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QUOTES...

"As soon as it works, no one calls it Al anymore”
John McCarthy

“The question of whether a computer can think is
no more interesting than the question of whether
a submarine can swim.”

Edsger W. Dijkstra



Left brain

Formalism
Rules
Abstract world

Right brain

Uncertainty
Ambiguity
Real world



e7zld=lelpW KEY ELEMENTS OF ARTIFICIAL INTELLIGENCE

Analysis of

: Traditional Al .
“b d t 7
Left brain _, SN Data

Rules... analytics

ML-based Al:
Bayesian,

Deep «—— Right brain
Learning?, ... 9

* Reinforcement Learning, One-shot Learning,
Generative Adversarial Networks, etc...

From Greg. S. Corrado, Google brain team co-founder:
— “Traditional Al systems are programmed to be clever
— Modern ML-based Al systems learn to be clever.
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Neurophysiologist and cybernetician
Logician workingin the field of computational neuroscience

They laid the foundations of formal Neural Networks



1943: MCCULLOCH AND PITTS

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. McCULLOCH AND WALTER PITTS

From THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logie. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.
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WHAT IS A NEURAL NETWORK?

A « formal » neuron:

inputs weights

activation function

output
V;

> f V) > Xou

weighted sum



WHAT IS A NEURAL NETWORK?

The « formal » neuron:

inputs weights

X, @ activation function

2 tput
X W) SV o) ot

Vi= Wy X+ W,y X,

It is the definition of an hyperplane

F(V;) non linear €{-1,1} e.g. sign() function
X(Xy,X,) is “above” or "below” the hyperplane




WHAT IS A NEURAL NETWORK?

W, X +W,. X,

W . X+ Wi X,

W, X{+W5, . X5



WHAT IS A NEURAL NETWORK?

el Association of neurons to make
logical functions.
Example: AND gate

0=+1.5
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Input values

utput values

MULTILAYER NETWORK

Input layer Hyperplane separation

welght matrix

“logic” composition
output layer  Warren McCulloch and
Walter Pitts, 1943

= universal approximator
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1 1 megapixel 256 grey level image
A"'i 2561000000 hossible images

= It can be done by Neural Networks:
\)) Universal approximator made

o with neural networks of finite size

S .7 It is a cat

I It is NOT a cat

For each possible image, we wish to compute the probability
that it depicts a cat. Then, the function is defined by a list of
2561000000 probabilities

i.e., way more numbers than there are atoms in our universe
(about 1078 to 1082 <<< 1(2408,240),

«  Work of Henry W. Lin (Harward) , Max Tegmark (MIT), and David Rolnick (MIT)
https://arxiv.org/abs/1608.08225 112




But a picture of a cat is not an arbitrary set of random pixels:

“For reasons that are still not fully understood, our universe can be accurately
described by polynomial Hamiltonians of low order,’

The laws of physics have other important properties. For example, they are
usually symmetrical when it comes to rotation and translation.

There is another property of the universe that neural networks exploit. This is the
hierarchy of its structure.

This is why the structure of neural networks is important too: the layers in these
networks can approximate each step in the causal sequence.

» These properties mean that neural networks do not need to approximate
an infinitude of possible mathematical functions but only a tiny subset of
the simplest ones. - because they are inspired from biological
systems that were developed in the context of the real world.

* Work of Henry W. Lin (Harward) , Max Tegmark (MIT), and David Rolnick (MIT) |3
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WHY DOES DEEP LEARNING WORK SO WELL?
OR NOT....

- Non natural images or adding noise
= train the neural network to recognize fakes
- Problem of bad (incomplete) specifications
= Create a learning data set including "noisy” inputs

But it is and will remain a problem (like bugs in
software)

osted DNN with no such knowledge. Indeed, the only capa- -_-
bility of our black-box adversary is to observe labels given
by the DNN to chosen inputs. Our attack strategy consists To humans, these images appear to be the same: our bio-

|15
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WHY OUR BRAIN DOES NOT ALWAYS WORK

| 16



WHY OUR BRAIN DOES NOT ALWAYS WORK

| 17



WHY OUR BRAIN DOES NOT ALWAYS WORK

|18



1949: DONALD HEBB

Hebb’s rule or Hebbian theory: an
explanation for the adaptation of neurons
in the brain during the learning process

Basic mechanism for synaptic plasticity:
an increase 1n synaptic efficacy arises
from the presynaptic cell's repeated and
persistent stimulation of the postsynaptic
cell.

