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Variational approach

w : blurred and noisy image
x : natural sharp image
y : blur kernel in the simplex ΣM

n : white Gaussian noise

w = x ? y + n

Joint estimation of the sharp image and the blur kernel

min
x

y∈ΣM

J(x , y) = ‖x ? y − w‖2 + µTV(x) + ν ‖y‖2 µ, ν > 0

TV: total variation regularization
? is the convolution product
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Nonconvex and nonsmooth block-optimisation problems

• joint estimation

• matrix factorization

• parameter estimation

• dimension reduction

Why joint estimation instead of alternate estimation?
robustness, initialization, accuracy
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Introduction

Increasing interest in regularized block biconvex (multiconvex) nonconvex
optimization problems

J(x , y) = F (x) + G (y) + H(x , y)

• (x , y) ∈ U × V where U and V are finite-dimensional real spaces

• H is block-biconvex: x 7→ H(x , y) and y 7→ H(x , y) are convex

• Such H : U × V → R is typically nonconvex
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Related work

The most intuitive way to solve the problem:
Block Coordinate Descent (BCD) → alternating partial minimizationxk+1 ∈ arg min

x
J(x , yk)

yk+1 ∈ arg min
y

J(xk+1, y)

Introduced by Hildreth in 1957

Proximal regularization of BCD → alternating implicit gradient descent
xk+1 ∈ arg min

x
J(x , yk) +

1

2τ
‖x − xk‖2 = proxτJ(·,yk )(xk)

yk+1 ∈ arg min
y

J(xk+1, y) +
1

2σ
‖y − yk‖2 = proxσJ(xk+1,·)(yk)

Introduced for convex objectives by Auslander (1992)
Properly extended to some nonconvex objectives by Xu and Yin (2013)
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Alternating proximal gradient / forward-backward splitting

In general, the updates for BCD and prox-BCD are not explicit
→ use a forward-backward splitting

Assume J(x , y) = F (x) + G (y)︸ ︷︷ ︸
nonsmooth and prox-friendly

+ H(x , y)︸ ︷︷ ︸
differentiable

Replace proxτJ(·,yk )(xk) = proxτ(F+H(·,yk ))(xk)

by proxτ kF︸ ︷︷ ︸
implicit /

(xk − τ k ∇xH(xk , yk)︸ ︷︷ ︸
explicit gradient descent

) (same for yk)

Introduced by Xu and Yin (2013)
and Bolte, Sabach and Teboulle (PALM, 2014)
Tremendous improvement compared to previous schemes!

But: Step-sizes (τ k , σk) depend on the Lipschitz constants of ∇xH(·, yk)
and ∇yH(xk+1, ·) → estimated at each update
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Motivation and proposed ASAP algorithm

Choices for H in applications

H(x , y) = ‖L(x · y)− w‖2

L linear, w data matrix, and · a product (Hadamard, matrix, scalar, etc.)

Can we avoid that F , G are simple in order to address a wider class of applications?

Can we circumvent the need to update the step-sizes at each iteration?

→ Use the strong structural property of H
→ F , G can be smooth:

Many methods with (F ,G) nonsmooth use smoothed versions in the algorithms

Smoothed nonsmooth functions are customarily used for sparse recovery
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Optimization model

3-block function

J(x , y) = F (x) + G (y) + H(x , y)

Assumption (H1)

(a) J : U × V → R ∪ {+∞} is lowerbounded

(b) F : U → R and G : V → R are continuously differentiable
(b) ∇F is Lipschitz continuous with constant L∇F

(b) ∇G is Lipschitz continuous with constant L∇G

(c) H : U × V → R ∪ {+∞} is proper and lowerbounded
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Proposed ASAP algorithm

Simple Alternating Structure-Adapted Proximal gradient descent
(ASAP) algorithm:

Set 0 < τ < 1/L∇F and 0 < σ < 1/L∇G

For each k = 0, 1, 2, . . . , compute{
xk+1 ∈ proxτH(·,yk )(xk − τ ∇F (xk))

yk+1 ∈ proxσH(xk+1,·)(yk − σ∇G (yk))

→ Initialisation in domJ
→ Iterates (xk , yk) uniquely defined if H is biconvex (even if F , G are
nonconvex) and stepsizes twice larger
→ J(xk , yk) < +∞ for any k ≥ 1
→ The step-sizes are computed once

(Proximity operator) Let h be a proper function.

proxh(u) := arg min
x

{
h(x) +

1

2
‖x − u‖2

}
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ASAP versus PALM

ASAP: For each k = 0, 1, 2, . . . , compute{
xk+1 ∈ proxτH(·,yk )(xk − τ ∇F (xk))

yk+1 ∈ proxσH(xk+1,·)(yk − σ∇G (yk))

