AMICO galaxy clusters in KiDS-DR3: measurement of the halo bias and power spectrum normalization from a stacked weak lensing analysis

 

Authors: L. Ingoglia, G. Covone, M. Sereno, ..., S. Farrens, et al.
Journal: MNRAS
Year: 2022
DOI: 10.1093/mnras/stac046
Download: ADS | arXiv


Abstract

Galaxy clusters are biased tracers of the underlying matter density field. At very large radii beyond about 10 Mpc/\textit{h}, the shear profile shows evidence of a second-halo term. This is related to the correlated matter distribution around galaxy clusters and proportional to the so-called halo bias. We present an observational analysis of the halo bias-mass relation based on the AMICO galaxy cluster catalog, comprising around 7000 candidates detected in the third release of the KiDS survey. We split the cluster sample into 14 redshift-richness bins and derive the halo bias and the virial mass in each bin by means of a stacked weak lensing analysis. The observed halo bias-mass relation and the theoretical predictions based on the \\Lambda\CDM standard cosmological model show an agreement within \2\sigma\. The mean measurements of bias and mass over the full catalog give \M_{200c} = (4.9 \pm 0.3) \times 10^{13} M_{\odot}/\textit{h}\ and \b_h \sigma_8^2 = 1.2 \pm 0.1\. With the additional prior of a bias-mass relation from numerical simulations, we constrain the normalization of the power spectrum with a fixed matter density \\Omega_m = 0.3\, finding \\sigma_8 = 0.63 \pm 0.10\.

Euclid: impact of nonlinear prescriptions on cosmological parameter estimation from weak lensing cosmic shear

Euclid: impact of nonlinear prescriptions on cosmological parameter estimation from weak lensing cosmic shear


Abstract

Upcoming surveys will map the growth of large-scale structure with unprecented precision, improving our understanding of the dark sector of the Universe. Unfortunately, much of the cosmological information is encoded by the small scales, where the clustering of dark matter and the effects of astrophysical feedback processes are not fully understood. This can bias the estimates of cosmological parameters, which we study here for a joint analysis of mock Euclid cosmic shear and Planck cosmic microwave background data. We use different implementations for the modelling of the signal on small scales and find that they result in significantly different predictions. Moreover, the different nonlinear corrections lead to biased parameter estimates, especially when the analysis is extended into the highly nonlinear regime, with both the Hubble constant, H0, and the clustering amplitude, σ8, affected the most. Improvements in the modelling of nonlinear scales will therefore be needed if we are to resolve the current tension with more and better data. For a given prescription for the nonlinear power spectrum, using different corrections for baryon physics does not significantly impact the precision of Euclid, but neglecting these correction does lead to large biases in the cosmological parameters. In order to extract precise and unbiased constraints on cosmological parameters from Euclid cosmic shear data, it is therefore essential to improve the accuracy of the recipes that account for nonlinear structure formation, as well as the modelling of the impact of astrophysical processes that redistribute the baryons.

Effect of nonlinear prescriptions

 

Euclid preparation: VII. Forecast validation for Euclid cosmological probes

Euclid: impact of nonlinear prescriptions on cosmological parameter estimation from weak lensing cosmic shear


Abstract

Aims: The Euclid space telescope will measure the shapes and redshifts of galaxies to reconstruct the expansion history of the Universe and the growth of cosmic structures. The estimation of the expected performance of the experiment, in terms of predicted constraints on cosmological parameters, has so far relied on various individual methodologies and numerical implementations, which were developed for different observational probes and for the combination thereof. In this paper we present validated forecasts, which combine both theoretical and observational ingredients for different cosmological probes. This work is presented to provide the community with reliable numerical codes and methods for Euclid cosmological forecasts.
Methods: We describe in detail the methods adopted for Fisher matrix forecasts, which were applied to galaxy clustering, weak lensing, and the combination thereof. We estimated the required accuracy for Euclid forecasts and outline a methodology for their development. We then compare and improve different numerical implementations, reaching uncertainties on the errors of cosmological parameters that are less than the required precision in all cases. Furthermore, we provide details on the validated implementations, some of which are made publicly available, in different programming languages, together with a reference training-set of input and output matrices for a set of specific models. These can be used by the reader to validate their own implementations if required.
Results: We present new cosmological forecasts for Euclid. We find that results depend on the specific cosmological model and remaining freedom in each setting, for example flat or non-flat spatial cosmologies, or different cuts at non-linear scales. The numerical implementations are now reliable for these settings. We present the results for an optimistic and a pessimistic choice for these types of settings. We demonstrate that the impact of cross-correlations is particularly relevant for models beyond a cosmological constant and may allow us to increase the dark energy figure of merit by at least a factor of three.

