The XXL survey: First results and future

Authors: M. Pierre et al.
Journal: MNRAS
Year: 2017
Download: ADS | arXiv

 


Abstract

The XXL survey currently covers two 25 sq. deg. patches with XMM observations of ~10ks. We summarise the scientific results associated with the first release of the XXL data set, that occurred mid 2016. We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray (z<2) cluster, (z<4) AGN and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-

λλ

observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the z>1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.

 

Clustering-based redshift estimation: application to VIPERS/CFHTLS

Authors: V. Scottez, Y. Mellier, B. Granett, T. Moutard, M. Kilbinger et al.
Journal: MNRAS
Year: 2016
Download: ADS | arXiv

 


Abstract

We explore the accuracy of the clustering-based redshift estimation proposed by Ménard et al. when applied to VIMOS Public Extragalactic Redshift Survey (VIPERS) and Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) real data. This method enables us to reconstruct redshift distributions from measurement of the angular clustering of objects using a set of secure spectroscopic redshifts. We use state-of-the-art spectroscopic measurements with iAB < 22.5 from the VIPERS as reference population to infer the redshift distribution of galaxies from the CFHTLS T0007 release. VIPERS provides a nearly representative sample to a flux limit of iAB < 22.5 at a redshift of >0.5 which allows us to test the accuracy of the clustering-based redshift distributions. We show that this method enables us to reproduce the true mean colour-redshift relation when both populations have the same magnitude limit. We also show that this technique allows the inference of redshift distributions for a population fainter than the reference and we give an estimate of the colour-redshift mapping in this case. This last point is of great interest for future large-redshift surveys which require a complete faint spectroscopic sample.