Beyond self-acceleration: force- and fluid-acceleration

The notion of self acceleration has been introduced as a convenient way to theoretically distinguish cosmological models in which acceleration is due to modified gravity from those in which it is due to the properties of matter or fields. In this paper we review the concept of self acceleration as given, for example, by [1], and highlight two problems. First, that it applies only to universal couplings, and second, that it is too narrow, i.e. it excludes models in which the acceleration can be shown to be induced by a genuine modification of gravity, for instance coupled dark energy with a universal coupling, the Hu-Sawicki f(R) model or, in the context of inflation, the Starobinski model. We then propose two new, more general, concepts in its place: force-acceleration and field-acceleration, which are also applicable in presence of non universal cosmologies. We illustrate their concrete application with two examples, among the modified gravity classes which are still in agreement with current data, i.e. f(R) models and coupled dark energy.

As noted already for example in [35, 36], we further remark that at present non-universal couplings are among the (few) classes of models which survive gravitational wave detection and local constraints (see [12] for a review on models surviving with a universal coupling). This is because, by construction, baryonic interactions are standard and satisfy solar system constraints; furthermore the speed of gravitational waves in these models is  cT = 1 and therefore in agreement with gravitational wave detection. It has also been noted (see for example [37–39] and the update in [33]) that models in which a non-universal coupling between dark matter particles is considered would also solve the tension in the measurement of the Hubble parameter [40] due to the degeneracy beta - H0 first noted in Ref. [41].

Reference: L.Amendola, V.Pettorino  "Beyond self-acceleration: force- and fluid-acceleration", Physics Letters B, in press, 2020.

Measuring Gravity at Cosmological Scales

Measuring Gravity at Cosmological Scales

 

Authors:  Luca Amendola , Dario Bettoni, Ana Marta Pinho Santiago Casas,
Journal: Review Paper
Year: 02/2019
Download: Inspire| Arxiv


Abstract

This paper is a pedagogical introduction to models of gravity and how to constrain them through cosmological observations. We focus on the Horndeski scalar-tensor theory and on the quantities that can be measured with a minimum of assumptions. Alternatives or extensions of General Relativity have been proposed ever since its early years. Because of Lovelock theorem, modifying gravity in four dimensions typically means adding new degrees of freedom. The simplest way is to include a scalar field coupled to the curvature tensor terms. The most general way of doing so without incurring in the Ostrogradski instability is the Horndeski Lagrangian and its extensions. Testing gravity means therefore, in its simplest term, testing the Horndeski Lagrangian. Since local gravity experiments can always be evaded by assuming some screening mechanism or that baryons are decoupled, or even that the effects of modified gravity are visible only at early times, we need to test gravity with cosmological observations in the late universe (large-scale structure) and in the early universe (cosmic microwave background). In this work we review the basic tools to test gravity at cosmological scales, focusing on model-independent measurements.

logfsigma8

 

Future constraints on the gravitational slip with the mass profiles of galaxy clusters


Abstract

The gravitational slip parameter is an important discriminator between large classes of gravity theories at cosmological and astrophysical scales. In this work we use a combination of simulated information of galaxy cluster mass profiles, inferred by Strong+Weak lensing analyses and by the study of the dynamics of the cluster member galaxies, to reconstruct the gravitational slip parameter η and predict the accuracy with which it can be constrained with current and future galaxy cluster surveys. Performing a full-likelihood statistical analysis, we show that galaxy cluster observations can constrain η down to the percent level already with a few tens of clusters. We discuss the significance of possible systematics, and show that the cluster masses and numbers of galaxy members used to reconstruct the dynamics mass profile have a mild effect on the predicted constraints.

Scale-invariant alternatives to general relativity. The inflation–dark-energy connection


