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Discrete Monge Problem (1781)

(i) How to handle repeated points ?
(i) How to handle ditterent numbers of points ?

(iii) How to compute this combinatorial problem ?



Leonid Kantorovich
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Discrete Kantorovitch Problem

W2 = min 3OS e — w2 P,

Pe il(ab)z 1 i1

where =Y a6,, and v = ijéyj are probability measures

2-Wasserstein distance

f a € R" be&R™ are probability weights, we
define the associated transportation polytope:

l(a,b) = {P e RY*™|Pl,, =a,P'1, =b}



Why
should we
care?




Many applications in Machine Learning, some
related to Astrophysics:

® Brenier et al., Reconstruction of the early
Universe as a convex optimization problem 1999

® \\asserstein Dictionary Learning

® Computer Graphics

® Generative Models

® Model fitting (Minimum Kantorovich Estimators)



In practice, one color should
be mapped to exactly one
color. In other words, we
want to find a map
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that is optimal in some
sense.
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Monge problem
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Let ftand I be two probability measures over R

it [ o = T(a) Pdp(a)

Typ=v

When does the Monge problem admit a solution ?
What can be said about it ?



Let 1 and v be two probability measures over R?

1.

mf/m— o) 2du()

Typ=v

Brenier Theorem

It [t is absolutely continuous with respect to
the Lebesgue measure, the Monge problem
admits a unique solution
If the Monge problem admits a solution /",
then there exists a convex function f called
a Brenier potential, s.t.

T =Vf



When the optimal map exists (e.g. when [t has a
density), what kind of regularity does it exhibit ?
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Instead of finding assumptions under which the
optimal map exists and exhibits some regularity, we
will enforce such regularity directly in the OT

problem.



=

=

S

v e
=5

=
oied

> g2, |

il
*
i
1%
5

Yann o o









< L{jz — y|

We ask that 1" = V [ is a bi-Lipschitz map
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But there may not even such a regular f that is
admissible for the Monge problem, i.e. such

that (V f)sp = 1.
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But there may not even such a regular f that is
admissible for the Monge problem, i.e. such

that (V f )y = 1.

Instead, we will try to best approximate v as a
push-forward of [t through a regular map:

Smooth and Strong Convex
Brenier Potentials
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map sending [ to V

We define the SSNB estimator as a plug-in:
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