Euclid: Non-parametric point spread function field recovery through interpolation on a Graph Laplacian


Authors: M.A. Schmitz, J.-L. Starck, F. Ngole Mboula, N. Auricchio, J. Brinchmann, R.I. Vito Capobianco, R. Clédassou, L. Conversi, L. Corcione, N. Fourmanoit, M. Frailis, B. Garilli, F. Hormuth, D. Hu, H. Israel, S. Kermiche, T. D. Kitching, B. Kubik, M. Kunz, S. Ligori, P.B. Lilje, I. Lloro, O. Mansutti, O. Marggraf, R.J. Massey, F. Pasian, V. Pettorino, F. Raison, J.D. Rhodes, M. Roncarelli, R.P. Saglia, P. Schneider, S. Serrano, A.N. Taylor, R. Toledo-Moreo, L. Valenziano, C. Vuerli, J. Zoubian
Journal: submitted to A&A
Year: 2019
Download:  arXiv



Context. Future weak lensing surveys, such as the Euclid mission, will attempt to measure the shapes of billions of galaxies in order to derive cosmological information. These surveys will attain very low levels of statistical error and systematic errors must be extremely well controlled. In particular, the point spread function (PSF) must be estimated using stars in the field, and recovered with high accuracy.
Aims. This paper's contributions are twofold. First, we take steps toward a non-parametric method to address the issue of recovering the PSF field, namely that of finding the correct PSF at the position of any galaxy in the field, applicable to Euclid. Our approach relies solely on the data, as opposed to parametric methods that make use of our knowledge of the instrument. Second, we study the impact of imperfect PSF models on the shape measurement of galaxies themselves, and whether common assumptions about this impact hold true in a Euclid scenario.
Methods. We use the recently proposed Resolved Components Analysis approach to deal with the undersampling of observed star images. We then estimate the PSF at the positions of galaxies by interpolation on a set of graphs that contain information relative to its spatial variations. We compare our approach to PSFEx, then quantify the impact of PSF recovery errors on galaxy shape measurements through image simulations.
Results. Our approach yields an improvement over PSFEx in terms of PSF model and on observed galaxy shape errors, though it is at present not sufficient to reach the required Euclid accuracy. We also find that different shape measurement approaches can react differently to the same PSF modelling errors.

Euclid preparation III. Galaxy cluster detection in the wide photometric survey, performance and algorithm selection


Authors: Euclid Collaboration, R. Adam, ..., S. Farrens, et al.
Journal: A&A
Year: 2019
Download: ADS | arXiv


Galaxy cluster counts in bins of mass and redshift have been shown to be a competitive probe to test cosmological models. This method requires an efficient blind detection of clusters from surveys with a well-known selection function and robust mass estimates. The Euclid wide survey will cover 15000 deg2 of the sky in the optical and near-infrared bands, down to magnitude 24 in the H-band. The resulting data will make it possible to detect a large number of galaxy clusters spanning a wide-range of masses up to redshift ∼2. This paper presents the final results of the Euclid Cluster Finder Challenge (CFC). The objective of these challenges was to select the cluster detection algorithms that best meet the requirements of the Euclid mission. The final CFC included six independent detection algorithms, based on different techniques, such as photometric redshift tomography, optimal filtering, hierarchical approach, wavelet and friend-of-friends algorithms. These algorithms were blindly applied to a mock galaxy catalog with representative Euclid-like properties. The relative performance of the algorithms was assessed by matching the resulting detections to known clusters in the simulations. Several matching procedures were tested, thus making it possible to estimate the associated systematic effects on completeness to <3%. All the tested algorithms are very competitive in terms of performance, with three of them reaching >80% completeness for a mean purity of 80% down to masses of 1014 M⊙ and up to redshift z=2. Based on these results, two algorithms were selected to be implemented in the Euclid pipeline, the AMICO code, based on matched filtering, and the PZWav code, based on an adaptive wavelet approach.