CosmoSClub: 09-10-2018

Date: October 9th 2018

Speaker: Chieh-An Lin (IfA, University of Edinburgh)

Title: Predicting weak-lensing covariance with a fast simulator


Weak lensing has been shown as an outstanding tool to constrain cosmology. The state-of-the-art studies have used the power spectrum and peak counts as estimators, and the combination of the two can break down parameter degeneracies and maximize the information extraction.

To constrain cosmology with both estimators, understanding the joint covariance is crucial. However, calculating it analytically seems to be intractable for peaks, and the empirical approach with N-body simulations will be expensive as the size of lensing surveys increase.

I will present a fast solution to solve this problem. The proposed approach simulates lognormal fields and halo models to predict lensing signals. We compared the resulting joint covariance with the one from a large number of N-body simulations and found an excellent agreement. In addition, our approach is orders of magnitude faster than N-body runs.

Euclid - France atelier/workshop gravitational lensing

Date: October 22, 2018

Organizer:  Martin Kilbinger & Karim Benabed

Venue: IAP,  98bis bd Arago, 75014 Paris. Salle Entresol

Local information

http://www.iap.fr/accueil/acces/acces.php


Participants

Martin Kilbinger
Karim Benabed
Sandrine Codis
Eric Jullo
Francis Bernardeau
Yohan Dubois
Santiago Casas
Raphael Gavazzi
Alain Blanchard
Patrick Hudelot
Calum Murray
Matteo Rizzato
Samuel Farrens
Alexandre Barthelemy
Austin Peel
Nicolas Martinet
Morgan Schmitz
Virginia Ajani

Program

 

10:00   Café
10:30   Martin Kilbinger                Welcome, introduction, goals of the meeting, resources
10:45   Matteo Rizzato                   Information content in the weak lensing bispectrum
11:15   Eric Jullo                                 WLSWG work package “Galaxy-galaxy lensing”
11:45   Alexandre Barthelemy    One-point statistics of weak lensing maps
12:15    Peter Taylor                         k-cut Cosmic Shear: Tunable Power Spectrum Sensitivity to Test Gravity
12:45   Henry Joy McCracken    Euclid VIS activities and weak lensing requirements
13:00   Lunch
14:15   Austin Peel                           Peak counts: breaking degeneracies & machine learning
14:45   Nicolas Martinet               WL peak/mass mapping/shear calibration
15:15   Céline Gouin                       The impact of baryons on WL statistics
15:45   Bertrand Morin                  COSEBIs - Implementation of cosmic shear E-/B- modes
16:15   Martin Kilbinger                WL projects in Euclid-France
16:45   All                                              Discussion, future plans
17:15   End

 

 

French-Chinese Days on Weak Lensing

Date: October 4-5, 2018

Organizer:  Jean-Luc Starck and Martin Kilbinger

Venue:

Local information

CEA Saclay is around 23 km South of Paris. The astrophysics division (DAp) is located at the CEA site at Orme des Merisiers, which is around 1 km South of the main CEA campus. See http://www.cosmostat.org/link/how-to-get-to-sap/ for detailed information on how to arrive.


On 4 and 5 October, 2018, we are organizing the first French-Chinese weak-lensing meeting at DAp, CEA Saclay. 

Program:

All talks are taking place at DAp, Salle Kepler (Building 709)

Thursday, October 4

9:30 - 10:00h.  Café

10:00 - 10:15h.    Welcome & introductions

10:15 - 10:45h.   Hu Zhan,   Overview of CSS-OS

10:45 - 11:15h.   Martin Kilbinger, Overview of CFIS Weak Lensing

11:15 - 11:45h.  Jun Zhang, Fourier_Quad,  a shear measurement method in Fourier Space

11:45 - 14:00h.  Lunch at the Rotonde

14:00 - 14:30h. Morgan Schmitz,  PSF Modeling using a Graph Manifold

14:30 - 15:00h. Chengliang Wei, A full sky WL simulation with semi-analytic galaxy formation 

15:00 - 15:30h. Jean-Luc Starck,  WL Mass Mapping

15:30 - 16:00h. Zuhui Fan,  WL peak statistics

16:00 - 16:30h. Austin Peel,  Cosmology with Mass Maps

Friday, October 5

9:30 - 10:00h.      Café

10:00 - 10:30h.   Sam Farrens,   The CFIS pipeline

10:30 - 11:00h.  Ran Li,  Lensing studies of sub-structures

11:00 - 11:30h.  Axel  Guinot,  Preliminary CFIS results

11:30 - 12:00h.  Liping Fu, Shear measurement from VOICE deep survey

12:00 - 14:00h. Lunch at Les Algorithmes

14:00 - 14:30h. Jean-Charles Cuillandre, The Euclid mission and ground-based observations

14:30 - 15:00h.  Huanyuan Shan: KiDS WL studies (via skype)

15:00 - 15:30h.  Alexandre Bruckert, Machine learning for blended objects separation

15:30 - 16:00h.   Rebeca Araripe Furtado Cunha,  Optimal Transport and PSF Modeling

16:00 -  17:00h. Discussion

 

École Euclid de cosmologie 2018

Date: August 20 - September 1, 2018

Venue: Roscoff, Bretagne, France

Website: http://ecole-euclid.cnrs.fr/accueil-session-2018


Lecture ``Weak gravitational lensing'' (Le lentillage gravitationnel), Martin Kilbinger.