τ depends on L∇F , σ depends on L∇G

PALM: For each k = 0, 1, 2, . . . , compute{
xk+1 ∈ proxτkF (xk − τk ∇xH(xk , yk))

yk+1 ∈ proxσkG (yk − σk ∇yH(xk+1, yk))

τk depends on L∇xH(·,yk ), σk depends on L∇yH(xk+1,·)
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A generic example of objective functions

J(x , y) :=∑
i

fi (‖Aix‖)︸ ︷︷ ︸
= F (x)

+
∑
j

gj(‖Bjy‖)︸ ︷︷ ︸
= G (y)

+ h(‖b(x , y)− w‖) + χDx (x) + χDy (y)︸ ︷︷ ︸
= H(x , y)

Ai , Bj linear mappings, b bilinear mapping (e.g. b(x , y) = x ∗ y)
Common choices for fi , gj , h : R→ R (α > 0):

(a) |t|p, p > 1

(b) (t2 + α)p/2, 0 < p ≤ 1

(c) |t| − α log(1 + |t|/α)

(d) t2/(α + t2)

(e) log(1 + t2/α)

(f) with 0 < p ≤ 1{
(t − α/2)p if |t| > α

(t2/(2α))p if |t| ≤ α

(b)-(f) for α↘ 0 provide good smooth approximations of nonsmooth functions.

(b) and (f) for 0 < p < 1 are smooth approximations of `p, 0 < p < 1.
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Convergence in value

Let ρx :=
1

τ
− L∇F

2
> 0, ρy :=

1

σ
− L∇G

2
> 0, ρ := min{ρx , ρy}.

Proposition 1 Let (xk , yk) be generated by ASAP under (H1).
(a) (sufficient decrease)

J(xk−1, yk−1) ≥ J(xk , yk−1) + ρx ‖xk−1 − xk‖2

J(xk , yk−1) ≥ J(xk , yk) + ρy ‖yk−1 − yk‖2

J(xk−1, yk−1) ≥ J(xk , yk) + ρ (‖xk−1 − xk‖2 + ‖yk−1 − yk‖2)

(b) (convergence in value) The sequences J(xk , yk) and J(xk , yk−1)
converge to the same value J∗

(c)
+∞∑
k=1

(‖xk−1 − xk‖2 + ‖yk−1 − yk‖2) < +∞,

hence ‖xk−1 − xk‖ → 0 and ‖yk−1 − yk‖ → 0
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Additional assumptions

3-block function

J(x , y) = F (x) + G (y) + H(x , y)

Assumption (H2)

(a) J : U × V → R ∪ {+∞} is lowerbounded

(b) F : U → R and G : V → R are continuously differentiable
(b) ∇F is Lipschitz continuous with constant L∇F

(b) ∇G is Lipschitz continuous with constant L∇G

(c) H : U × V → R ∪ {+∞} is proper and lowerbounded such that
(c-1) H is continuous on its closed domain
(c-2) ∂xH(x , y)× ∂yH(x , y) ⊂ ∂H(x , y)
(c-3-i) H(x , y) = h(x , y) + f (x) + g(y) with h continuous, f , g

continuous on their resp. domain, x 7→ h(x , y) differentiable and
y 7→ ∇xh(x , y) locally Lipschitz OR ∇xh continuous

(c-3-ii) OR H is biconvex
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Approaching the set of critical points

Boundedness assumption The set of limit points of (xk , yk)

L(x0, y 0) := {(x∗, y∗) | ∃kj s.t. (xkj , ykj )→ (x∗, y∗)}

is nonempty and bounded (e.g. domJ is bounded).

Proposition 2 Let (xk , yk) be generated by ASAP under (H2).
Let C := {(x , y) | 0 ∈ ∂J(x , y)} set of critical points of J.

(a) L(x0, y 0) ⊂ C

(b) dist
(
(xk , yk), C

)
→ 0
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Subgradient convergence

Proposition 3 (subgradient convergence) Let (xk , yk) be generated by
ASAP under (H2)-(c-3-i) with y 7→ ∇xH(x , y) locally Lipschitz. Then,
there exists β > 0 and (qk

x , q
k
y ) ∈ ∂J(xk , yk) s.t.

‖(qk
x , q

k
y )‖ ≤ β‖(xk−1 − xk , yk−1 − yk)‖

with β := max

√2

(
L∇F +

1

τ

)
,

√(
L∇G +

1

σ

)2

+ 2ξ2


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Kurdyka- Lojasiewicz property

K L property A proper l.s.c. function f has the Kurdyka- Lojasiewicz (K L)
property at x∗ ∈ dom∂f if there exists η ∈ (0,+∞], a neighborhood
O(x∗) of x∗, θ ∈ [0, 1), and a constant κ > 0 s.t.