Psychologist, working in the area of neuropsychology

Introduced by Donald Hebb in his 1949
book « The Organization of Behavior »

119



DERIVED FROM HEBB’S RULE: STDP
(SPIKE TIMING DEPENDENT PLASTICITY)

Neuron .
_ A~ - STDP = correlation
\\} 4, Electrical ggg/v ‘% detector
sol.gnal R pre-synaptic post-synaptic e
VW ~ Neuron Neuron LTP Hippocampus
v Synapse LTD
Axon ynap .
Dend rite ; : Egocortex-layer 2/3
100+ PP P
80 4 | Causality
] 2 bPotentiation (LTP) :

'

Synaptic weight
S

I , ELL of electric fish

' GABA-ergic neurons
‘ - in hippocampal culture

tpost < tpre

=
v

modification (%)

Anti-Causality

“*1Depression (LTD) % . ICipey
&L
-80 -40 0 40 80

At = tpost - tpre == " 50~

tpre = tpost (Ms)
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1957: THE PERCEPTRON AND F. ROSENBLATT

The perceptron algorithm was invented in 1957 at the Cornell Aeronautical Laboratory by
Frank Rosenblatt.

The perceptron was intended to be a machine, rather than a program, and while its first
implementation was in software for the IBM 704, it was subsequently implemented in
custom-built hardware as the "Mark 1 perceptron". This machine was designed for image
recognition: it had an array of 400 photocells, randomly connected to the "neurons".
Weights were encoded in potentiometers, and weight updates during learning were
performed by electric motors.

| 21



. -

The'PerceptroniLearning Algérithm

# Training set: (X',Y"),(X%,Y?),...... (X",YP)

8 Take one sample (Xk,Yk), if the desired output is +1 but the actual output is -1
» Increase the weights whose input is positive
» Decrease the weights whose input is negative

# If the desired is -1 and actual is +1, do the converse.
# If desired and actual are equal, do nothing

w;(t +1) = w;(t) + (y; — fF(W'XP))x?

1986: David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams
y=f (Z Wixi+wo)= f (W 'X)
i=1

1 Supervised
Learning

| 22




1969: MARVIN MINSKY

He developed, with Seymour Papert,
the first Logo "turtle".

Minsky also built, in 1951, the first
randomly wired neural network learning
machine, SNARC. LeIcepirons

Minsky wrote the book Perceptrons
(with Seymour Papert), which became =1
the foundational work in the analysis of RS
artificial neural networks. This book is

the center of a controversy in the history N

of Al, as some claim it to have had great &5
importance in discouraging research of &)
neural networks in the 1970s, and
contributing to the so-called "First Al
winter". 123




@27z)d=/epl 1981: DAVID MARR, DAVID HUBEL ET TORSTEN WIESEL

Better understanding how the biological visual system works:

* David Marr: Vision: A computational investigation into the human
representation and processing of visual information, which was finished mainly
on 1979 summer, was published in 1982 after his death

 Hubel and Wiesel were awarded the Nobel Prize in 1981 for their work on
ocular dominance columns in the 1960s and 1970s.

Hippocampus Prefrontal cortex

Memory (non motor) FEF, SC, Oculomotor ore F5 (Hand control)
§
FEF, SC <
<
3
Ventra B Dorsal N
pathway - \ athway "E?
’ TEO (PI A
(PIT) [ S
Qv
v p. LP
lo) A S PMD MIP-\p CIP
.616', : o?. FEF * 7 |
e p— PM\‘ /
‘@ Vestibular information about 5 ms
099 arm, eye and head position - 4
%o sc
% [ PO
Occipital TE
cortex “
VISUAL CORTEX
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1980: KUNIHIKO FUKUSHIMA

The first Deep Neural Network, inspired by the visual cortex.

Neocognitron: A Self-organizing Neural Network Model
for a Mechanism of Pattern Recognition
Unaffected by Shift in Position

Kunihiko Fukushima
NHK Broadcasting Science Research Laboratories, Kinuta, Setagaya, Tokyo, Japan
— wisuol ore@  ——— ———% CISOCCIon OO

lower-order __ hagher-order _ ., grondmother
hypercomgles  hypercormpies el ?

1eUng ~= LGB = simple ~= COMpie ~=

RN W oo b modtob syropses

) | | | 1
w—j'us.—ﬂk..—.'uu—'tw—:wu——m,— - e RS ayipens
Pig. 1. Carrespondence betwoen the hierarchy model by Hubel and Wiesel, and the » | network of the neccogaitron
\\

Fig. 2. Schematic duagram illestrating the
INRETCOMNECHIOnS hetwern liyery o the
DEOCOENITION

@L Jﬁf@ §> -

Biol. Cybernetics 36, 193-202 (1980)
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ezJd=l<3¥ AROUND 1986: GEOFFREY HINTON

He was one of the first researchers who
demonstrated the use of generalized back-
propagation algorithm for training multi-
layer neural networks.

He co-invented Boltzmann machines with
David Ackley and Terry Sejnowski.

