Euclid: Reconstruction of weak-lensing mass maps for non-Gaussianity studies

Euclid: Reconstruction of weak-lensing mass maps for non-Gaussianity studies

Authors: S. Pires, V. Vandenbussche, V. Kansal, R. Bender, L. Blot, D. Bonino, A. Boucaud, J. Brinchmann, V. Capobianco, J. Carretero, M. Castellano, S. Cavuoti, R. Clédassou, G. Congedo, L. Conversi, L. Corcione, F. Dubath, P. Fosalba, M. Frailis, E. Franceschi, M. Fumana, F. Grupp, F. Hormuth, S. Kermiche, M. Knabenhans, R. Kohley, B. Kubik, M. Kunz, S. Ligori, P.B. Lilje, I. Lloro, E. Maiorano, O. Marggraf, R. Massey, G. Meylan, C. Padilla, S. Paltani, F. Pasian, M. Poncet, D. Potter, F. Raison, J. Rhodes, M. Roncarelli, R. Saglia, P. Schneider, A. Secroun, S. Serrano, J. Stadel, P. Tallada Crespí, I. Tereno, R. Toledo-Moreo, Y. Wang
Journal: Astronomy and Astrophysics
Year: 2020
Download:

ADS | arXiv 

 


Abstract

Weak lensing, namely the deflection of light by matter along the line of sight, has proven to be an efficient method to constrain models of structure formation and reveal the nature of dark energy. So far, most weak lensing studies have focused on the shear field that can be measured directly from the ellipticity of background galaxies. However, within the context of forthcoming full-sky weak lensing surveys such as Euclid, convergence maps (mass maps) offer an important advantage over shear fields in terms of cosmological exploitation. While carrying the same information, the lensing signal is more compressed in the convergence maps than in the shear field, simplifying otherwise computationally expensive analyses, for instance non-Gaussianity studies. However, the inversion of the non-local shear field requires accurate control of systematic effects due to holes in the data field, field borders, noise and the fact that the shear is not a direct observable (reduced shear). In this paper, we present the two mass inversion methods that are being included in the official Euclid data processing pipeline: the standard Kaiser & Squires method (KS) and a new mass inversion method (KS+) that aims to reduce the information loss during the mass inversion. This new method is based on the KS methodology and includes corrections for mass mapping systematic effects. The results of the KS+ method are compared to the original implementation of the KS method in its simplest form, using the Euclid Flagship mock galaxy catalogue. In particular, we estimate the quality of the reconstruction by comparing the two-point correlation functions, third- and fourth-order moments obtained from shear and convergence maps, and we analyse each systematic effect independently and simultaneously. We show that the KS+ method reduces substantially the errors on the two-point correlation function and moments compared to the KS method. In particular, we show that the errors introduced by the mass inversion on the two-point correlation of the convergence maps are reduced by a factor of about 5 while the errors on the third- and fourth-order moments are reduced by a factor of about 2 and 10 respectively.

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Authors: A.C. Deshpande, ..., S. Casas, M. Kilbinger, V. Pettorino, S. Pires, J.-L. Starck, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2020
DOI:  10.1051/0004-6361/201937323
Download:

ADS | arXiv

 


Abstract

Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. In this work, we evaluate the impact of the reduced shear approximation and magnification bias, on the information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities, in high-magnification regions. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. These effects cause significant biases in Omega_m, sigma_8, n_s, Omega_DE, w_0, and w_a of -0.53 sigma, 0.43 sigma, -0.34 sigma, 1.36 sigma, -0.68 sigma, and 1.21 sigma, respectively. We then show that these lensing biases interact with another systematic: the intrinsic alignment of galaxies. Accordingly, we develop the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant.

Euclid: The selection of quiescent and star-forming galaxies using observed colours

Euclid: The selection of quiescent and star-forming galaxies using observed colours

Authors: L. Bisigello, ..., V. Pettorino, S. Pires, F. Sureau, et al.
Journal: MNRAS
Year: 2020
DOI:  10.1093/mnras/staa885
Download:

ADS | arXiv

 


Abstract

The Euclid mission will observe well over a billion galaxies out to z6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well known colour techniques such as the `UVJ' diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u-VIS) and (VIS-J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above 70% and with less than 15% contamination at redshifts in the range 0.75<z<1. For galaxies at high-z or without the u-band complementary observations, the (VIS-Y) and (J-H) colours represent a valid alternative, with >65% completeness level and contamination below 20% at 1<z<2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only 20% complete at z<3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available.