Find here links to the lecture notes, TD exercises, "tables rondes" topics, and other information.

  • Resources.
    • A great and detailed introduction to (weak) gravitational lensing are the 2005 Saas Fee lecture notes by Peter Schneider. Download Part I (Introduction to lensing) and Part III (Weak lensing) from my homepage.
    • Check out Sarah Bridle's video lectures on WL from 2014.
  • TD cycle 1+2, Data analysis.
    1.  We will work on a rather large (150 MB) weak-lensing catalogues from the public CFHTLenS web page. During the TD I will show instructions how to create and download this catalogue. These catalogues will also be available on the virtual machine for the school.
      If you like, you can however download the catalogue on your laptop at home. Please have a look at the instructions in the TD slides.
    2. If you want to do the TD on your laptop, you'll need to download and install athena (the newest version 1.7). Available on the VM.
    3.  For one of the bonus TD you'll need a new version of pallas.py (v 1.8beta). Download it here. Available on the VM.
  • Lecture notes and exercise classes.  You can already download the slides in one file (40 - 60 MB), but be ware that the content will still change slightly until the classes.
    • Part I (Cycle 1):    [all | day 1 (1/6)  |   day 2 (2/6) |  day 3 (3/6)]
    • Part II (Cycle 2):  [all | day 1 (4/6)   |   day 2 (5/6)  | day 3 (6/6)]
    • TD:                             [1/2 and 2/2]
    • Table Ronde sujet
  • Slack channel: ede2018.slack.com

CosmoSClub: 13-09-2018

Date: September 13th 2018

Speaker: Benjamin l'Huiller (Korea Astronomy and Space Science Institute)

Title: Cosmological structure formation in LCDM and beyond: Testing LCDM with N-body simulations and advanced statistical methods [slides]


The current concordance cosmological paradigm relies on a few assumptions: gravity is described by General Relativity, the Universe is Homogeneous and Isotropic on large scales, and a phase of inflation in the early Universe. Under these assumptions, the solution to the Einstein Equations is the Friedmann—Lemaître—Robertson—Walker (FLRW) metric, a general metric describing an expanding Universe. Observationally, the Universe seems flat, dominated by dark energy, thought to be responsible for the late-time acceleration of the Universe, and by a smooth dark matter component. Albeit reasonable, these are all assumptions. Therefore, it is important to test these assumptions in order to falsify the concordance model. 
In the first part of my talk, I will show how to probe extension to the LCDM paradigm via cosmological simulations (Modified Gravity and dark energy, primordial power spectrum): how do haloes form in modified gravity? can we use the large-scale structure to probe features in the primordial power spectrum?
I will then move on to the falsification of the concordance model via model-independent tests of the concordance model from the data at the background (FLRW metric, flatness, Lambda dark energy) and the perturbation (growth rate gamma), and obtain model-independent constraints on some key cosmological parameters. 
 

CosmoSClub: 09-07-2018

Date: July 9th 2018

Speaker: Santiago Casas (CEA Saclay)

Title: Dark Energy with Euclid


Euclid is an ESA medium-class mission expected to launch in 2020 that will map the geometry of the Universe by imaging 10^9 galaxies and measuring 10^7 galaxy redshifts in 15000 square degrees of the sky. This will provide us detailed information about the accelerated expansion, the evolution of large-scale structure and the matter-energy content of the Universe up to a redshift of about z≈2.
In this talk, I will review how the main probes of Euclid, namely galaxy clustering and weak lensing, will be able to constrain theories beyond the standard cosmological ΛCDM model and how we will be able to pin down the equation of state of dark energy with about 1% precision. Galaxy clustering measures mainly the movement of tracers along geodesics, while weak lensing is an almost direct mapping of the gravitational potentials at large scales. Using both of these observables, we can obtain valuable information about the growth of perturbations and the geometrical quantities of the Universe and therefore constrain the properties of General Relativity. Since the measurements of Euclid will also give insights on the properties of dark matter and neutrinos at cosmological scales, I will also show how we can measure non-standard couplings between matter species and dark energy and how we can give tight constraints on many alternative theories of gravity.