His other contributions to neural network
research include distributed representations, ,
time de]ay neural network, mixtures of Cognitive psychologist and computer scientist
experts, Helmholtz machines and Product of

Experts

He 1s now working for Google.

| 26
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In 1985, he proposed and published (in French), an early
version of the learning algorithm known as error
backpropagation

Near 1989, he developed a number of new machine
learning methods, such as a biologically inspired model
of image recognition called Convolutional Neural
Networks, the "Optimal Brain Damage" regularization
methods, and the Graph Transformer Networks method
which he applied to handwriting recognition and OCR.

The bank check recognition system that he helped
develop was widely deployed by NCR and other
companies, reading over 10% of all the checks in the US
in the late 1990s and early 2000s.

In 2013, LeCun became the first director of Facebook Al
Research in New York City.

| 27



1990°S NEUROCOMPUTERS...

Adaptive Solutions : CNAPS-1064 (about 1990)

« SIMD // machine based on a 64 PE chip (80 in total).
e 0.8micron, 2 metal CMOS (1inch on a side), 11million transistors
- 4W @ 25MHz

CNAPS/VMEbus Accelerator Board

Up to ten billion MACS
64 to 256 CNAPS processors per board

Up to 512 processors with optional expansion board
Standard 6U X 160 mm VMEDbus form factor

| 28




1990°S NEUROCOMPUTERS...

Siemens : MA-16 Chips (SYNAPSE-1 Machine 1994)

« Synapse-1, neurocomputer with 8xMA-16 chips
« Synapse3-PC, PCI board with 2xMA-16 (1.28 Gpcs)
« about 8,000 times as fast as a Sun Workstation (Sparc-2)

| 29




1990°S NEUROCOMPUTERS...

Philips : L-Neuro

« 1st Gen 16 PEs 26 MCps (1990)

« 2nd Gen 12 PEs 720 MCps (1994)

» Used in satellite, fruit sorting, PCB
Inspection, sleep aralysis, ...

CEA’s MIND machine

« Hybrid analog/digital: MIND-123
« Fully digital: MIND-1024 (1991)

| = 1l
Orange video-grading
Chip alignment
Sleep phase analysis
Image compression
Satellite image
analysis

LHC 15t level trigger |!

| 30



Philips : L-Neuro

« 1st Gen 16 PEs 26 MCps (1990)

« 2nd Gen 12 PEs 720 MCps (1994)

» Used in satellite, fruit sorting, PCB
Inspection, sleep analysis, ...

CEA’s MIND machine

« Hybrid analog/digital: MIND-128 (1986)
« Fully digital: MIND-1024 (1991)

!IIl!IIJYﬂIlllIHIIIIIHHIIIIIHGEG' 5
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1995: SVM OR THE 2NP WINTER OF NEURAL
NETWORKS

Support Vector Machines (SVMs)
The original SVM algorithm was invented

by Vladimir N. Vapnik and Alexey Ya. o
Chervonenkis in 1963.

In 1992, Bernhard E. Boser, Isabelle M.
Guyon and Vladimir N. Vapnik suggested a
way to create nonlinear classifiers by
applying the kernel trick to maximum-
margin hyperplanes. The current standard
incarnation (soft margin) was proposed by
Corinna Cortes and Vapnik in 1993 and
published in 1995.

| 32



MOORE ’S LAW AND DENNARD SCALING

10 : : : : : ; . -7 Transistors
6 : : ; : ; g: (thousands)
10 { ~~Moore’s law: S e A
: Transistor increase ' T AN
5 : : : . 7 - :
Stagnation...: ' A e Single-thread
10* TR SO b\. i:- D Performance
S
3 " Frequency
10 (MHz)
2 Typical Power
10 (Watts)
1 Number of
10 Cores
0
10

1975 1980 1985 1990 1995 2600 2005 2010 2015

Source from C Moore, « Data Processing in ExaScale-Class

Computer Systems », Salishan, April 2011 133
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el d2re s 2012: DEEP NEURAL NETWORKS RISE AGAIN

They give the state-of-the-art performance e.g. in image classification
ImageNet classification (Hinton’s team, hired by Google)

° 14,197,122 images, 1,000 different classes
*  Top-5 17% error rate (huge improvement) in 2012 (now ~ 3.5%)

\ O\ — | INESZNSnZREY “Supervision” network
S T i X b dinl [~ Ea ~"‘JQ\; 650,000 neurons
Pl o L ,. ="~ 60,000,000 parameters

S8 630,000,000 synapses

Facebook’s ‘DeepFace’ Program (labs headed by Y. LeCun)

* 4.4 million images, 4,030 identities
* 97.35% accuracy, vs. 97.53% human performance

SFC labels

&

3 | REPRESENTATION

From:Y. Taigman, M. Yang, M.A. Ranzato,
“DeepFace: Closing the Gap to Human-Level
Performance in Face Verification”

it

Figure 2. Outline of the Deep Face architecture. A front-end of a single convolution-pooling-comvolution filtering on the rectified input, followed by three

locally-connected layers and two fully-connected layers. Colors illustrate feature maps produced at each layer. The net includes more than 120 million
parameters, where more than 95% come from the local and fully coanected layers.

| 34




ImageNet: Classification
Y LeCun

# Give the name of the dominant object in the image

# Top-5 error rates: if correct class is not in top 5, count as error
» Black:ConvNet, Purple: no ConvNet




COMPETITION ON IMAGENET !