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Authors: Euclid Collaboration, P. Paykari, ..., S. Farrens, M. Kilbinger, V. Pettorino, S. Pires, J.-L. Starck, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2020
DOI:  10.1051/0004-6361/201936980
Download:

ADS | arXiv

 


Abstract

Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.

Constraining neutrino masses with weak-lensing starlet peak counts

Constraining neutrino masses with weak-lensing starlet peak counts

Massive neutrinos influence the background evolution of the Universe as well as the growth of structure. Being able to model this effect and constrain the sum of their masses is one of the key challenges in modern cosmology. Weak-lensing cosmological constraints will also soon reach higher levels of precision with next-generation surveys like LSST, WFIRST and Euclid. In this context, we use the MassiveNus simulations to derive constraints on the sum of neutrino masses Mν , the present- day total matter density Ωm, and the primordial power spectrum normalization As in a tomographic setting. We measure the lensing power spectrum as second-order statistics along with peak counts as higher-order statistics on lensing convergence maps generated from the simulations. We investigate the impact of multi-scale filtering approaches on cosmological parameters by employing a starlet (wavelet) filter and a concatenation of Gaussian filters. In both cases peak counts perform better than the power spectrum on the set of parameters [Mν, Ωm, As] respectively by 63%, 40% and 72% when using a starlet filter and by 70%, 40% and 77% when using a multi-scale Gaussian. More importantly, we show that when using a multi-scale approach, joining power spectrum and peaks does not add any relevant information over considering just the peaks alone. While both multi-scale filters behave similarly, we find that with the starlet filter the majority of the information in the data covariance matrix is encoded in the diagonal elements; this can be an advantage when inverting the matrix, speeding up the numerical implementation. For the starlet case, we further identify the minimum resolution required to obtain constraints comparable to those achievable with the full wavelet decomposition and we show that the information contained in the coarse-scale map cannot be neglected.

Reference: Virginia Ajani, Austin Peel, Valeria Pettorino, Jean-Luc Starck, Zack Li, Jia Liu,  2020. More details in the paper

Beyond self-acceleration: force- and fluid-acceleration

The notion of self acceleration has been introduced as a convenient way to theoretically distinguish cosmological models in which acceleration is due to modified gravity from those in which it is due to the properties of matter or fields. In this paper we review the concept of self acceleration as given, for example, by [1], and highlight two problems. First, that it applies only to universal couplings, and second, that it is too narrow, i.e. it excludes models in which the acceleration can be shown to be induced by a genuine modification of gravity, for instance coupled dark energy with a universal coupling, the Hu-Sawicki f(R) model or, in the context of inflation, the Starobinski model. We then propose two new, more general, concepts in its place: force-acceleration and field-acceleration, which are also applicable in presence of non universal cosmologies. We illustrate their concrete application with two examples, among the modified gravity classes which are still in agreement with current data, i.e. f(R) models and coupled dark energy.

As noted already for example in [35, 36], we further remark that at present non-universal couplings are among the (few) classes of models which survive gravitational wave detection and local constraints (see [12] for a review on models surviving with a universal coupling). This is because, by construction, baryonic interactions are standard and satisfy solar system constraints; furthermore the speed of gravitational waves in these models is  cT = 1 and therefore in agreement with gravitational wave detection. It has also been noted (see for example [37–39] and the update in [33]) that models in which a non-universal coupling between dark matter particles is considered would also solve the tension in the measurement of the Hubble parameter [40] due to the degeneracy beta - H0 first noted in Ref. [41].

Reference: L.Amendola, V.Pettorino  "Beyond self-acceleration: force- and fluid-acceleration", Physics Letters B, in press, 2020.

Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey

Euclid preparation: V. Predicted yield of redshift 7

Authors: Euclid Collaboration, R. Barnett, ..., S. Farrens, M. Kilbinger, V. Pettorino, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2019
DOI:  10.1051/0004-6361/201936427
Download:

ADS | arXiv

 


Abstract

We provide predictions of the yield of 7<z<9 quasars from the Euclid wide survey, updating the calculation presented in the Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates of decline of the quasar luminosity function (QLF; Φ) with redshift, Φ∝10k(z−6), k=−0.72, and a further steeper rate of decline, k=−0.92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we use an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification of fainter quasars, down to JAB∼23. Quasars at z>8 may be selected from Euclid OYJH photometry alone, but selection over the redshift interval 7<z<8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z=6. For the case that the decline of the QLF accelerates beyond z=6, with k=−0.92, Euclid should nevertheless find over 100 quasars with 7.0<z<7.5, and ∼25 quasars beyond the current record of z=7.5, including ∼8 beyond z=8.0. The first Euclid quasars at z>7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7<z<8, M1450<−25, using 8m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at JAB∼23. The precision with which k can be determined over 7<z<8 depends on the value of k, but assuming k=−0.72 it can be measured to a 1 sigma uncertainty of 0.07.

The impact of baryonic physics and massive neutrinos on weak lensing peak statistics

The impact of baryonic physics and massive neutrinos on weak lensing peak statistics

 

Authors: M. Fong, M. Choi, V. Catlett, B. Lee, A. Peel, R. Bowyer,  L. J. King, I. G. McCarthy
Journal: MNRAS
Year: 2019
Download: ADS | arXiv


Abstract

We study the impact of baryonic processes and massive neutrinos on weak lensing peak statistics that can be used to constrain cosmological parameters. We use the BAHAMAS suite of cosmological simulations, which self-consistently include baryonic processes and the effect of massive neutrino free-streaming on the evolution of structure formation. We construct synthetic weak lensing catalogues by ray-tracing through light-cones, and use the aperture mass statistic for the analysis. The peaks detected on the maps reflect the cumulative signal from massive bound objects and general large-scale structure. We present the first study of weak lensing peaks in simulations that include both baryonic physics and massive neutrinos (summed neutrino mass Mν = 0.06, 0.12, 0.24, and 0.48 eV assuming normal hierarchy), so that the uncertainty due to physics beyond the gravity of dark matter can be factored into constraints on cosmological models. Assuming a fiducial model of baryonic physics, we also investigate the correlation between peaks and massive haloes, over a range of summed neutrino mass values. As higher neutrino mass tends to suppress the formation of massive structures in the Universe, the halo mass function and lensing peak counts are therefore modified as a function of Mν. Over most of the S/N range, the impact of fiducial baryonic physics is greater (less) than neutrinos for 0.06 and 0.12 (0.24 and 0.48) eV models. Both baryonic physics and massive neutrinos should be accounted for when deriving cosmological parameters from weak lensing observations.

Euclid preparation III. Galaxy cluster detection in the wide photometric survey, performance and algorithm selection

 

Authors: Euclid Collaboration, R. Adam, ..., S. Farrens, et al.
Journal: A&A
Year: 2019
DOI: 10.1051/0004-6361/201935088
Download: ADS | arXiv


Abstract

Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates. The Euclid wide survey will cover 15000 deg2 of the sky in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift ∼2. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC). The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to <3%. All the tested algorithms are very competitive in terms of performance, with three of them reaching >80% completeness for a mean purity of 80% down to masses of 1014 M⊙ and up to redshift z=2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the AMICO code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.

Measuring Gravity at Cosmological Scales

Measuring Gravity at Cosmological Scales

 

Authors:  Luca Amendola , Dario Bettoni, Ana Marta Pinho Santiago Casas,
Journal: Review Paper
Year: 02/2019
Download: Inspire| Arxiv


Abstract

This paper is a pedagogical introduction to models of gravity and how to constrain them through cosmological observations. We focus on the Horndeski scalar-tensor theory and on the quantities that can be measured with a minimum of assumptions. Alternatives or extensions of General Relativity have been proposed ever since its early years. Because of Lovelock theorem, modifying gravity in four dimensions typically means adding new degrees of freedom. The simplest way is to include a scalar field coupled to the curvature tensor terms. The most general way of doing so without incurring in the Ostrogradski instability is the Horndeski Lagrangian and its extensions. Testing gravity means therefore, in its simplest term, testing the Horndeski Lagrangian. Since local gravity experiments can always be evaded by assuming some screening mechanism or that baryons are decoupled, or even that the effects of modified gravity are visible only at early times, we need to test gravity with cosmological observations in the late universe (large-scale structure) and in the early universe (cosmic microwave background). In this work we review the basic tools to test gravity at cosmological scales, focusing on model-independent measurements.

logfsigma8