which is based on a modified NFW halo density profile and described by the Szekeres metric. We examine the effects of increasing levels of anisotropy in the galaxy cluster on lensing observables like the convergence and shear for various lensing geometries, finding a strong nonlinear response in both the convergence and shear for rays passing through anisotropic regions of the cluster. Deviation from the expected values in a spherically symmetric structure are asymmetric with respect to path direction and thus will persist as a statistical effect when averaged over some ensemble of such clusters. The resulting relative difference in various geometries can be as large as approximately 2%, 8%, and 24% in the measure of convergence (1-κ) for levels of anisotropy of 5%, 10%, and 15%, respectively, as a fraction of total cluster mass. For the total magnitude of shear, the relative difference can grow near the center of the structure to be as large as 15%, 32%, and 44% for the same levels of anisotropy, averaged over the two extreme geometries. The convergence is impacted most strongly for rays which pass in directions along the axis of maximum dipole anisotropy in the structure, while the shear is most strongly impacted for rays which pass in directions orthogonal to this axis, as expected. The rich features found in the lensing signal due to anisotropic substructure are nearly entirely lost when one treats the cluster in the traditional FLRW lensing framework. These effects due to anisotropic structures are thus likely to impact lensing measurements and must be fully examined in an era of precision cosmology.