 

Euclid: Forecast constraints on the cosmic distance duality relation with complementary external probes

Euclid: impact of nonlinear prescriptions on cosmological parameter estimation from weak lensing cosmic shear


Abstract

In metric theories of gravity with photon number conservation, the luminosity and angular diameter distances are related via the Etherington relation, also known as the distance-duality relation (DDR). A violation of this relation would rule out the standard cosmological paradigm and point at the presence of new physics. We quantify the ability of Euclid, in combination with contemporary surveys, to improve the current constraints on deviations from the DDR in the redshift range 0<z<1.6. We start by an analysis of the latest available data, improving previously reported constraints by a factor of 2.5. We then present a detailed analysis of simulated Euclid and external data products, using both standard parametric methods (relying on phenomenological descriptions of possible DDR violations) and a machine learning reconstruction using Genetic Algorithms. We find that for parametric methods Euclid can (in combination with external probes) improve current constraints by approximately a factor of six, while for non-parametric methods Euclid can improve current constraints by a factor of three. Our results highlight the importance of surveys like Euclid in accurately testing the pillars of the current cosmological paradigm and constraining physics beyond the standard cosmological model.

Distance duality relation
2D contours on Ωm,0\Omega_{\rm m,0}Ωm,0​, ϵ0\epsilon_0ϵ0​ and ϵ1\epsilon_1ϵ1​, using currently available data for BAO (blue), SnIa (yellow) and the combination of the two (red). These results refer to the constant (top panel) and binned (central and bottom panels) ϵ(z)\epsilon(z)ϵ(z) cases.

 

Euclid: The importance of galaxy clustering and weak lensing cross-correlations within the photometric Euclid survey

Euclid: impact of nonlinear prescriptions on cosmological parameter estimation from weak lensing cosmic shear


Abstract

Context. The data from the Euclid mission will enable the measurement of the angular positions and weak lensing shapes of over a billion galaxies, with their photometric redshifts obtained together with ground-based observations. This large dataset, with well-controlled systematic effects, will allow for cosmological analyses using the angular clustering of galaxies (GCph) and cosmic shear (WL). For Euclid, these two cosmological probes will not be independent because they will probe the same volume of the Universe. The cross-correlation (XC) between these probes can tighten constraints and is therefore important to quantify their impact for Euclid.
Aims: In this study, we therefore extend the recently published Euclid forecasts by carefully quantifying the impact of XC not only on the final parameter constraints for different cosmological models, but also on the nuisance parameters. In particular, we aim to decipher the amount of additional information that XC can provide for parameters encoding systematic effects, such as galaxy bias, intrinsic alignments (IAs), and knowledge of the redshift distributions.
Methods: We follow the Fisher matrix formalism and make use of previously validated codes. We also investigate a different galaxy bias model, which was obtained from the Flagship simulation, and additional photometric-redshift uncertainties; we also elucidate the impact of including the XC terms on constraining these latter.
Results: Starting with a baseline model, we show that the XC terms reduce the uncertainties on galaxy bias by ∼17% and the uncertainties on IA by a factor of about four. The XC terms also help in constraining the γ parameter for minimal modified gravity models. Concerning galaxy bias, we observe that the role of the XC terms on the final parameter constraints is qualitatively the same irrespective of the specific galaxy-bias model used. For IA, we show that the XC terms can help in distinguishing between different models, and that if IA terms are neglected then this can lead to significant biases on the cosmological parameters. Finally, we show that the XC terms can lead to a better determination of the mean of the photometric galaxy distributions.
Conclusions: We find that the XC between GCph and WL within the Euclid survey is necessary to extract the full information content from the data in future analyses. These terms help in better constraining the cosmological model, and also lead to a better understanding of the systematic effects that contaminate these probes. Furthermore, we find that XC significantly helps in constraining the mean of the photometric-redshift distributions, but, at the same time, it requires more precise knowledge of this mean with respect to single probes in order not to degrade the final "figure of merit".

XC importance
Ratio of the errors on Δzi\Delta z_iΔzi​ without and with the inclusion of XC. Yellow and red lines refer to the pessimistic and optimistic scenario.

