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w : blurred and noisy image

x : natural sharp image

y : blur kernel in the simplex ¥
n : white Gaussian noise

W=Xxy-+n

Joint estimation of the sharp image and the blur kernel

min J(x,y) = [lx«y — wlP £ u TV() + v [yIP v >0

yETN

TV: total variation regularization
* is the convolution product
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® joint estimation
® matrix factorization
® parameter estimation

® dimension reduction

Why joint estimation instead of alternate estimation?
robustness, initialization, accuracy
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Increasing interest in regularized block biconvex (multiconvex) nonconvex
optimization problems

J(x,y) = F(x) + G(y) + H(x, y)

® (x,y) € Ux V where U and V are finite-dimensional real spaces
® H is block-biconvex: x — H(x,y) and y — H(x,y) are convex
® Such H: U x V — R is typically nonconvex

The ASAP algorithm



Motivation Introduction ASAP algorithm Conve ELE Applications

(o] le}

The most intuitive way to solve the problem:

Block Coordinate Descent (BCD) — alternating partial minimization
XK1 € argmin J(x, y¥)
X

y 1 € argmin J(Xk+17y)
y

Introduced by Hildreth in 1957

Proximal regularization of BCD — alternating implicit gradient descent

1
2r 1

) oy =y IP = proxg e,y (v9)

XK1 € argmin J(x, y¥) + — ||x — x¥|? = prox, ... (x¥)
X

y** 1 € argmin J(x* !
y

Introduced for convex objectives by Auslander (1992)
Properly extended to some nonconvex objectives by Xu and Yin (2013)
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In general, the updates for BCD and prox-BCD are not explicit
— use a forward-backward splitting

Assume J(x,y) = F(x)+ G(y) + H(x,y)
—_—— ——
nonsmooth and prox-friendly  differentiable
Replace Prox, .,y (X¥) = prox, (g (., yky) (x*)
by prox_ r(xk — 75V H(x*, y¥)) (same for y*)
——
implicit / explicit gradient descent

Introduced by Xu and Yin (2013)
and Bolte, Sabach and Teboulle (PALM, 2014)
Tremendous improvement compared to previous schemes!

But: Step-sizes (7%, 0*) depend on the Lipschitz constants of V, H(-, y¥)
and V, H(x**1,.) — estimated at each update
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Choices for H in applications
— 2
H(x,y) = [[L(x - y) — w]|
L linear, w data matrix, and - a product (Hadamard, matrix, scalar, etc.)
Can we avoid that F, G are simple in order to address a wider class of applications?
Can we circumvent the need to update the step-sizes at each iteration?

— Use the strong structural property of H
— F, G can be smooth:

Many methods with (F, G) nonsmooth use smoothed versions in the algorithms
Smoothed nonsmooth functions are customarily used for sparse recovery
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3-block function

J(x,y) = F(x) + G(y) + H(x,y)
Assumption (H1)
(a) J: Ux V = RU{+o0} is lowerbounded

(b) F: U—TRand G:V — R are continuously differentiable
VF is Lipschitz continuous with constant Ly g
VG is Lipschitz continuous with constant Ly¢

(c) H: Ux V — RU{+oco} is proper and lowerbounded
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Simple Alternating Structure-Adapted Proximal gradient descent
(ASAP) algorithm:

Set0<7<1/Lyrand 0 <o <1/Lyg

For each Kk =0,1,2,..., compute
xkt1 ¢ proxTH(,,yk)(xk — 7 VF(x))
Y€ proxg ey (v* — o VG(y¥))

— Initialisation in domJ

— lterates (x*, y*) uniquely defined if H is biconvex (even if F, G are
nonconvex) and stepsizes twice larger

— J(x¥,y¥) < +o0 for any k >1

— The step-sizes are computed once

(Proximity operator) Let h be a proper function.
1
prox,(u) := arg min {h(x) + 5 lIx — u||2}
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ASAP: For each k =0,1,2,..., compute

XKL € prox, . oy (XK = 7 VF(x9))
yk+1 € proxo‘H(xk’l,-)(yk - UVG(yk))

7 depends on Lyfg, o depends on Lyg

PALM: For each k =0,1,2,..., compute

x*1 € prox, g (x* — 7 V. H(x*, y¥))
yH € proxg, o (y* — ou V, H(x k“ i)

Tk depends on Ly p(. ¢, ok depends on Ly p(kt )
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J(Xa)/) =
Zf [Ax]) +Zg,(|| iy () + h(llb(x, y) — wl]) + xp,(x) + xp,(¥)
_— = H(x,y)
= F(x) = G(y)

Aj, Bj linear mappings, b bilinear mapping (e.g. b(x,y) = x * y)
Common choices for f;, gj, h: R — R (a > 0):

() log(1 + t*/a)

(a) [tP, p>1

(b) (£ +a)P? 0<p<1 (f) with 0 < p <1

() |t| — alog(1 + |t|/a) (t—a/2)P if|t|>a
(d) 2/(a + ) (t2/(20))P i |t| < o

(b)-(f) for o ™, 0 provide good smooth approximations of nonsmooth functions.
(b) and (f) for 0 < p < 1 are smooth approximations of ¢,, 0 < p < 1.
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1 L 1 L
Letpx::ff£>0,py::ff ve
T o 2

Proposition 1 Let (x*, y*) be generated by ASAP under (H1).
(a) (sufficient decrease)

>0, p:=min{px, py}.

