UNIONS: The impact of systematic errors on weak-lensing peak counts

 

Authors: E. Ayçoberry, V. Ajani, A. Guinot, M. Kilbinger, V. Pettorino, S. Farrens, J.-L. Starck, R. Gavazzi, M. Hudson
Journal: A&A
Year: 2022
DOI:  
Download: ADS | arXiv


Abstract

Context. The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is an ongoing deep photometric multi-band survey of the Northern sky. As part of UNIONS, the Canada-France Imaging Survey (CFIS) provides r-band data which we use to study weak-lensing peak counts for cosmological inference.
Aims. We assess systematic effects for weak-lensing peak counts and their impact on cosmological parameters for the UNIONS survey. In particular, we present results on local calibration, metacalibration shear bias, baryonic feedback, the source galaxy redshift estimate, intrinsic alignment, and the cluster member dilution.

Methods. For each uncertainty and systematic effect, we describe our mitigation scheme and the impact on cosmological parameter constraints. We obtain constraints on cosmological parameters from MCMC using CFIS data and MassiveNuS N-body simulations as a model for peak counts statistics.
Results. Depending on the calibration (local versus global, and the inclusion of the residual multiplicative shear bias), the mean matter density parameter Ωm can shift up to −0.024 (−0.5σ). We also see that including baryonic corrections can shift Ωm by +0.027 (+0.5σ) with respect to the DM-only simulations. Reducing the impact of the intrinsic alignment and cluster member dilution through signal-to-noise cuts can lead to a shift in Ωm of +0.027 (+0.5σ). Finally, with a mean redshift uncertainty of ∆z ̄ = 0.03, we see that the shift of Ωm (+0.001 which corresponds to +0.02σ) is not significant.

Conclusions. This paper investigates for the first time with UNIONS weak-lensing data and peak counts the impact of systematic effects. The value of Ωm is the most impacted and can shift up to ∼ 0.03 which corresponds to 0.5σ depending on the choices for each systematics. We expect constraints to become more reliable with future (larger) data catalogues, for which the current pipeline will provide a starting point. The code used to obtain the results is available in the following Github repository.

ShapePipe: a new shape measurement pipeline and weak-lensing application to UNIONS/CFIS data

 

Authors: A. Guinot, M. Kilbinger, S. Farrens, A. Peel, A. Pujol, M. Schmitz, J.-L. Starck, T. Erben, R. Gavazzi, S. Gwyn, M. Hudson,  H. Hiledebrandt, T. Liaudat , et. al
Journal: A&A
Year: 2022
DOI:  
Download: ADS | arXiv


Abstract

UNIONS is an ongoing collaboration that will provide the largest deep photometric survey of the Northern sky in four optical bands to date. As part of this collaboration, CFIS is taking r-band data with an average seeing of 0.65 arcsec, which is complete to magnitude 24.5 and thus ideal for weak-lensing studies. We perform the first weak-lensing analysis of CFIS r-band data over an area spanning 1700 deg2 of the sky. We create a catalogue with measured shapes for 40 million galaxies, corresponding to an effective density of 6.8 galaxies per square arcminute, and demonstrate a low level of systematic biases. This work serves as the basis for further cosmological studies using the full UNIONS survey of 4800 deg2 when completed. Here we present ShapePipe, a newly developed weak-lensing pipeline. This pipeline makes use of state-of-the-art methods such as Ngmix for accurate galaxy shape measurement. Shear calibration is performed with metacalibration. We carry out extensive validation tests on the Point Spread Function (PSF), and on the galaxy shapes. In addition, we create realistic image simulations to validate the estimated shear. We quantify the PSF model accuracy and show that the level of systematics is low as measured by the PSF residuals. Their effect on the shear two-point correlation function is sub-dominant compared to the cosmological contribution on angular scales <100 arcmin. The additive shear bias is below 5x104, and the residual multiplicative shear bias is at most 103 as measured on image simulations. Using COSEBIs we show that there are no significant B-modes present in second-order shear statistics. We present convergence maps and see clear correlations of the E-mode with known cluster positions. We measure the stacked tangential shear profile around Planck clusters at a significance higher than 4σ.

