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Phase retrieval problems : definition

Reconstruct x ∈ E from (|Li(x)|)i∈I ?

Here,

I E is a complex vector space ;

I (Li)i∈I is a known family of linear forms (E → C) ;

I |.| is the standard complex modulus.

Remark : reconstruction is only up to a global phase,

∀φ ∈ R, |Li(x)| = |Li(e iφx)|.
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Applications in imaging
[Schechtman, Eldar, Cohen, Chapman, Miao, and Segev, 2015]

Intensity of a diffracted wave
≈ Modulus of the Fourier transform
≈ of the object
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wave
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Masked Fourier transform / ptychography



Introduction 5 / 24

Outline of the talk

I Non-convex algorithms (’50s → today)
I Description of the most classical one,

alternating projections
I Numerical example
I Theoretical correctness guarantees in a random setting

I Convexified algorithms (2011 → today)
I Definition
I Main advantage : better reconstruction quality,

especially in more structured settings
I Main drawback : high computational cost

→ Possible improvements ?
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Definition of alternating projections
Gerchberg and Saxton [1972]

Reconstruct x ∈ E from |L(x)| def= (|Li(x)|)i∈I ?

⇐⇒
Find y such that y ∈ Range (L)

and |y | = |L(xtrue)|.

I Choose an initial guess for y .
I Project onto Range (L).
I Project onto {z s.t. |z | = |L(xtrue)|}.
I Hope it converges to L(xtrue).

Repeat the
double projection



Alternating projections 6 / 24

Definition of alternating projections
Gerchberg and Saxton [1972]

Reconstruct x ∈ E from |L(x)| def= (|Li(x)|)i∈I ?

⇐⇒
Find y such that y ∈ Range (L)

and |y | = |L(xtrue)|.

I Choose an initial guess for y .

I Project onto Range (L).
I Project onto {z s.t. |z | = |L(xtrue)|}.
I Hope it converges to L(xtrue).

Repeat the
double projection



Alternating projections 6 / 24

Definition of alternating projections
Gerchberg and Saxton [1972]

Reconstruct x ∈ E from |L(x)| def= (|Li(x)|)i∈I ?

⇐⇒
Find y such that y ∈ Range (L)

and |y | = |L(xtrue)|.

I Choose an initial guess for y .
I Project onto Range (L).

I Project onto {z s.t. |z | = |L(xtrue)|}.
I Hope it converges to L(xtrue).

Repeat the
double projection



Alternating projections 6 / 24

Definition of alternating projections
Gerchberg and Saxton [1972]

Reconstruct x ∈ E from |L(x)| def= (|Li(x)|)i∈I ?

⇐⇒
Find y such that y ∈ Range (L)

and |y | = |L(xtrue)|.

I Choose an initial guess for y .
I Project onto Range (L).
I Project onto {z s.t. |z | = |L(xtrue)|}.

I Hope it converges to L(xtrue).

Repeat the
double projection



Alternating projections 6 / 24

Definition of alternating projections
Gerchberg and Saxton [1972]

Reconstruct x ∈ E from |L(x)| def= (|Li(x)|)i∈I ?

⇐⇒
Find y such that y ∈ Range (L)

and |y | = |L(xtrue)|.

I Choose an initial guess for y .
I Project onto Range (L).
I Project onto {z s.t. |z | = |L(xtrue)|}.

I Hope it converges to L(xtrue).

Repeat the
double projection



Alternating projections 6 / 24

Definition of alternating projections
Gerchberg and Saxton [1972]

Reconstruct x ∈ E from |L(x)| def= (|Li(x)|)i∈I ?

⇐⇒
Find y such that y ∈ Range (L)

and |y | = |L(xtrue)|.

I Choose an initial guess for y .
I Project onto Range (L).
I Project onto {z s.t. |z | = |L(xtrue)|}.
I Hope it converges to L(xtrue).

Repeat the
double projection



Alternating projections 7 / 24

Advantages :

I Fast.

I Extremely easy to implement.

I Easily incorporates additional constraints.

Issue :

I May fail by getting stuck at a “critical point”.
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Numerical example (1)

. Target modulus of the
masked Fourier transform
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Numerical example (1)

Random initial guess
Target modulus of the

masked Fourier transform
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Numerical example (1)

. Target modulus of the
masked Fourier transform

Masked Fourier
transform
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Numerical example (1)

. Target modulus of the
masked Fourier transform

Projection on the

modulus constraint
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Numerical example (1)

Iteration 1
Target modulus of the

masked Fourier transform

Projection on the
range
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Numerical example (1)

Iteration 2
Target modulus of the

masked Fourier transform
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Numerical example (1)

Iteration 10
Target modulus of the

masked Fourier transform
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Numerical example (1)

Iteration 50
Target modulus of the

masked Fourier transform
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Numerical example (1)

Iteration 100
Target modulus of the

masked Fourier transform
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Numerical example (1)

Iteration 200
Target modulus of the

masked Fourier transform
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Numerical example (1)

Iteration 400
Target modulus of the

masked Fourier transform
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Numerical example (2)

. Target modulus of the
masked Fourier transform
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Numerical example (2)

Random initial guess
Target modulus of the

masked Fourier transform
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Numerical example (2)

Iteration 1
Target modulus of the

masked Fourier transform
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Numerical example (2)

Iteration 2
Target modulus of the

masked Fourier transform
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Numerical example (2)

Iteration 10
Target modulus of the

masked Fourier transform
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Numerical example (2)

Iteration 200
Target modulus of the
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Numerical example (2)

Iteration 400
Target modulus of the

masked Fourier transform
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Numerical example (2)

Iteration 1000
Target modulus of the

masked Fourier transform
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Numerical example (2)

Iteration 5000
Target modulus of the

masked Fourier transform
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Failure situations exist, but there are also many situations
where the algorithm performs well.