JOFH R > UK R + s ||><k_1—><k||2
JOx< yf ) > U )+py|\y —yH|1?
J(xk- l,yk I O Y ([ e v

(b) (convergence in value) The sequences J(x*, y*) and J(xX, yk~1)
converge to the same value J*

+oo

(©) D (X =X + [y ™ = y¥I1?) < 4o,
k=1
hence || x¥=1 — x¥|| = 0 and ||y** — yk|| = 0
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3-block function

J0y) = F(x) + Gy) + H(x,)
Assumption (H2)
(@) J: Ux V = RU{+o0} is lowerbounded

(b) F: U—Rand G:V — R are continuously differentiable
V F is Lipschitz continuous with constant Ly r
VG is Lipschitz continuous with constant Ly¢

(c) H: Ux V — RU{+oo} is proper and lowerbounded such that
(c-1) H is continuous on its closed domain
(c-2) OxH(x,y) x O,H(x,y) C OH(x,y)
(c-3-i) H(x,y) = h(x,y) + f(x) + g(y) with h continuous, f, g
continuous on their resp. domain, x — h(x, y) differentiable and
y — Vxh(x, y) locally Lipschitz OR Vh continuous
(c-3-ii) OR H is biconvex
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Boundedness assumption The set of limit points of (x*, y¥)
L(x%y%) = {(x*,y") | Fkj s.t. (xN,y9) — (x*,y*)}

is nonempty and bounded (e.g. domJ is bounded).

Proposition 2 Let (x*, y*) be generated by ASAP under (H2).
Let C:={(x,y) | 0 € J(x,y)} set of critical points of J.

(a) L(x%y%) cc
(b) dist((xk7yk),C) -0
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Proposition 3 (subgradient convergence) Let (x*, y*) be generated by
ASAP under (H2)-(c-3-i) with y — V, H( y) Iocally Lipschitz. Then,

there exists 3 > 0 and (g%, gy) € 9J(x* ) .

(a5 ay)ll < Bl = x5y = y9)|

2
with 8 := max{ V2 <LvF + 1> 7\/(LVG + 1> +2¢2
T o
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KL property A proper l.s.c. function f has the Kurdyka-tojasiewicz (KL)
property at x* € domf if there exists 1 € (0, +oc], a neighborhood
O(x*) of x*, 0 €]0,1), and a constant x > 0 s.t.

Vx € O(x*), kdist(0,df(x)) > |F(x) — F(x*)|’,

with O(x") := O(x") N {x € U | F(x") < F(x) < f(x*) +n}.

Do the generic objectives J above obey the KL property? YES

[Bolte, Daniilidis, Lewis, 2007]: If f is a subanalytic function with closed
domain and continuous on its domain, then f has the KL property at
each point of its domain.

Other examples: real-analytic and semi-algebraic functions

How to combine these facts in order to conclude about J?

Let f and g be two subanalytic functions. Then

(a) If f and g are lower-bounded, then f + g is subanalytic.

(b) If g maps bounded sets on bounded sets or if f~}(X) is bounded for
any bounded subset X, then f o g is a subanalytic function.
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Assumption KL J has the KL property at a critical point

(x*,y*) € L(x°,¥°)

Proposition 4 (global convergence to a critical point) Let (x*, y*) be
generated by ASAP under (H2)-(c-3-i) with y — V,H(x,y) locally
Lipschitz. Then,

(a) (x*,y¥) is a Cauchy sequence that converges to (x*, y*)
+o0

(b) D (I =M + Iy ™ = y¥) < +oo
k=1

Proof [Attouch, Bolte, Svaiter, 2013]
(Prop.1) J(x*=1, y*71) = J(xK, y¥) + p (7 = X2 + [ly =t = y¥[I?)
(Prop.3) I(a, gl < Bl =Xk, y ot — Rl

(Assumption) Jk; s.t. (x99, y%) — (x*,y*) and J(xN, yk) — J(x*, y*)
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Model w = x o y + small noise

x: panchromatic image to recover
y: fringes to extract (known spectral support Q and spatially structured)

J(x,y) = TVi(x) + TVE() + o F(y)I? + g Ixoy —w|?
TV": smoothed horizontal total variation

TVY: smoothed vertical total variation
JF: Fourier transform
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Sieleters airborne sequences ~ thousands of 424 x 1000 images

Top left: data w, top right: panchromatic image x,
bottom left: fringes y, bottom right: reference

Applications: conventional stereo matching techniques, registration,
hyperspectral infrared imagery
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Nonuniform response of the infrared detector
(same input = different measures for different pixels)

Model wi = (x10 Uk © yk+x2) + small noise

x = (x1, x2): nonuniformity model parameters
y = {y«k}: fringes (known spectral support Q and spatially structured)
ug: known panchromatic images

Joey) =Y TVA)+Y ||nc9f(yk)||2+g D " llxao ko yietxo —wie >
k k k

TV smoothed horizontal total variation
JF: Fourier transform
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W, s, (estimation) s,  (ground truth)

Sy (estimation)

Sy (ground truth)

E
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For any pixel p, C candidates {ci(p),- -, cc(p)}

Jooy) = TVe() 45 [ Zy, )Ix(p) = )P dp + () + Xz ()
where x = (U, V) are the chrominances to recover, in the range R

c
y € L iff y;(p) > 0 and ZM‘(P) =1

i=1

Y is the known luminance and

Vet = [ VATV P0G+ V()P ep

At convergence: y;(p) € {0,1} (vote process)
Colorization: u(p) = ci(p) iff yi(p) =1
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Proximal step: generalized proximity operators using Bregman distances
(e.g. optimization on the simplex)

Acceleration: inertial (Nesterov) overrelaxation strategy (non-monotone
scheme)
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The proposed ASAP is an alternative scheme to PALM for solving
nonsmooth and nonconvex optimization problem

Choice between ASAP and PALM depends on the structure and the
regularity of the objective

Biconvexity of the coupling term gives nice properties (large stepsizes)
Promising applications on image processing

Open questions: critical points vs. (local) minimum, initialization,
theoretical convergence rate
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Thank you for your attention!
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