simplex_4

Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning

 

Authors: M.A. Schmitz, M. Heitz, N. Bonneel, F.-M. Ngolè, D. Coeurjolly, M. Cuturi, G. Peyré & J.-L. Starck
Journal: SIAM SIIMS
Year: 2018
Download: ADS | arXiv

 


Abstract

This article introduces a new non-linear dictionary learning method for histograms in the probability simplex. The method leverages optimal transport theory, in the sense that our aim is to reconstruct histograms using so called displacement interpolations (a.k.a. Wasserstein barycenters) between dictionary atoms; such atoms are themselves synthetic histograms in the probability simplex. Our method simultaneously estimates such atoms, and, for each datapoint, the vector of weights that can optimally reconstruct it as an optimal transport barycenter of such atoms. Our method is computationally tractable thanks to the addition of an entropic regularization to the usual optimal transportation problem, leading to an approximation scheme that is efficient, parallel and simple to differentiate. Both atoms and weights are learned using a gradient-based descent method. Gradients are obtained by automatic differentiation of the generalized Sinkhorn iterations that yield barycenters with entropic smoothing. Because of its formulation relying on Wasserstein barycenters instead of the usual matrix product between dictionary and codes, our method allows for non-linear relationships between atoms and the reconstruction of input data. We illustrate its application in several different image processing settings.

DAE_contour_levels

Unsupervised feature learning for galaxy SEDs with denoising autoencoders

 

Authors: Frontera-Pons, J., Sureau, F., Bobin, J. and Le Floc'h E.
Journal: Astronomy & Astrophysics
Year: 2017
Download: ADS | arXiv


Abstract

With the increasing number of deep multi-wavelength galaxy surveys, the spectral energy distribution (SED) of galaxies has become an invaluable tool for studying the formation of their structures and their evolution. In this context, standard analysis relies on simple spectro-photometric selection criteria based on a few SED colors. If this fully supervised classification already yielded clear achievements, it is not optimal to extract relevant information from the data. In this article, we propose to employ very recent advances in machine learning, and more precisely in feature learning, to derive a data-driven diagram. We show that the proposed approach based on denoising autoencoders recovers the bi-modality in the galaxy population in an unsupervised manner, without using any prior knowledge on galaxy SED classification. This technique has been compared to principal component analysis (PCA) and to standard color/color representations. In addition, preliminary results illustrate that this enables the capturing of extra physically meaningful information, such as redshift dependence, galaxy mass evolution and variation over the specific star formation rate. PCA also results in an unsupervised representation with physical properties, such as mass and sSFR, although this representation separates out less other characteristics (bimodality, redshift evolution) than denoising autoencoders.