Nom de Erreur sur le jeu de test
I'algorithme
Supervision 2012 15.3%
Clarifai 2013 11.7%
GoogleNet 2014 6.66%
Niveau humain 5%
Microsoft 05/02/2015 4.94%
Google 02/03/2015 4.82%
Baidu/ Deep Image 10/05/2015 4.58%
Shenzhen Institutes of 10/12/2015 3.57%
Advanced Technology, (le CNN a 152
Chinese Academy of couches!)
Sciences
Google Inception-v3 2015 3.5%
(Arxiv)

Maintenant ?
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EXAMPLES OF RESULTS (IMAGENET)

sea slug brown bear barracouta
sea slug brown bear barracouta polyp
flatworm otter coral rainbow trout sea anemone
coral reef lion polyp gar coral
sea cucumber ice bear isopod sturgeon Saint Bernard sea slug
coral golden retriever sea anemone coho Chihuahua flatworm

N —J “ - B
\'\, J ' WVI J "u 2 B V >

mosquito mite
howler monkey American lobster mosquito wolf spider mite
spider monkey jaguar tick harvestman weevil black widow
raccoon cheetah crayfish cricket grasshopper cockroach
bullfrog snow leopard king crab walking stick tarantula tick
indri Egyptian cat barn spider grasshopper common iguana starfish

e a o ’ s ,
pider monkey fufféa"gféﬁse" Gordon setter cherry
howler monkey gnose snake partridge gorilla | Chihuahua dalmatian
spider monkey night snake | ruffed grouse cougar Doberman grape
gorilla horned viper pheasant chimpanzee basenji elderberry
siamang spiny lobster quail baboon corgi ffordshire bullterrier
American beech loggerhead mink lion 'fordshire bullterrier currant

| 37
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SUPERVISION VS PRIMATE VISION

Supervision
T 1000
9K 4096
1
4096
T
43K 3% 34256
T
65K 3% 3*384
T
65K 13*%]13*%384
187K | 2174274256
t
290K 55%55%9¢
| 50K Image, 224224

Total 650 K neurons

Primate Visual System

ﬁ { ? ~10M
(IT representation)

sTP,
~16 M
|
7a STPp cIT
~17 M
||
MST| [FST PIT
~36 M
RO G ~15 M (V4 representation)
ue| oo va
~68 M
[ v3 | ~29 M (V2 representation)
vz ~150 M
G ~37 M (V1 representation)
Al
190 M

~1 M (LGN representation)
LGN ﬁ

Retina ﬁ ~1M (RCG representation)

Total 478 M neurons

Latency

~100 ms

~90 ms

~80 ms

~70ms

~60 ms

~50ms

~40 ms

From Simon Thorpe
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WHY NEURAL NETWORKS ARE BACK?

Application needs — “data deluge” of unstructured
data The data deluge

> Images, video, natural signals, ... 3

Algorithmic progress X

» “Training” of Deep Neural Networks (DNN) that outperform
classical approaches

Availability of “big data” sets

» Terabyte of (labelled) data

Large amount of (parallel) processing power

» GPU are well suited for the learning phase

Software crisis

» Explicitly programming a large set of processors is
difficult, Neural Networks replace imperative
programming by a “programming” by examples.

| 40



f Deep Learning is Everywhere Y LeCun

(ConvNets are Everywhere)

# Lots of applications at Facebook, Google, Microsoft, Baidu, Twitter, IBM...

» Image recognition for photo collection search
» Image/Video Content filtering: spam, nudity, violence.
» Search, Newsfeed ranking

# People upload 800 million photos on Facebook every day

» (2 billion photos per day if we count Instagram, Messenger and Whatsapp)

# Each photo on Facebook goes through two ConvNets within 2 seconds

» One for image recognition/tagging

» One for face recognition (not activated in Europe).

i Soon ConvNets will really be everywhere:

» self-driving cars, medical imaging, augemnted reality, mobile devices, smart
cameras, robots, toys.....

| 41



ez d=lesl PIXEL WISE IMAGE SEGMENTATION

°* DNN technic: Fully-CNN + Unpooling (for high resolution segmentation)

| 42




IMAGE ROI EXTRACTION AND
CLASSIFICATION

m DNN technic: Faster-RCNN (or similar: YOLO, SSD...)