 

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Euclid: The reduced shear approximation and magnification bias for Stage IV cosmic shear experiments

Authors: A.C. Deshpande, ..., S. Casas, M. Kilbinger, V. Pettorino, S. Pires, J.-L. Starck, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2020
DOI:  10.1051/0004-6361/201937323
Download:

ADS | arXiv

 


Abstract

Stage IV weak lensing experiments will offer more than an order of magnitude leap in precision. We must therefore ensure that our analyses remain accurate in this new era. Accordingly, previously ignored systematic effects must be addressed. In this work, we evaluate the impact of the reduced shear approximation and magnification bias, on the information obtained from the angular power spectrum. To first-order, the statistics of reduced shear, a combination of shear and convergence, are taken to be equal to those of shear. However, this approximation can induce a bias in the cosmological parameters that can no longer be neglected. A separate bias arises from the statistics of shear being altered by the preferential selection of galaxies and the dilution of their surface densities, in high-magnification regions. The corrections for these systematic effects take similar forms, allowing them to be treated together. We calculated the impact of neglecting these effects on the cosmological parameters that would be determined from Euclid, using cosmic shear tomography. To do so, we employed the Fisher matrix formalism, and included the impact of the super-sample covariance. We also demonstrate how the reduced shear correction can be calculated using a lognormal field forward modelling approach. These effects cause significant biases in Omega_m, sigma_8, n_s, Omega_DE, w_0, and w_a of -0.53 sigma, 0.43 sigma, -0.34 sigma, 1.36 sigma, -0.68 sigma, and 1.21 sigma, respectively. We then show that these lensing biases interact with another systematic: the intrinsic alignment of galaxies. Accordingly, we develop the formalism for an intrinsic alignment-enhanced lensing bias correction. Applying this to Euclid, we find that the additional terms introduced by this correction are sub-dominant.

Euclid: The selection of quiescent and star-forming galaxies using observed colours

Euclid: The selection of quiescent and star-forming galaxies using observed colours

Authors: L. Bisigello, ..., V. Pettorino, S. Pires, F. Sureau, et al.
Journal: MNRAS
Year: 2020
DOI:  10.1093/mnras/staa885
Download:

ADS | arXiv

 


Abstract

The Euclid mission will observe well over a billion galaxies out to z6 and beyond. This will offer an unrivalled opportunity to investigate several key questions for understanding galaxy formation and evolution. The first step for many of these studies will be the selection of a sample of quiescent and star-forming galaxies, as is often done in the literature by using well known colour techniques such as the `UVJ' diagram. However, given the limited number of filters available for the Euclid telescope, the recovery of such rest-frame colours will be challenging. We therefore investigate the use of observed Euclid colours, on their own and together with ground-based u-band observations, for selecting quiescent and star-forming galaxies. The most efficient colour combination, among the ones tested in this work, consists of the (u-VIS) and (VIS-J) colours. We find that this combination allows users to select a sample of quiescent galaxies complete to above 70% and with less than 15% contamination at redshifts in the range 0.75<z<1. For galaxies at high-z or without the u-band complementary observations, the (VIS-Y) and (J-H) colours represent a valid alternative, with >65% completeness level and contamination below 20% at 1<z<2 for finding quiescent galaxies. In comparison, the sample of quiescent galaxies selected with the traditional UVJ technique is only 20% complete at z<3, when recovering the rest-frame colours using mock Euclid observations. This shows that our new methodology is the most suitable one when only Euclid bands, along with u-band imaging, are available.

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Euclid preparation: VI. Verifying the Performance of Cosmic Shear Experiments

Authors: Euclid Collaboration, P. Paykari, ..., S. Farrens, M. Kilbinger, V. Pettorino, S. Pires, J.-L. Starck, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2020
DOI:  10.1051/0004-6361/201936980
Download:

ADS | arXiv

 


Abstract

Our aim is to quantify the impact of systematic effects on the inference of cosmological parameters from cosmic shear. We present an end-to-end approach that introduces sources of bias in a modelled weak lensing survey on a galaxy-by-galaxy level. Residual biases are propagated through a pipeline from galaxy properties (one end) through to cosmic shear power spectra and cosmological parameter estimates (the other end), to quantify how imperfect knowledge of the pipeline changes the maximum likelihood values of dark energy parameters. We quantify the impact of an imperfect correction for charge transfer inefficiency (CTI) and modelling uncertainties of the point spread function (PSF) for Euclid, and find that the biases introduced can be corrected to acceptable levels.