Abstract

We discuss the cosmological phenomenology of biscalar--tensor models
displaying a maximally symmetric Einstein--frame kinetic sector and
constructed on the basis of scale symmetry and volume--preserving
diffeomorphisms. These theories contain a single dimensionful
parameter $\Lambda_0$---associated with the invariance under the
aforementioned restricted coordinate transformations---and a massless
dilaton field. At large field values these scenarios lead to inflation
with no generation of isocurvature perturbations. The corresponding
predictions depend only on two dimensionless parameters, which
characterize the curvature of the field--manifold and the leading
order behavior of the inflationary potential. For $\Lambda_0=0$ the
scale symmetry is unbroken and the dilaton admits only derivative
couplings to matter, evading all fifth force constraints. For
$\Lambda_0\neq 0$ the field acquires a run-away potential that can
support a dark energy dominated era at late times. We confront a
minimalistic realization of this appealing framework with observations
using a Markov-Chain-Monte-Carlo approach, with likelihoods from
present BAO, SNIa and CMB data. A Bayesian model comparison indicates
a preference for the considered model over $\Lambda$CDM, under certain
assumptions for the priors. The impact of possible consistency
relations among the early and late Universe dynamics that can appear
within this setting is discussed with the use of correlation
matrices. The results indicate that a precise determination of the
inflationary observables and the dark energy equation--of--state could
significantly constraint the model parameters.

Distinguishing standard and modified gravity cosmologies with machine learning

Distinguishing standard and modified gravity cosmologies with machine learning

 

Authors: A. Peel, F. Lalande, J.-L. Starck, V. Pettorino, J. Merten,  C. Giocoli, M. Meneghetti,  M. Baldi
Journal: PRD
Year: 2019
Download: ADS | arXiv


Abstract

We present a convolutional neural network to classify distinct cosmological scenarios based on the statistically similar weak-lensing maps they generate. Modified gravity (MG) models that include massive neutrinos can mimic the standard concordance model (ΛCDM) in terms of Gaussian weak-lensing observables. An inability to distinguish viable models that are based on different physics potentially limits a deeper understanding of the fundamental nature of cosmic acceleration. For a fixed redshift of sources, we demonstrate that a machine learning network trained on simulated convergence maps can discriminate between such models better than conventional higher-order statistics. Results improve further when multiple source redshifts are combined. To accelerate training, we implement a novel data compression strategy that incorporates our prior knowledge of the morphology of typical convergence map features. Our method fully distinguishes ΛCDM from its most similar MG model on noise-free data, and it correctly identifies among the MG models with at least 80% accuracy when using the full redshift information. Adding noise lowers the correct classification rate of all models, but the neural network still significantly outperforms the peak statistics used in a previous analysis.

On the dissection of degenerate cosmologies with machine learning

On the dissection of degenerate cosmologies with machine learning

 

Authors: J. Merten,  C. Giocoli, M. Baldi, M. Meneghetti, A. Peel, F. Lalande, J.-L. Starck, V. Pettorino
Journal: MNRAS
Year: 2019
Download: ADS | arXiv


Abstract

Based on the DUSTGRAIN-pathfinder suite of simulations, we investigate observational degeneracies between nine models of modified gravity and massive neutrinos. Three types of machine learning techniques are tested for their ability to discriminate lensing convergence maps by extracting dimensional reduced representations of the data. Classical map descriptors such as the power spectrum, peak counts and Minkowski functionals are combined into a joint feature vector and compared to the descriptors and statistics that are common to the field of digital image processing. To learn new features directly from the data we use a Convolutional Neural Network (CNN). For the mapping between feature vectors and the predictions of their underlying model, we implement two different classifiers; one based on a nearest-neighbour search and one that is based on a fully connected neural network. We find that the neural network provides a much more robust classification than the nearest-neighbour approach and that the CNN provides the most discriminating representation of the data. It achieves the cleanest separation between the different models and the highest classification success rate of 59% for a single source redshift. Once we perform a tomographic CNN analysis, the total classification accuracy increases significantly to 76% with no observational degeneracies remaining. Visualising the filter responses of the CNN at different network depths provides us with the unique opportunity to learn from very complex models and to understand better why they perform so well.

Cosmological evolution in DHOST theories

 

Authors: M. Crisostomi , K. Koyama, D. Langlois, K. Noui and D. A. Steer
Journal:  
Year: 2018
Download: arXiv


Abstract

In the context of Degenerate Higher-Order Scalar-Tensor (DHOST) theories, we study cosmological solutions and their stability properties. In particular, we explicitly illustrate the crucial role of degeneracy by showing how the higher order homogeneous equations in the physical frame (where matter is minimally coupled) can be recast in a system of equations that do not involve higher order derivatives. We study the fixed points of the dynamics, finding the conditions for having a de Sitter attractor at late times. Then we consider the coupling to matter field (described for convenience by a k-essence Lagrangian) and find the conditions to avoid gradient and ghost instabilities at linear order in cosmological perturbations, extending previous work. Finally, we apply these results to a simple subclass of DHOST theories, showing that de Sitter attractor conditions, no ghost and no gradient instabilities conditions (both in the self-accelerating era and in the matter dominated era) can be compatible.

