Space test of the Equivalence Principle: first results of the MICROSCOPE mission

Space test of the Equivalence Principle: first results of the MICROSCOPE mission

Authors: P. Touboul, G. Metris, M. Rodrigues, Y. André, Q. Baghi, J. Bergé, D. Boulanger, S. Bremer, R. Chhun, B. Christophe, V. Cipolla, T. Damour, P. Danto, H. Dittus, P. Fayet, B. Foulon, P.-Y. Guidotti, E. Hardy, P.-A. Huynh, C. Lämmerzahl, V. Lebat, F. Liorzou, M. List, I. Panel, S. Pires, B. Pouilloux, P. Prieur, S. Reynaud, B. Rievers, A. Robert, H. Selig, L. Serron, T. Sumner, P. Viesser
Journal: Classical and Quantum Gravity
Year: 2019
Download: ADS | arXiv


The Weak Equivalence Principle (WEP), stating that two bodies of different compositions and/or mass fall at the same rate in a gravitational field (universality of free fall), is at the very foundation of General Relativity. The MICROSCOPE mission aims to test its validity to a precision of 10^-15, two orders of magnitude better than current on-ground tests, by using two masses of different compositions (titanium and platinum alloys) on a quasi-circular trajectory around the Earth. This is realised by measuring the accelerations inferred from the forces required to maintain the two masses exactly in the same orbit. Any significant difference between the measured accelerations, occurring at a defined frequency, would correspond to the detection of a violation of the WEP, or to the discovery of a tiny new type of force added to gravity. MICROSCOPE's first results show no hint for such a difference, expressed in terms of Eötvös parameter δ =  [-1 +/- 9(stat) +/- 9 (syst)] x 10^-15 (both 1σ uncertainties) for a titanium and platinum pair of materials. This result was obtained on a session with 120 orbital revolutions representing 7% of the current available data acquired during the whole mission. The quadratic combination of 1σ uncertainties leads to a current limit on δ of about 1.3 x 10^-14.

GOLD : The Golden Cosmological Surveys Decade

This 10-week programme on the Golden Cosmological Surveys Decade will be held at the new Institut Pascal, in Paris Orsay, from 1st April 2020 to 5th June 2020. The Institut Pascal provides offices, seminar rooms, common areas and supports long-term scientific programmes. 
GOLD 2020 will include a summer school, three workshops (on Lensing, Galaxy Clustering, Theory and Interpretation of the Data). 
In-between, an active training programme will be run. We plan to host around 40 people for the whole programme, plus around 30 scientists during the workshops. 
Whether you are a PhD, a postdoc, a senior scientist and are interested in attending this programme, you can now apply. Deadline for applications: 1st October 2019.



Euclid joint meeting: WL + GC + CG SWG + OU-LE3

Dates: February, 3 - 7, 2020

Organisers:  Martin Kilbinger, ...

Venue: Institut d'Astrophysique de Paris (IAP),  98bis bd Arago, 75014 Paris.

Local information:



Please add your name to the following google doc if you are planning to attend the meeting.

There is no registration fee. Coffee and snacks will be provided for the breaks. For lunch, participants are invited to go to the nearby restaurants, shops, or imbiss stands
(see for some ideas).



Euclid preparation III. Galaxy cluster detection in the wide photometric survey, performance and algorithm selection


Authors: Euclid Collaboration, R. Adam, ..., S. Farrens, et al.
Journal: A&A
Year: 2019
Download: ADS | arXiv


Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates. The Euclid wide survey will cover 15000 deg2 of the sky in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift ∼2. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC). The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to <3%. All the tested algorithms are very competitive in terms of performance, with three of them reaching >80% completeness for a mean purity of 80% down to masses of 1014 M⊙ and up to redshift z=2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the AMICO code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.


The workshop on Computational Intelligence in Remote Sensing and Astrophysics (CIRSA) aims at bringing together researchers from the environmental sciences, astrophysics and computer science communities in an effort to understand the potential and pitfalls of novel computational intelligence paradigms including machine learning and large-scale data processing.



EuroPython 2019

Date: July 8-14 2019

Venue: Basel, CH



Twitter: @europython

Conference App will be announced on the blog.

EuroPython is an annual conference hosting ~1200 participants from academia and companies, interested in development and applications of python programming language. It's also a good opportunity for students and postdocs who wish to find a job outside academia.

For more info, contact: Valeria Pettorino



A Distributed Learning Architecture for Scientific Imaging Problems


Authors: A. Panousopoulou, S. Farrens, K. Fotiadou, A. Woiselle, G. Tsagkatakis, J-L. Starck,  P. Tsakalides
Journal: arXiv
Year: 2018
Download: ADS | arXiv


Current trends in scientific imaging are challenged by the emerging need of integrating sophisticated machine learning with Big Data analytics platforms. This work proposes an in-memory distributed learning architecture for enabling sophisticated learning and optimization techniques on scientific imaging problems, which are characterized by the combination of variant information from different origins. We apply the resulting, Spark-compliant, architecture on two emerging use cases from the scientific imaging domain, namely: (a) the space variant deconvolution of galaxy imaging surveys (astrophysics), (b) the super-resolution based on coupled dictionary training (remote sensing). We conduct evaluation studies considering relevant datasets, and the results report at least 60\% improvement in time response against the conventional computing solutions. Ultimately, the offered discussion provides useful practical insights on the impact of key Spark tuning parameters on the speedup achieved, and the memory/disk footprint.