Euclid preparation. V. Predicted yield of redshift 7 < z < 9 quasars from the wide survey

Euclid preparation: V. Predicted yield of redshift 7

Authors: Euclid Collaboration, R. Barnett, ..., S. Farrens, M. Kilbinger, V. Pettorino, F. Sureau, et al.
Journal: Astronomy and Astrophysics
Year: 2019
DOI:  10.1051/0004-6361/201936427
Download:

ADS | arXiv

 


Abstract

We provide predictions of the yield of 7<z<9 quasars from the Euclid wide survey, updating the calculation presented in the Euclid Red Book in several ways. We account for revisions to the Euclid near-infrared filter wavelengths; we adopt steeper rates of decline of the quasar luminosity function (QLF; Φ) with redshift, Φ∝10k(z−6), k=−0.72, and a further steeper rate of decline, k=−0.92; we use better models of the contaminating populations (MLT dwarfs and compact early-type galaxies); and we use an improved Bayesian selection method, compared to the colour cuts used for the Red Book calculation, allowing the identification of fainter quasars, down to JAB∼23. Quasars at z>8 may be selected from Euclid OYJH photometry alone, but selection over the redshift interval 7<z<8 is greatly improved by the addition of z-band data from, e.g., Pan-STARRS and LSST. We calculate predicted quasar yields for the assumed values of the rate of decline of the QLF beyond z=6. For the case that the decline of the QLF accelerates beyond z=6, with k=−0.92, Euclid should nevertheless find over 100 quasars with 7.0<z<7.5, and ∼25 quasars beyond the current record of z=7.5, including ∼8 beyond z=8.0. The first Euclid quasars at z>7.5 should be found in the DR1 data release, expected in 2024. It will be possible to determine the bright-end slope of the QLF, 7<z<8, M1450<−25, using 8m class telescopes to confirm candidates, but follow-up with JWST or E-ELT will be required to measure the faint-end slope. Contamination of the candidate lists is predicted to be modest even at JAB∼23. The precision with which k can be determined over 7<z<8 depends on the value of k, but assuming k=−0.72 it can be measured to a 1 sigma uncertainty of 0.07.

Euclid: Non-parametric point spread function field recovery through interpolation on a Graph Laplacian

 

Authors: M.A. Schmitz, J.-L. Starck, F. Ngole Mboula, N. Auricchio, J. Brinchmann, R.I. Vito Capobianco, R. Clédassou, L. Conversi, L. Corcione, N. Fourmanoit, M. Frailis, B. Garilli, F. Hormuth, D. Hu, H. Israel, S. Kermiche, T. D. Kitching, B. Kubik, M. Kunz, S. Ligori, P.B. Lilje, I. Lloro, O. Mansutti, O. Marggraf, R.J. Massey, F. Pasian, V. Pettorino, F. Raison, J.D. Rhodes, M. Roncarelli, R.P. Saglia, P. Schneider, S. Serrano, A.N. Taylor, R. Toledo-Moreo, L. Valenziano, C. Vuerli, J. Zoubian
Journal: submitted to A&A
Year: 2019
Download:  arXiv

 


Abstract

Context. Future weak lensing surveys, such as the Euclid mission, will attempt to measure the shapes of billions of galaxies in order to derive cosmological information. These surveys will attain very low levels of statistical error and systematic errors must be extremely well controlled. In particular, the point spread function (PSF) must be estimated using stars in the field, and recovered with high accuracy.
Aims. This paper's contributions are twofold. First, we take steps toward a non-parametric method to address the issue of recovering the PSF field, namely that of finding the correct PSF at the position of any galaxy in the field, applicable to Euclid. Our approach relies solely on the data, as opposed to parametric methods that make use of our knowledge of the instrument. Second, we study the impact of imperfect PSF models on the shape measurement of galaxies themselves, and whether common assumptions about this impact hold true in a Euclid scenario.
Methods. We use the recently proposed Resolved Components Analysis approach to deal with the undersampling of observed star images. We then estimate the PSF at the positions of galaxies by interpolation on a set of graphs that contain information relative to its spatial variations. We compare our approach to PSFEx, then quantify the impact of PSF recovery errors on galaxy shape measurements through image simulations.
Results. Our approach yields an improvement over PSFEx in terms of PSF model and on observed galaxy shape errors, though it is at present not sufficient to reach the required Euclid accuracy. We also find that different shape measurement approaches can react differently to the same PSF modelling errors.