The road ahead of Horndeski: cosmology of surviving scalar-tensor theories


Abstract

In the context of the effective field theory of dark energy (EFT) we perform agnostic explorations of Horndeski gravity. We choose two parametrizations for the free EFT functions, namely a power law and a dark energy density-like behaviour on a non trivial Chevallier-Polarski-Linder background. We restrict our analysis to those EFT functions which do not modify the speed of propagation of gravitational waves. Among those, we prove that one specific function cannot be constrained by data, since its contribution to the observables is below the cosmic variance, although we show it has a relevant role in defining the viable parameter space. We place constraints on the parameters of these models combining measurements from present day cosmological datasets and we prove that the next generation galaxy surveys can improve such constraints by one order of magnitude. We then verify the validity of the quasi-static limit within the sound horizon of the dark field, by looking at the phenomenological functions μ and Σ, associated respectively to clustering and lensing potentials. Furthermore, we notice up to 5% deviations in μ,Σ with respect to General Relativity at scales smaller than the Compton one. For the chosen parametrizations and in the quasi-static limit, future constraints on μ and Σ can reach the 1% level and will allow us to discriminate between certain models at more than 3σ, provided the present best-fit values remain.

Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics

Breaking degeneracies in modified gravity with higher (than 2nd) order weak-lensing statistics

 

Authors: A. PeelV. Pettorino, C. Giocoli, J.-L. Starck, M. Baldi
Journal: A&A
Year: 2018
Download: ADS | arXiv


Abstract

General relativity (GR) has been well tested up to solar system scales, but it is much less certain that standard gravity remains an accurate description on the largest, that is, cosmological, scales. Many extensions to GR have been studied that are not yet ruled out by the data, including by that of the recent direct gravitational wave detections. Degeneracies among the standard model (ΛCDM) and modified gravity (MG) models, as well as among different MG parameters, must be addressed in order to best exploit information from current and future surveys and to unveil the nature of dark energy. We propose various higher-order statistics in the weak-lensing signal as a new set of observables able to break degeneracies between massive neutrinos and MG parameters. We have tested our methodology on so-called f(R) models, which constitute a class of viable models that can explain the accelerated universal expansion by a modification of the fundamental gravitational interaction. We have explored a range of these models that still fit current observations at the background and linear level, and we show using numerical simulations that certain models which include massive neutrinos are able to mimic ΛCDM in terms of the 3D power spectrum of matter density fluctuations. We find that depending on the redshift and angular scale of observation, non-Gaussian information accessed by higher-order weak-lensing statistics can be used to break the degeneracy between f(R) models and ΛCDM. In particular, peak counts computed in aperture mass maps outperform third- and fourth-order moments.

Model-independent reconstruction of the linear anisotropic stress

 

Authors: Ana Marta Pinho Santiago Casas, Luca Amendola
Journal: Accepted for JCAP
Year: 05/2018
Download: Inspire| Arxiv


Abstract

In this work, we use recent data on the Hubble expansion rate H(z), the quantity fσ8(z) from redshift space distortions and the statistic Eg from clustering and lensing observables to constrain in a model-independent way the linear anisotropic stress parameter η. This estimate is free of assumptions about initial conditions, bias, the abundance of dark matter and the background expansion. We denote this observable estimator as ηobs. If ηobs turns out to be different from unity, it would imply either a modification of gravity or a non-perfect fluid form of dark energy clustering at sub-horizon scales. Using three different methods to reconstruct the underlying model from data, we report the value of ηobs at three redshift values, z=0.29,0.58,0.86. Using the method of polynomial regression, we find ηobs=0.57±1.05, ηobs=0.48±0.96, and ηobs=0.11±3.21, respectively. Assuming a constant ηobs in this range, we find ηobs=0.49±0.69. We consider this method as our fiducial result, for reasons clarified in the text. The other two methods give for a constant anisotropic stress ηobs=0.15±0.27 (binning) and ηobs=0.53±0.19 (Gaussian Process). We find that all three estimates are compatible with each other within their 1σ error bars. While the polynomial regression method is compatible with standard gravity, the other two methods are in tension with it.