‘ -
bus - 0.965 o
- A g -
‘ = . o traffic ight - 0.866]

traffic light - 0887 uliTl %) | R ous 0 807
I per car - 0.957 =1 erson : 0807 ’'erSop [Person

/

L
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e:]d=les¥ EXAMPLE OF SIZE OF A TYPICAL CNN
Si— @ | IR,
-~ | | (GTSRB)
1017 0@

43 traffic sign types
> 50,000 images

ccccc 00l3 fcl fc2
250 (4x4) Max

SSSSSSSS 43

Neurons: 287,843
=ynapses: 1,388,800
— Total memory: 1.5MB (with 8 bits
synapses)
onnections: 124,121,800

From: D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, Multi-column deep
neural network for traffic sign classification, Neural Networks (32), pp.
333-338, 2012

Near human recognition (> 98%) J
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2017: GOOGLE’S CUSTOMIZED
. . . HARDWARE..
... required to increase energy efficiency

with accuracy adapted to the use (e.g. float 16)

L28686

Google’s TPUZ2 : training and inference in a 180 teraflops,4 board
(over 200W per TPUZ2 chip according to the size of the heat sink)

| 47




ezle=esl DEEP LEARNING AND VOICE RECOGNITION

100%
According to Microsoft's
speech group:
Using DL

10%
4%
2%
1%

1990 2000 2010

Deep Learning in Speech Recognition

| 48
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2017: GOOGLE’S
CUSTOMIZED HARDWARE...

... required to increase energy efficiency
with accuracy adapted to the use (e.g. float 16)

Google’s TPU2 : 11.5 petaflops16 of machine learning number crunching
(and guessing about 400+ KW..., 100+ GFlops16/W)

| 49



Managing complexity

Cognitive solutions for complex
computing systems:
» Using Al techniques for
computing systems
» Creating new hardware
* Generating code
* Optimizing systems
« Similar to Generative design
for mechanical engineering

“And that's why we need a computer.”

| 50




Al FOR MAKING COMPUTING SYSTEMS:
“GENERATIVE DESIGN” APPROACH

The user only states desired goals and constraints
-> The complexity wall might prevent explaining the solution

Motorcycle swingarm: the piece that hinges the rear wheel to the bike’s frame »
5




EXAMPLE: DESIGN SPACE EXPLORATION FOR
DESIGN MULTI-CORE PROCESSORS" (2010)

Calculated Performance versus Area

Ne-XVP project - Follow-up of " il prtiecs

the TriMedia VLIW ( s
) )

1,105,747,200 heterogeneous 5

multicores in the design space k) 3

2 millions years to evaluate all 3|

design points é

Al inspired techniques allowed .§ :

to reduce the induction time to &

only few days -

=> x16 performance increase

* Area (mm?

M. Duranton et all., “Rapid Technology-Aware Design Space Exploration for Embedded HeterogeneousMultiprocessors” in Processor and
System-on-Chip Simulation, Ed. R. Leupers, 2010
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2017: GOOGLE; USING DEEP LEARNING
TO DESIGN DEEP LEARNING

6 " 3y 0 Model | Depth Parameters | Error rate (%)
Neural ArCh’teCture SearCh H us I n g a Network in Network (Lin et al., 2013) = - 8.81
AIl-CNN (Springenberg et al., 2014) - - 7.25
recurrent neural network to COmMpPOSe .y supvised Net (Lee el 2015 . i 797
- - Highway Network (Srivastava et al., 2015) - - 1.72
neural network architectures usin g Scalable Bayesian Optimization (Snoek et al.| 2015) - : 637
- - FractalNet (Larsson et al., 2016} 21 38.6M 522
reinforcement learning on CIFAR-10 i bropou/Drop-path 2 38eM 460
HH ResNet (He et al., 2016a) 110 1.7M 6.61
(character recognition) _ ' |
ResNet (reported by Huang et al. (2016c¢}) | 110 1.7M [ 6.41
ResNet with Stochastic Depth (Huang et al., 2016c} 110 1.7M 5.23
Sample architecture A 1202 10.2M 491
with probability p Wide ResNet (Zagoruyko & Komodakis, 2016} 16 11.0M 481
[ l 28 36.5M 4.17
ResNet (pre-activation) (He et al., 2016b} 164 1.7M 5.46
Trains a child network L L il
; . DenseNet (L = 40,k = 12) Huang et al. (2016a} 40 1.0M 5.24
oS conRISRENN) Nkt DenselNe(Z = 100, = 12) Huang et . G016a) 100 7.0M 4.10
D L = 100. k = 24) Huz . (20162 ;i :
T J Neural Architecture Search v1 no stride or pooling
Neural Architecture Search v2 predicting strides
Compute gradient of p and Neural Architecture Search v3 max pooling
scale it by R to update Neural Architecture Search v3 max pooling + more filters

the controller

From arXiv:1611.01578v2, Barret Zoph, Quoc V. Le
Google Brain
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2017: THE GAME OF GO

Ke Jie (human world champion
in the “Go” game), after being
defeated by AlphaGo on May
27th 2017, will work with
Deepmind to make a tool from
AlphaGo to further help Go
players to enhance their game.