ShapePipe: A modular weak-lensing processing and analysis pipeline

 

Authors: S. Farrens, A. Guinot, M. Kilbinger, T. Liaudat , L. Baumont, X. Jimenez, A. Peel , A. Pujol , M. Schmitz, J.-L. Starck, and A. Z. Vitorelli
Journal: A&A
Year: 2022
DOI: 10.1051/0004-6361/202243970
Download: ADS | arXiv


Abstract

We present the first public release of ShapePipe, an open-source and modular weak-lensing measurement, analysis, and validation pipeline written in Python. We describe the design of the software and justify the choices made. We provide a brief description of all the modules currently available and summarise how the pipeline has been applied to real Ultraviolet Near-Infrared Optical Northern Survey data. Finally, we mention plans for future applications and development. The code and accompanying documentation are publicly available on GitHub.

Multi-CCD Point Spread Function Modelling

Context. Galaxy imaging surveys observe a vast number of objects that are affected by the instrument’s Point Spread Function (PSF). Weak lensing missions, in particular, aim at measuring the shape of galaxies, and PSF effects represent an important source of systematic errors which must be handled appropriately. This demands a high accuracy in the modelling as well as the estimation of the PSF at galaxy positions.

Aims. Sometimes referred to as non-parametric PSF estimation, the goal of this paper is to estimate a PSF at galaxy positions, starting from a set of noisy star image observations distributed over the focal plane. To accomplish this, we need our model to first of all, precisely capture the PSF field variations over the Field of View (FoV), and then to recover the PSF at the selected positions. Methods. This paper proposes a new method, coined MCCD (Multi-CCD PSF modelling), that creates, simultaneously, a PSF field model over all of the instrument’s focal plane. This allows to capture global as well as local PSF features through the use of two complementary models which enforce different spatial constraints. Most existing non-parametric models build one model per Charge-Coupled Device (CCD), which can lead to difficulties in capturing global ellipticity patterns.

Results. We first test our method on a realistic simulated dataset comparing it with two state-of-the-art PSF modelling methods (PSFEx and RCA). We outperform both of them with our proposed method. Then we contrast our approach with PSFEx on real data from CFIS (Canada-France Imaging Survey) that uses the CFHT (Canada-France-Hawaii Telescope). We show that our PSF model is less noisy and achieves a ~ 22% gain on pixel Root Mean Squared Error (RMSE) with respect to PSFEx.

Conclusions. We present, and share the code of, a new PSF modelling algorithm that models the PSF field on all the focal plane that is mature enough to handle real data.

Reference: Tobias Liaudat, Jérôme Bonnin,  Jean-Luc Starck, Morgan A. Schmitz, Axel Guinot, Martin Kilbinger and Stephen D. J. Gwyn. “Multi-CCD Point Spread Function Modelling, submitted 2020.

arXiv, code.

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Authors: A.C. Deshpande, ..., S. Casas, M. Kilbinger, V. Pettorino, S. Pires, J.-L. Starck, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2020
DOI:  10.1051/0004-6361/201937323
Download:

ADS | arXiv

 


Abstract

Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. In this work, we evaluate the impact of the reduced shear approximation and magnification bias, on the information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities, in high-magnification regions. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. These effects cause significant biases in Omega_m, sigma_8, n_s, Omega_DE, w_0, and w_a of -0.53 sigma, 0.43 sigma, -0.34 sigma, 1.36 sigma, -0.68 sigma, and 1.21 sigma, respectively. We then show that these lensing biases interact with another systematic: the intrinsic alignment of galaxies. Accordingly, we develop the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant.

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Authors: Euclid Collaboration, P. Paykari, ..., S. Farrens, M. Kilbinger, V. Pettorino, S. Pires, J.-L. Starck, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2020
DOI:  10.1051/0004-6361/201936980
Download:

ADS | arXiv

 


Abstract

Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.

Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey

Euclid preparation: V. Predicted yield of redshift 7

Authors: Euclid Collaboration, R. Barnett, ..., S. Farrens, M. Kilbinger, V. Pettorino, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2019
DOI:  10.1051/0004-6361/201936427
Download:

ADS | arXiv

 


Abstract

We provide predictions of the yield of 7<z<9 quasars from the Euclid wide survey, updating the calculation presented in the Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates of decline of the quasar luminosity function (QLF; Φ) with redshift, Φ∝10k(z−6), k=−0.72, and a further steeper rate of decline, k=−0.92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we use an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification of fainter quasars, down to JAB∼23. Quasars at z>8 may be selected from Euclid OYJH photometry alone, but selection over the redshift interval 7<z<8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z=6. For the case that the decline of the QLF accelerates beyond z=6, with k=−0.92, Euclid should nevertheless find over 100 quasars with 7.0<z<7.5, and ∼25 quasars beyond the current record of z=7.5, including ∼8 beyond z=8.0. The first Euclid quasars at z>7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7<z<8, M1450<−25, using 8m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at JAB∼23. The precision with which k can be determined over 7<z<8 depends on the value of k, but assuming k=−0.72 it can be measured to a 1 sigma uncertainty of 0.07.

Cosmological parameters from weak cosmological lensing

 

Authors: M. Kilbinger
Journal:  
Year: 07/2018
Download: ADS| Arxiv


Abstract

In this manuscript of the habilitation à diriger des recherches (HDR), the author presents some of his work over the last ten years. The main topic of this thesis is cosmic shear, the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure.
I review the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then I give an overview of weak-lensing measurements, and present observational results from the Canada-France Hawai'i Lensing Survey (CFHTLenS), as well as the implications for cosmology. I conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.

 

A highly precise shape-noise-free shear bias estimator

 

Authors: A. Pujol, M. Kilbinger, F. Sureau & J. Bobin
Journal:  
Year: 06/2018
Download: ADS| Arxiv


Abstract

We present a new method to estimate shear measurement bias in image simulations that significantly improves its precision with respect to the state-of-the-art methods. This method is based on measuring the shear response for individual images. We generate sheared versions of the same image to measure how the shape measurement changes with the changes in the shear, so that we obtain a shear response for each original image, as well as its additive bias. Using the exact same noise realizations for each sheared version allows us to obtain an exact estimation of its shear response. The estimated shear bias of a sample of galaxies comes from the measured averages of the shear response and individual additive bias. The precision of this method supposes an improvement with respect to previous methods since our method is not affected by shape noise. As a consequence, the method does not require shape noise cancellation for a precise estimation of shear bias. The method can be easily applied to many applications such as shear measurement validation and calibration, reducing the number of necessary simulated images by a few orders of magnitude to achieve the same precision requirements.

Shear measurement bias: dependencies on methods, simulation parameters and measured parameters

 

Authors: A. Pujol, F. Sureau, J. Bobin et al.
Journal: A&A
Year: 06/2017
Download: ADS| Arxiv


Abstract

We present a study of the dependencies of shear and ellipticity bias on simulation (input) and measured (output) parameters, noise, PSF anisotropy, pixel size and the model bias coming from two different and independent shape estimators. We use simulated images from Galsim based on the GREAT3 control-space-constant branch and we measure ellipticity and shear bias from a model-fitting method (gFIT) and a moment-based method (KSB). We show the bias dependencies found on input and output parameters for both methods and we identify the main dependencies and causes. We find consistent results between the two methods (given the precision of the analysis) and important dependencies on orientation and morphology properties such as flux, size and ellipticity. We show cases where shear bias and ellipticity bias behave very different for the two methods due to the different nature of these measurements. We also show that noise and pixelization play an important role on the bias dependences on the output properties. We find a large model bias for galaxies consisting of a bulge and a disk with different ellipticities or orientations. We also see an important coupling between several properties on the bias dependences. Because of this we need to study several properties simultaneously in order to properly understand the nature of shear bias.