CosmosClub: Miguel Zumalacarregui (06/11/19)

Testing Gravity and Dark Energy with Cosmology and Gravitational Waves

Date: November 06th 2019, 15h30

Speaker: Miguel Zumalacarregui (UC Berkeley & IPhT Saclay)

Title: Testing Gravity and Dark Energy with Cosmology and Gravitational Waves

Room: Kepler


Abstract

Alternative theories of gravity may provide viable models of cosmic acceleration with the possibility of alleviating shortcomings of the standard paradigm such as discrepant measurement of the Hubble parameter. I will present recent progress in constructing viable, yet extremely predictive theories of gravity and dark energy, extracting their cosmological implications and testing them with data, current and forthcoming. I will also present how most of these theories affect the propagation of gravitational waves. In particular, the speed of gravitational waves provides the most stringent test for a large class of theories, which have been recently ruled out by the GW speed measurement following the neutron star merger GW170817. Other effects on gravitational wave propagation (damping, modified dispersion and oscillations) can be used to test the landscape of gravitational theories.

CosmosClub: Fangchen Feng (10/10/19)

Date: October 10th 2019, 15h00

Speaker: Fangchen Feng (Laboratoire Astroparticule & Cosmologie)

Title: Reconstruction and characterisation of polarisations of a gravitational-wave signal

Room: Kepler


Abstract

Polarisation properties of gravitational waves carry crucial information about the physics of gravitational sources (binary compact systems of black holes or neutron stars, etc. ) such as precession effects. In practice, the reconstruction of the two polarizations h+(t) and h×(t) is made possible by the use of at least two non-aligned detectors. To this aim, we propose a complete analysis procedure of gravitational-wave signals. Starting from measurements, this procedure estimates the sky position of the source, reconstructs the two components h+(t) and h×(t) and estimates instantaneous Stokes parameters of the wave. This set of non-parametric observables encodes many fine properties of the astrophysical source without close bounds to a specific dynamical model, making them particularly suited to decipher precession effects.

CosmosClub: Catherine Heymans (22/10/19)

Date: October 22nd 2019, 11am

Speaker: Catherine Heymans (ROE, Edinburgh)

Title: low-z-vs-CMB tensions with KiDS and DES and  photo-z calibration

Room: Kepler


Abstract

Catherine Heymans will give a 15-20min introduction on recent work on low-z-vs-CMB tensions with KiDS and DES (https://arxiv.org/abs/1906.09262) and some more recent work on photo-z calibration. Then we will have a "bring a plot" session, in which each of us brings the plot we are most excited about and we comment and discuss on it together.

École Euclid de cosmologie 2019

Date: August 19 - August 31, 2019

Venue: Banyuls, Occitanie, France

Website: http://ecole-euclid.cnrs.fr/accueil-session-2019


Lecture ``Weak gravitational lensing'' (Le lentillage gravitationnel), Martin Kilbinger.

Find here links to the lecture notes, TD exercises, "tables rondes" topics, and other information.

  • Resources.
    • A great and detailed introduction to (weak) gravitational lensing are the 2005 Saas Fee lecture notes by Peter Schneider. Download Part I (Introduction to lensing) and Part III (Weak lensing) from my homepage.
    • Check out Sarah Bridle's video lectures on WL from 2014.
  • TD cycle 1, Data analysis.
    1.  We will work on a rather large (150 MB) weak-lensing catalogues from the public CFHTLenS web page. During the TD I will show instructions how to create and download this catalogue. These catalogues will also be available on the virtual machine for the school, or download here.
      If you want to do the TD on your laptop, you'll need to download and install athena (the newest version 1.7). Available on the VM.
  • Lecture notes and exercise classes.  You can already download the slides in one file (40 - 60 MB), but be ware that the content will still change slightly until the classes.
    • Part I (Cycle 1):    [all ]
    • Part II (Cycle 2):  [day 1 (4/6)] The lectures for day 2+3 are given by Nicolas Martinet]
    • TD:                             [cycle 1]. The TDs for cycle 2 are given by Nicolas as well.
    • Table Ronde sujet

GOLD : The Golden Cosmological Surveys Decade

This 10-week programme on the Golden Cosmological Surveys Decade will be held at the new Institut Pascal, in Paris Orsay, from 1st April 2020 to 5th June 2020. The Institut Pascal provides offices, seminar rooms, common areas and supports long-term scientific programmes. 
 