THE ULTIMATE GO CHALLENC
GAME30F 3 —l

27 MAY 2017

0-@e

AIphaGo Ke Jie

of Match 3

RESULT B + Res
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@2z]¢=le a8 ALPHAGO ZERO: SELF-PLAYING TO LEARN

phaGo nggp
Startlng from




e2z\d=l=a¥l ALPHA ZERO: SELF-PLAYING TO LEARN

given no domain knowledge except the game rulesfiaccording to an arXiv paper
by DeepMind researchers published DES*S"

The program started from random pla

“| always wondered how it would be if a superior species landed on " himself. "It plays

. mpion program in
Nielsen told BBC. 1 practicing against

“Now | know.”

Wiax iegimmarn

@tegmark

“What we're seeing here is a model free from human bias and
presuppositions. It can learn whatever it determines is optimal,
which may indeed be more nuanced that our own conceptions of
the same,” MIT computer scientist Nick Hynes told Gizmodo

following the October victory.
“AlphaZero was not ‘taug

endgame tables, and ap|
side pawns. This would t
a combustion engine, then it experimernts NUMmerous umes witn every Compinauon possiDie unu It punas a rerrarl. ...
The program had four hours to play itself many, many times, thereby becoming its own teacher.”

“It's like an alien civilisation inventing its own mathematics.”

| 56



DEEP MANTA

MANY-TASK DEEP NEURAL NETWORK
FOR VISUAL OBJECT RECOGNITION

Applications Technology
Driving gssistance, autonomous driving Object detection
Smart city

Video-protection

Advanced Manufacturing Fine-grained recognition

Accurate pose estimation
2D/3D localisation

Part localisation

Part visibility characterization

Performance

KITTI Benchmark:
: —h * 1st rank in vehicle orientation estimation
fow ooy [ kg st st rawcaa sbtrents o » Top-10 in object detection

oph Stler ()| Rague Urtsun Unversy ofTront) Runs at 10 Hz on Nvidia Gtx 1080

Object Detection Evaluation

s T T i T T e LS S T S ) I

I T G T TS B s e S R T S CVPR 2017 : F. Chabot, M. Chaouch, J. Rabarisoa, C. Teuliére and T. Chateau

[ =] Eﬂm-mﬁﬂﬂ-y P e Gl 5 2 Deep MANTA: A Coarse-to-fine Many-Task Network for joint 2D and 3D vehicle analysis
T S S N S L P L e e U from monocular image. | 57



DEEP MANTA

MANY-TASK DEEP NEURAL NETWORK
FOR VISUAL OBJECT RECOGNITION
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What are we doing at
CEA/DRT/DACLE on
Deep Learning?




DEEP LEARNING AND NEUROMORPHIC SYSTEMS
IN CEA/DRT/DACLE

Tools for fast and accurate Neural Network (NN)
exploration Architecture benchmarking

* Neural Network exploration (including with spike coding
EXPLORATION & and_neV\_/ materials)

EXPLOITATION Exploitation of Deep neural Networks

* Image recognition, annotation and indexing

Diversity of implementations:
+ Software solution / GPU
* Reconfigurable devices / FPGA
» Dedicated implementations

Full CMOS and binary coding

Full CMOS and “spike coding”
Using new materials

NOILVLNINITdINI

MATERIALS & DEVICES Take full advantage of advanced devices to break

the density and power issues:
« 3D integration, CoolCube™.
+ RRAM, PCM and new devices,
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N2D2: NEURAL NETWORK DESIGN & DEPLOYMENT

& Ne2bh2

( )
Learning & Test 100000 (IteD
databases Seon @
10000 .

4 openmp > 1000
&

4 OpenCL E
E

4 cupa a

B His FPGA

Parallel CPU
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N2D2 INI network description file

; Database

[database]
Type=MNIST_IDX_Database
Validation=0.2

; Environment
[env]
SizeX=24
SizeY=24
BatchSize=128

[env.Transformation]
Type=PadCropTransformation
Width=[env]SizeX
Height=[env]SizeY

[env.OnTheFlyTransformation]
Type=DistortionTransformation
ApplyTo=LearnOnly
ElasticGaussianSize=21
ElasticSigma=6.0
ElasticScaling=36.0
Scaling=10.0

Rotation=10.0

; First layer (convolutionnal)
[conv1]

Input=env

Type=Conv

KernelWidth=5
KernelHeight=5
NbChannels=6

Stride=2
ConfigSection=common.config

; Second layer (convolutionnal)

[conv2]

Input=conv1

Type=Conv

KernelWidth=5
KernelHeight=5
NbChannels=12

Stride=2
ConfigSection=common.config

; Third layer (fully connected)
[fe1]

Input=conv2

Type=Fc

NbOutputs=100
ConfigSection=common.config

; Output layer (fully connected)
[fc2]

