# Convex and non-convex algorithms for phase retrieval

Irène Waldspurger

#### CNRS and CEREMADE (Université Paris Dauphine) Équipe MOKAPLAN (INRIA)

December 4, 2019

Séminaire Cosmostat

Saclay

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A D N A 目 N A E N A E N A B N A C N

### Phase retrieval problems : definition

Reconstruct  $x \in E$  from  $(|L_i(x)|)_{i \in I}$ ?

Here,

- E is a complex vector space;
- $(L_i)_{i \in I}$  is a known family of linear forms  $(E \to \mathbb{C})$ ;
- ▶ |.| is the standard complex modulus.

Remark : reconstruction is only up to a global phase,

$$\forall \phi \in \mathbb{R}, \quad |L_i(x)| = |L_i(e^{i\phi}x)|.$$

### Applications in imaging

[Schechtman, Eldar, Cohen, Chapman, Miao, and Segev, 2015]



### Masked Fourier transform / ptychography



▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

### Outline of the talk

#### ▶ Non-convex algorithms ('50s → today)

- Description of the most classical one, alternating projections
- Numerical example
- Theoretical correctness guarantees in a random setting

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Outline of the talk

#### ► Non-convex algorithms ('50s → today)

- Description of the most classical one, alternating projections
- Numerical example
- Theoretical correctness guarantees in a random setting

### • Convexified algorithms (2011 $\rightarrow$ today)

- Definition
- Main advantage : better reconstruction quality, especially in more structured settings
- Main drawback : high computational cost

 $\rightarrow$  Possible improvements?

 $\Leftarrow$ 

6 / 24

# Definition of alternating projections Gerchberg and Saxton [1972]

Reconstruct 
$$x \in E$$
 from  $|\mathcal{L}(x)| \stackrel{def}{=} (|L_i(x)|)_{i \in I}$ ?

$$\begin{array}{ll} \mathsf{Find} \ y \ \mathsf{such} \ \mathsf{that} & y \in \mathrm{Range} \left( \mathcal{L} \right) \\ & \mathsf{and} & |y| = |\mathcal{L}(x_{\mathit{true}})|. \end{array}$$



 $\Leftarrow$ 

6 / 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Definition of alternating projections Gerchberg and Saxton [1972]

Reconstruct 
$$x \in E$$
 from  $|\mathcal{L}(x)| \stackrel{def}{=} (|L_i(x)|)_{i \in I}$ ?

$$\begin{array}{ll} \mathsf{Find} \ y \ \mathsf{such} \ \mathsf{that} & y \in \mathrm{Range} \left( \mathcal{L} \right) \\ \mathsf{and} & |y| = |\mathcal{L}(x_{\mathit{true}})|. \end{array}$$

Choose an initial guess for y.

6 / 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Definition of alternating projections Gerchberg and Saxton [1972]

Reconstruct 
$$x \in E$$
 from  $|\mathcal{L}(x)| \stackrel{def}{=} (|L_i(x)|)_{i \in I}$ ?

$$\begin{array}{ll} \mathsf{Find} \ y \ \mathsf{such} \ \mathsf{that} & y \in \mathrm{Range} \left( \mathcal{L} \right) \\ & \mathsf{and} & |y| = |\mathcal{L}(x_{\mathit{true}})|. \end{array}$$

- Choose an initial guess for y.
- ▶ Project onto  $\operatorname{Range}(\mathcal{L})$ .

6 / 24

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

# Definition of alternating projections Gerchberg and Saxton [1972]

Reconstruct 
$$x \in E$$
 from  $|\mathcal{L}(x)| \stackrel{def}{=} (|L_i(x)|)_{i \in I}$ ?

$$\begin{array}{ll} \text{Find } y \text{ such that } & y \in \operatorname{Range}\left(\mathcal{L}\right) \\ & \text{and } & |y| = |\mathcal{L}(x_{true})|. \end{array}$$

- Choose an initial guess for y.
- ▶ Project onto  $\operatorname{Range}(\mathcal{L})$ .

• Project onto 
$$\{z \text{ s.t. } |z| = |\mathcal{L}(x_{true})|\}$$
.

6 / 24

# Definition of alternating projections Gerchberg and Saxton [1972]

Reconstruct 
$$x \in E$$
 from  $|\mathcal{L}(x)| \stackrel{def}{=} (|L_i(x)|)_{i \in I}$ ?

$$\begin{array}{ll} \mathsf{Find} \ y \ \mathsf{such} \ \mathsf{that} & y \in \mathrm{Range} \left( \mathcal{L} \right) \\ \mathsf{and} & |y| = |\mathcal{L}(x_{\mathit{true}})|. \end{array}$$

Choose an initial guess for y.