∀x ∈ Õ(x∗), κ dist(0, ∂f (x)) ≥ |f (x)− f (x∗)|θ,

with Õ(x∗) := O(x∗) ∩
{

x ∈ U | f (x∗) < f (x) < f (x∗) + η
}
.

Do the generic objectives J above obey the K L property? YES
[Bolte, Daniilidis, Lewis, 2007]: If f is a subanalytic function with closed
domain and continuous on its domain, then f has the K L property at
each point of its domain.
Other examples: real-analytic and semi-algebraic functions
How to combine these facts in order to conclude about J?
Let f and g be two subanalytic functions. Then
(a) If f and g are lower-bounded, then f + g is subanalytic.
(b) If g maps bounded sets on bounded sets or if f −1(X ) is bounded for
any bounded subset X , then f ◦ g is a subanalytic function.
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Global convergence using the Kurdyka- Lojasiewicz property

Assumption K L J has the K L property at a critical point
(x∗, y∗) ∈ L(x0, y 0)

Proposition 4 (global convergence to a critical point) Let (xk , yk) be
generated by ASAP under (H2)-(c-3-i) with y 7→ ∇xH(x , y) locally
Lipschitz. Then,
(a) (xk , yk) is a Cauchy sequence that converges to (x∗, y∗)

(b)
+∞∑
k=1

(‖xk−1 − xk‖+ ‖yk−1 − yk‖) < +∞

Proof [Attouch, Bolte, Svaiter, 2013]

(Prop.1) J(xk−1, yk−1) ≥ J(xk , yk) + ρ (‖xk−1 − xk‖2 + ‖yk−1 − yk‖2)

(Prop.3) ‖(qk
x , q

k
y )‖ ≤ β‖(xk−1 − xk , yk−1 − yk)‖

(Assumption) ∃kj s.t. (xkj , ykj )→ (x∗, y∗) and J(xkj , ykj )→ J(x∗, y∗)
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Application: Fringe separation in interferometric images

Model w = x ◦ y + small noise

x : panchromatic image to recover
y : fringes to extract (known spectral support Ω and spatially structured)

J(x , y) = TVv
α(x) + TVh

α(y) + ‖1cΩF(y)‖2 +
µ

2
‖x ◦ y − w‖2

TVh: smoothed horizontal total variation
TVv: smoothed vertical total variation
F : Fourier transform
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Sieleters airborne sequences ≈ thousands of 424× 1000 images

Top left: data w , top right: panchromatic image x ,
bottom left: fringes y , bottom right: reference

Applications: conventional stereo matching techniques, registration,
hyperspectral infrared imagery
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Fixed-pattern noise removing in interferometric images

Nonuniform response of the infrared detector
(same input = different measures for different pixels)

Model wk = (x1◦ uk ◦ yk+x2) + small noise

x = (x1, x2): nonuniformity model parameters
y = {yk}: fringes (known spectral support Ω and spatially structured)
uk : known panchromatic images

J(x , y) =
∑
k

TVh
α(yk)+

∑
k

‖1cΩF(yk)‖2 +
µ

2

∑
k

‖x1◦ uk ◦ yk +x2−wk‖2

TVh: smoothed horizontal total variation
F : Fourier transform

P. Tan The ASAP algorithm



Motivation Introduction ASAP algorithm Convergence analysis Applications Conclusion

P. Tan The ASAP algorithm



Motivation Introduction ASAP algorithm Convergence analysis Applications Conclusion

Application in image colorization

For any pixel p, C candidates {c1(p), · · · , cC (p)}

J(x , y) = TVC(x) +
λ

2

∫
Ω

C∑
i=1

yi (p) ‖x(p)− ci (p)‖2 dp + χR(x) + χΣ(y)

where x = (U,V ) are the chrominances to recover, in the range R

y ∈ Σ iff yi (p) ≥ 0 and
C∑
i=1

yi (p) = 1

Y is the known luminance and

TVC(x) =

∫
Ω

√
γ‖∇Y (p)‖2 + ‖∇U(p)‖2 + ‖∇V (p)‖2 dp

At convergence: yi (p) ∈ {0, 1} (vote process)
Colorization: u(p) = ci (p) iff yi (p) = 1
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Application in image colorization
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Extensions

Proximal step: generalized proximity operators using Bregman distances
(e.g. optimization on the simplex)

Acceleration: inertial (Nesterov) overrelaxation strategy (non-monotone
scheme)
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Some concluding notes

The proposed ASAP is an alternative scheme to PALM for solving
nonsmooth and nonconvex optimization problem
Choice between ASAP and PALM depends on the structure and the
regularity of the objective
Biconvexity of the coupling term gives nice properties (large stepsizes)
Promising applications on image processing
Open questions: critical points vs. (local) minimum, initialization,
theoretical convergence rate
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Thank you for your attention!
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