Input=fc1

Type=Fc

NbOutputs=10
ConfigSection=common.config

; Softmax layer

[soft]

Input=fc2

Type=Softmax

NbOutputs=10

WithLoss=1
ConfigSection=common.config

; Common solvers config
[common.config]
WeightsSolver.LearningRate=0.05
WeightsSolver.Decay=0.0005
Solvers.LearningRatePolicy=StepDecay

Layer-wise detailed memory
Dataflow visualization and computing
T S requirements

”aaauaa-1

Results visualization:

- Pixel-wise segmentation

- ROI bounding box
extraction and classification

Solvers.L

[sp] |
Solvers.LearningRateDecay=0.993

Pixel-wise and object wise

Layer-wise weights and kernels confusion matrix reporting

visualization, distribution and
data-range analysis

Layer-wise output
visualization and data-range
analysis
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; Environment

[env]

SizeX=8

SizeY=8
ConfigSection=env.config

[env.config]

—. Deep Network builder ==

Type=Pool
PoolWidth=2
PoolHeight=2
NbChannels=32
Stride=2

 Third layer (fully connected)
[fc1]
Input=conv2

[conv1]
Input=env
Type=Conv
KernelWidth=3
KernelHeight=3
NbChannels=32
Stride=1

; Second layer (pooling)
[pool1]
Input=conv1

ImageScale=0
; First layer (convol -

"' Learning a database ™

-. Analysis of network Performance™

Learning Output categories
£, and localization
g
O m©
D =
4

. Test
52

O '®©

[}

g8

= Wide targets range, perfs and power metrics

[l OpenMP
Il OpenCL
B HLS FPGA

.. CPU, GPU and FPGA-based
Real-time implementation

FAST AND ACCURATE DNN EXPLORATION

5’.
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EXAMPLE OF INDUSTRIAL APPLICATION of N2D2:
ROLLING MILL

= -~

CONSTRAINTS SOLUTION
*  Real time with very high throughput (20m/s) =Database labelling and Processing
* Tiny defect (~mm) with low contrast =Fast NN topology Exploration
*  Complex environment (oil vapor, few space for inspection..) =Performance vs complexity analysis

= Real time performance achievable on FPGA (direct code generation)

1) Defects labeling and visualization 2) NN Exploration and benchmarking 3) Defects identifications after NN learning

Test # :

Recon. rate

Recon.
- rate

40i60i40i60i40i60i40i60i40i60i40i60i60
3x3|3x3|5x5|5x5|3x3|3x3|5x5|5x5|3x3|3x3|5x5|5x5|3x3
8 | 8 | 8 | 8 |16|16|16|16|32|32|32|32|32

Computing complexity Recon. rate
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a2l e=ta sl APPLICATION: REAL-TIME FACES DETECTION WITH
ey GENDER & EMOTION

et

L2

SMILE RANK

2959

FEMALE

SINCE THIS MORNING

e b gt
Aws E ‘ b ronae SMILE RANK “j f E
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ez|d=le3¥ EXAMPLE OF USE OF N2D2

@ N2p2

AppObjectRecognition/ AppFaceDetection/ AppRoadDetection/
Live object recognition Live face detection application, Simple road segmentation
application with gender recognition application
based on ILSVRC2012 (ImageNet) | based on the IMDB-WIKI dataset | based on the KITTI Road dataset
dataset
- . -H

»

N2D2 is available at https://github.com/CEA-LIST/N2D2/

1

+ Smallest dependencies and requirements among major frameworks:
GCC 4.4 or Visual Studio 12 (2013) / OpenCV 2.0.0
» Easily extendable with a “plug-and-play” modular system for user-made modules
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° Benchmark application: **, 5

Images

* Face extraction on a database Database

of 18,000 images . E N
* 60 neurons on the hidden layer, 450 Kops > mee oy ;I I# i @

* Recognition rate 97%

* Optimized code for 5 architectures:
* Embedded CPU: Quad Arm A7 & A15 Embedded CPU  Embedded GPU  CEA PNeuro CEA DNeuro

* Embedded GPU: NVidia Tegra K1 I ! ‘ ‘

* PNeuro Quad Neuro-Cores / DNeuro
03301 <ANVIDIA. B Globaisensing
Quad ARM A7 Quad ARM A15 Tegra K1 PNeuroV2 \FPGA) PNeuroV2 (ASIC) DNeuro (FPGA)

900 MHz 2 GHz 850 MHz 100 MHz 4 cores - 500 MHz 100 MHz

Performance 480 images/s 3 550 images/s 7 000 images/s
Energy Efficiency 380 images/s/W 350 images/s/W 600 images/s/W 2 800 images/s/W 125 000 images/s/W 18 000 images/s/W