- Project onto  $\operatorname{Range}(\mathcal{L})$ .
- Project onto  $\{z \text{ s.t. } |z| = |\mathcal{L}(x_{true})|\}.$

Repeat the double projection

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

6 / 24

# Definition of alternating projections Gerchberg and Saxton [1972]

Reconstruct 
$$x \in E$$
 from  $|\mathcal{L}(x)| \stackrel{def}{=} (|L_i(x)|)_{i \in I}$ ?

$$\begin{array}{ll} \text{Find } y \text{ such that } & y \in \operatorname{Range}\left(\mathcal{L}\right) \\ \text{ and } & |y| = |\mathcal{L}(x_{true})|. \end{array}$$

- Choose an initial guess for y.
- ▶ Project onto  $\operatorname{Range}(\mathcal{L})$ .
- Project onto  $\{z \text{ s.t. } |z| = |\mathcal{L}(x_{true})|\}.$
- Hope it converges to  $\mathcal{L}(x_{true})$ .

Repeat the double projection

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### **Advantages :**

Fast.

- Extremely easy to implement.
- Easily incorporates additional constraints.

#### Issue :

May fail by getting stuck at a "critical point".

# Numerical example (1)





Target modulus of the masked Fourier transform

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Numerical example (1)



Random initial guess

### Numerical example (1)



### Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Projection on the modulus constraint

# Numerical example (1)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Numerical example (1)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Numerical example (2)



Target modulus of the masked Fourier transform

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

### Numerical example (2)





Random initial guess

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# Numerical example (2)





◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# Numerical example (2)





Failure situations exist, but there are also many situations where the algorithm performs well.

We are completely unable to characterize success  $/% \left( f_{\mathrm{all}}^{2}\right) =0$  failure situations.

Very vague intuition : When there is enough "redundancy" in the measurements, it more or less works.

Can we make this statement formal, at least in a simple setting ?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Simple theoretical setting

We consider the finite-dimensional setting :  $E = \mathbb{C}^n$ .

There are *m* linear forms  $L_i = \langle v_i, . \rangle$ , with

$$\forall 1 \leq i \leq m, \quad \mathbf{v}_i \stackrel{iid}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_n).$$

The "interesting" regime is when m is proportional to n.

### Theorem (Waldspurger [2017])

We assume that

- $m \ge Cn$ , with C large enough;
- the initial guess for y is chosen as in [Chen and Candès, 2015].

Then, with high probability, the sequence  $(y_k)_{k \in \mathbb{N}}$ generated by alternating projections satisfies

$$y_k \stackrel{k \to +\infty}{\to} \mathcal{L}(x_{true})$$

(and the convergence speed is exponential).

### Related work

[Netrapalli, Jain, and Sanghavi, 2013] : same theorem for a resampled (hence unrealistic) version of the algorithm.

Similar results for other non-convex algorithms (gradient descent over various cost functions). [Chen and Candès, 2015] [Zhang and Liang, 2016] [Wang, Giannakis, and Eldar, 2017] ...

Specific interest of the previous theorem :

- Alternating projections (and variants) is the most widely-used phase retrieval algorithm;
- Different behavior from other algorithms. (Because it is non-smooth?)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have described a situation where alternating projections provably works.

But recall that there are situations where it fails.  $\rightarrow$  Other algorithms to handle these situations?

We have described a situation where alternating projections provably works.

But recall that there are situations where it fails.  $\rightarrow$  Other algorithms to handle these situations?

In the rest of the talk, we describe another family of phase retrieval methods : convexified algorithms.

[Recht, Fazel, and Parrilo, 2010] [Candès, Strohmer, and Voroninski, 2013]

15 / 24

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$\begin{array}{c} \operatorname{Find} x \in \mathbb{C}^{n} \\ \mathrm{s.t.} \ \forall i, \ |\langle v_{i}, x \rangle| = b_{i} \end{array} \iff \begin{array}{c} \operatorname{Find} x \in \mathbb{C}^{n} \\ \mathrm{s.t.} \ \forall i, \ x^{*}v_{i}v_{i}^{*}x = b_{i}^{2} \end{array}$$
$$\begin{array}{c} \updownarrow \\ \end{array}$$

$$\begin{array}{c} \\ \operatorname{Find} X \in \mathbb{C}^{n \times n} \\ \mathrm{s.t.} \ \forall i, \ \operatorname{Tr}(v_{i}v_{i}^{*}X) = b_{i}^{2} \\ \operatorname{rank}(X) = 1 \end{array} \iff \begin{array}{c} \operatorname{Find} x \in \mathbb{C}^{n} \\ \mathrm{s.t.} \ \forall i, \ \operatorname{Tr}(v_{i}v_{i}^{*}xx^{*}) = b_{i}^{2} \end{array}$$

15 / 24

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Find 
$$x \in \mathbb{C}^n$$
  
s.t.  $\forall i, |\langle v_i, x \rangle| = b_i$ Find  $x \in \mathbb{C}^n$   
s.t.  $\forall i, x^* v_i v_i^* x = b_i^2$ Find  $X \in \mathbb{C}^{n \times n}$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* X) = b_i^2$  $\clubsuit$ Find  $X \in \mathbb{C}^{n \times n}$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* X) = b_i^2$  $\longleftrightarrow$ Not convexNot convex