GOLD 2020 will include a summer school, three workshops (on Lensing, Galaxy Clustering, Theory and Interpretation of the Data). 
In-between, an active training programme will be run. We plan to host around 40 people for the whole programme, plus around 30 scientists during the workshops. 
Whether you are a PhD, a postdoc, a senior scientist and are interested in attending this programme, you can now apply. Deadline for applications: 1st October 2019.

 

 

Euclid joint meeting: WL + GC + CG SWG + OU-LE3

Dates: February, 3 - 7, 2020

Organisers:  Martin Kilbinger, ...

Venue: Institut d'Astrophysique de Paris (IAP),  98bis bd Arago, 75014 Paris.

Local information: http://www.iap.fr/accueil/acces/acces.php?langue=en

Contact: martin.kilbinger@cea.fr


Registration

Please add your name to the following google doc if you are planning to attend the meeting.

https://docs.google.com/document/d/17Hn8Z6LH54fJDbDY2uQPtZPauZotm6IsnNC4LbBcmII/edit?usp=sharing

There is no registration fee. Coffee and snacks will be provided for the breaks. For lunch, participants are invited to go to the nearby restaurants, shops, or imbiss stands
(see http://www.iap.fr/vie_scientifique/colloques/Colloque_IAP/2018/i-practicalinfo.html#lunch for some ideas).

 

 

CosmosClub: Sebastian Rojas Gonzalez (12/07/19)

Date: July 12th 2019, 11am

Speaker: Sebastian Rojas Gonzales (KU Leuven)

Title: Gaussian processes for simulation optimization

Room: Kepler


Abstract

The use of kriging metamodels (also known as gaussian processes) in simulation optimization has become increasingly popular during recent years. The majority of the algorithms so far uses the ordinary (deterministic) kriging approach for constructing the metamodel, assuming that observations have been sampled with infinite precision. This is a major issue when the simulation problem is stochastic: ignoring the noise in the outcomes may lead to inaccurate predictions. In this work, we propose a stochastic multiobjective simulation optimization algorithm that contains two crucial elements: the search phase implements a kriging method that is able to account for the inherent noise in the outputs when constructing the metamodel, and in the identification phase uses a Bayesian multiobjective ranking and selection procedure in view of maximizing the probability of selecting the true non-dominated points by optimally allocating the available computational budget. We evaluate the impact of these elements on the search and identification effectiveness on a set of artificial test problems with varying levels of heteroscedastic noise. Our results show that the characterization of the noise is crucial in improving the prediction efficiency; yet, the allocation procedure appears to lose effectiveness in settings with high noise. This emphasizes the need for further research on multiobjective ranking and selection methods.

WORKSHOP ON COMPUTATIONAL INTELLIGENCE IN REMOTE SENSING AND ASTROPHYSICS

The workshop on Computational Intelligence in Remote Sensing and Astrophysics (CIRSA) aims at bringing together researchers from the environmental sciences, astrophysics and computer science communities in an effort to understand the potential and pitfalls of novel computational intelligence paradigms including machine learning and large-scale data processing.

 

 

CosmosClub: Doogesh Kodi Ramanah (20/06/2019)

Date: June 20th 2019, 11am

Speaker: Doogesh Kodi Ramanah (IAP)

Title: Fast complex dynamics emulators for cosmological inference

Room: Cassini


Abstract

I will present an overview of our recent work in developing various aspects of Bayesian forward modelling machinery for an optimal exploitation of state-of-the-art galaxy redshift surveys. I will focus on the development of a generative model for mapping dark matter simulations to 3D halo fields using physically motivated neural networks. We employ the Wasserstein distance as a metric to train our halo painting emulator and demonstrate its efficacy in predicting 3D halo distributions using summary statistics such as the power spectrum and bispectrum. I will subsequently briefly review our novel cosmological parameter inference framework that extracts several orders of magnitude more information from the cosmic expansion relative to standard approaches, and a sophisticated likelihood that is robust to unknown foreground contaminations.