We are completely unable to characterize success / failure
situations.

Very vague intuition : When there is enough “redundancy” in
the measurements, it more or less works.

Can we make this statement formal, at least in a simple
setting ?



Alternating projections 11 / 24

Simple theoretical setting

We consider the finite-dimensional setting : E = Cn.

There are m linear forms Li = 〈vi , .〉, with

∀1 ≤ i ≤ m, vi
iid∼ N (0, In).

The “interesting” regime is when m is proportional to n.
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Theorem (Waldspurger [2017])

We assume that
I m ≥ Cn, with C large enough ;

I the initial guess for y is chosen as in [Chen and
Candès, 2015].

Then, with high probability, the sequence (yk)k∈N
generated by alternating projections satisfies

yk
k→+∞→ L(xtrue)

(and the convergence speed is exponential).
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Related work

[Netrapalli, Jain, and Sanghavi, 2013] : same theorem for a
resampled (hence unrealistic) version of the algorithm.

Similar results for other non-convex algorithms (gradient
descent over various cost functions).
[Chen and Candès, 2015]
[Zhang and Liang, 2016]
[Wang, Giannakis, and Eldar, 2017] ...

Specific interest of the previous theorem :

I Alternating projections (and variants) is the most
widely-used phase retrieval algorithm ;

I Different behavior from other algorithms.
(Because it is non-smooth ?)
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We have described a situation where alternating projections
provably works.

But recall that there are situations where it fails.
→ Other algorithms to handle these situations ?

In the rest of the talk, we describe another family of phase
retrieval methods : convexified algorithms.

[Recht, Fazel, and Parrilo, 2010]
[Candès, Strohmer, and Voroninski, 2013]
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Find x ∈ Cn

s.t. ∀i , |〈vi , x〉| = bi
⇐⇒

Find x ∈ Cn

s.t. ∀i , x∗viv ∗i x = b2i

Test. m

Find X ∈ Cn×n

s.t. ∀i , Tr(viv
∗
i X ) = b2i

rank(X ) = 1

⇐⇒
Find x ∈ Cn

s.t. ∀i , Tr(viv
∗
i xx

∗) = b2i

Approximation−−−−−−−−−−→
min TrX

s.t. ∀i , Tr(viv
∗
i X ) = b2i

X � 0

(Convex)
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This is the PhaseLift algorithm.
[Candès, Strohmer, and Voroninski, 2013]

Correctness guarantees

Theorem (Candès and Li [2014])

We assume that m ≥ Cn with C large enough.

Then, with high probability,

XPhaseLift = xtruex
∗
true ,

hence PhaseLift allows to recover xtrue .
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Another convexified algorithm : PhaseCut

[Waldspurger, d’Aspremont, and Mallat, 2015]

Difference with PhaseLift : change of variable,

recover L(x) vs recover x .

Correctness guarantees : essentially the same as PhaseLift.

Computational advantage : PhaseCut is an instance of a
MaxCut problem.

→ Particular structure, which can be used to speed up the
solver.
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Numerical results for n = 128 (1)

Independent, normally distributed measurement vectors.

“Smart” initialization for alternating projections.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m/n

S
uc

ce
ss

ra
te

Alternating projections
PhaseCut



Convexified algorithms 19 / 24

Numerical results for n = 128 (2)

(Variant of) masked Fourier transform.
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Computational cost

It numerically seems that, in some settings, convexified
algorithms can solve problems on which non-convex ones fail.

Main issue : the non-convex problem has dimension n, while
the convex problem has dimension n2.

min TrX

s.t. ∀i , Tr(viv
∗
i X ) = b2i

X � 0
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Future work : Burer-Monteiro heuristic
Faster solvers, using the specific properties of the problem ?

min TrX

s.t. ∀i , Tr(viv
∗
i X ) = b2i

X � 0

Specific property : the minimizer has rank 1.

→ Burer-Monteiro heuristic :

write X = UU∗,

with U ∈ Cn×p, p ≥ 1.

Optimize over U instead of X .

→ O(np) variables instead of O(n2), but not convex.
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Future work : Burer-Monteiro heuristic

If p &
√
n, the Burer-Monteiro formulation is solvable, despite

being non-convex.

→ O(n1.5) variables instead of O(n2)
(better but still too much).

[Boumal, Voroninski, and Bandeira, 2018]

Can we take p = O(1) ?

I For some pathological problems, p & n0.5 is necessary.
[Waldspurger and Waters, 2018]

I According to preliminary numerical experiments, p = 2
works fine in most situations.
Why ?
Turn it to a practical algorithm ?
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Summary

I Non-convex algorithms
I They work well in various situations.
I Their correctness can be proved in simple settings.
I But their are situations where they fail.

I Convexified algorithms
I They work in situations where non-convex methods fail.
I But their computational cost is prohibitive.
I Future work : lower the complexity with the

Burer-Monteiro heuristic ?
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Thank you !
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