15 / 24

Find 
$$x \in \mathbb{C}^n$$
  
s.t.  $\forall i, |\langle v_i, x \rangle| = b_i$ Find  $x \in \mathbb{C}^n$   
s.t.  $\forall i, x^* v_i v_i^* x = b_i^2$ Find  $X \in \mathbb{C}^{n \times n}$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* X) = b_i^2$   
rank(X) = 1Find  $x \in \mathbb{C}^n$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* x x^*) = b_i^2$ Approximation  
X \leq 0 $\min \operatorname{Tr} X$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* X) = b_i^2$   
X \succeq 0

15 / 24

Find 
$$x \in \mathbb{C}^n$$
  
s.t.  $\forall i, |\langle v_i, x \rangle| = b_i$ Find  $x \in \mathbb{C}^n$   
s.t.  $\forall i, x^* v_i v_i^* x = b_i^2$ Find  $X \in \mathbb{C}^{n \times n}$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* X) = b_i^2$   
 $\operatorname{rank}(X) = 1$ Find  $x \in \mathbb{C}^n$   
s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* x x^*) = b_i^2$ Approximation $\min \operatorname{Tr} X$   
 $s.t.  $\forall i, \operatorname{Tr}(v_i v_i^* X) = b_i^2$   
 $X \succeq 0$ (Convex)  
 $X \succeq 0$$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

This is the *PhaseLift* algorithm. [Candès, Strohmer, and Voroninski, 2013]

Correctness guarantees

Theorem (Candès and Li [2014])

We assume that  $m \ge Cn$  with C large enough.

Then, with high probability,

$$X_{PhaseLift} = x_{true} x_{true}^*,$$

hence *PhaseLift* allows to recover  $x_{true}$ .

Another convexified algorithm : *PhaseCut* [Waldspurger, d'Aspremont, and Mallat, 2015] Difference with *PhaseLift* : change of variable, recover  $\mathcal{L}(x)$  vs recover x. Correctness guarantees : essentially the same as *PhaseLift*.

Computational advantage : *PhaseCut* is an instance of a *MaxCut* problem.

 $\rightarrow\,$  Particular structure, which can be used to speed up the solver.

### Numerical results for n = 128 (1)

Independent, normally distributed measurement vectors.

"Smart" initialization for alternating projections.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Numerical results for n = 128 (2)

(Variant of) masked Fourier transform.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

### Computational cost

It numerically seems that, in some settings, convexified algorithms can solve problems on which non-convex ones fail.

Main issue : the non-convex problem has dimension n, while the convex problem has dimension  $n^2$ .

min Tr X  
s.t. 
$$\forall i$$
, Tr $(v_i v_i^* X) = b_i^2$   
 $X \succeq 0$ 

### Future work : Burer-Monteiro heuristic

Faster solvers, using the specific properties of the problem ?

 $\begin{array}{l} \min \ \operatorname{Tr} X \\ \text{s.t.} \ \forall i, \ \operatorname{Tr}(v_i v_i^* X) = b_i^2 \\ X \succeq 0 \end{array}$ 

Specific property : the minimizer has rank 1.

 $\rightarrow$  Burer-Monteiro heuristic :

write  $X = UU^*$ , with  $U \in \mathbb{C}^{n \times p}$ ,  $p \ge 1$ . Optimize over U instead of X.  $\rightarrow O(np)$  variables instead of  $O(n^2)$ , but not convex.

### Future work : Burer-Monteiro heuristic

If  $p \gtrsim \sqrt{n}$ , the Burer-Monteiro formulation is solvable, despite being non-convex.

 $\rightarrow O(n^{1.5}) \text{ variables instead of } O(n^2)$  (better but still too much).

[Boumal, Voroninski, and Bandeira, 2018]

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Future work : Burer-Monteiro heuristic

If  $p \gtrsim \sqrt{n}$ , the Burer-Monteiro formulation is solvable, despite being non-convex.

 $\rightarrow O(n^{1.5}) \text{ variables instead of } O(n^2)$  (better but still too much).

[Boumal, Voroninski, and Bandeira, 2018]

Can we take p = O(1)?

- For some pathological problems,  $p \gtrsim n^{0.5}$  is necessary. [Waldspurger and Waters, 2018]
- According to preliminary numerical experiments, p = 2 works fine in most situations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

### Future work : Burer-Monteiro heuristic

If  $p \gtrsim \sqrt{n}$ , the Burer-Monteiro formulation is solvable, despite being non-convex.

 $\rightarrow O(n^{1.5}) \text{ variables instead of } O(n^2)$  (better but still too much).

[Boumal, Voroninski, and Bandeira, 2018]

Can we take p = O(1)?

- For some pathological problems,  $p \gtrsim n^{0.5}$  is necessary. [Waldspurger and Waters, 2018]
- According to preliminary numerical experiments, p = 2 works fine in most situations.
   Why ?
   Turn it to a practical algorithm ?

### Summary

#### Non-convex algorithms

- They work well in various situations.
- Their correctness can be proved in simple settings.
- But their are situations where they fail.

#### Convexified algorithms

- They work in situations where non-convex methods fail.
- But their computational cost is prohibitive.
- Future work : lower the complexity with the Burer-Monteiro heuristic?



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

# Thank you !