°* PNeuro and DNeuro performance
comparison vs Tegra K1 with N2D2: - Faster

- More Energy Efficient

Target

25 000 images/s 45 000 images/s

870 images/s
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3D STACKED RETINA WITH
SPIKING NEURAL NETWORKS

» RETINE: image sensor + 3D stacked
SIMD processors

—Image sensor: 70% fill factor, 12 ym pixel, >1000 fps
=-SIMD processors: 3072 units, distributed memory, 11.7 MOPS/mW
-=Feed SNN with Asynchronous Event Representation (AER) after pre-processing

Processor array die

Sensor layer Retine Chip
130nm SOI Lens ALTIS 130nm, CuCu bonding

N —]
| Preprocessing | SNN chip
LA synchronous AER codin N

] RETINE AR"Q cortex A9 ST P70
» Pre-processing performances: Rt

Neural layer 2

Neural layer 1

Frequency (Mhz) 400
H Performance
(L1+L2 stacked retina) o 72 067 0,28
Power cz)Vr:Is)umptlon 48 0.25 0,08
Energy / frame (mJ) 2,74 0,68 5,6
Energy efficiency
(normalized, GOPS/ 45 2,68 5,25
W)

= x100 computing power, x10 energy efficiency, /15 processing latency
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DERIVED FROM HEBB’S RULE: STDP
(SPIKE TIMING DEPENDENT PLASTICITY)

Neuron .
_ A~ - STDP = correlation
\\} 4, Electrical ggg/v ‘% detector
sol.gnal R pre-synaptic post-synaptic e
VW ~ Neuron Neuron LTP Hippocampus
v Synapse LTD
Axon ynap .
Dend rite ; : Egocortex-layer 2/3
100+ PP P
80 4 | Causality
] 2 bPotentiation (LTP) :

'

Synaptic weight
S

I , ELL of electric fish

' GABA-ergic neurons
‘ - in hippocampal culture

tpost < tpre

=
v

modification (%)

Anti-Causality

“*1Depression (LTD) % . ICipey
&L
-80 -40 0 40 80

At = tpost - tpre == " 50~

tpre = tpost (Ms)
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NEW ELEMENT: RRAM AS SYNAPSES

Thermal Electrochemical
effect effect
PCM CBRAM
GST Electronic effect Ag/ GeS,
GeTe oxygen vacancies
GST + HfO,

OXRAM

TEC
GST

HIOAN
l"' & j
LBEC _

M.Suri, et. al, IEDM 2011
M.Suri, et. al, IMW 2012 , JAP 2012
O.Bichler et al. IEEE TED 2012

M.Suri et al., EPCOS 2013
D.Garbin et al., IEEE Nano 2013

TiN/HFO,/TIITiN | .

D.Garbin et al. IEDM 2014
D.Garbin et al., IEEE TED 2015
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PRINCIPLE CROSSBARS OF MEMRISTORS

First Proposed by Snider1) ] ra /—[> ot
Synaptic I synaptic
Jlr — « Jlr weight W/"’ ﬁ spike
Vore ™ "VVN— Viout update (feedback)
through STDP .("'.

tpre < tpost tpre > tpost K Neurons

Pre-synaptic spike

<
©
=
(0]
—
—t
©
pn)
(0]
v
(gu ol
—_ — T
I_E
T
©
pn)
(0]
v
(gu

J _
Vv A - R
K | e T piiia
_______ I:_______l____\_/th’ ‘ l- J t > t V
R decreases R increases "y

1. G. Snider, Nanoscale Architectures, 2008
2. B. Linares-Barranco et al, Nature Precedings, 2009
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15T DIGITAL CHIP ARRIVED IN SUMMER 2017

Neuram3 1st IBM True

chip North
Technology 28 nm FDSOI'  28nm CMOS §
Supply Voltage 1V 0.7V
Neuron Type Analog Digital r.
Neurons per core 256 256 g E.
Core Area 0.36 mm?  0.094 mm? i'- — | e f»
Computation Parallel Time 5 R .
processing  multiplexing
Fan In/Out 2k/8k 256/256
Synaptic Operation per Second 300 GSOPS/ 46 GSOPS/W
per Watt w1
Energy per synaptic event <2 pJ*2 10 pJ
Energy per spike <0.375 nJ*3 3.9nJ

* 1 At 100Hz mean firing rate, by appending 4 local-core destinations per spike, 400 k events will be broadcast to 4
cores with 25% connectivity per event. 400 k x 1 k x 25% / 300 y W = 300 GSOPS/W
* 2 In case of 25% match in each core, energy per synaptic event = energy per broadcast / (256*%25%) =120pJ/64 = 2 pJ
* 3 Energy per spike = total power consumption / spikes numbers = 300 uW/800 k = 0.375 nJ
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""""" h WHAT’S NEXT FOR DEEP LEANING AND Al?

1st Winter: 1987
Perceptrons
Minsky & Papert

Expanded Edition

Perceptrons

Marvin L. Minsky
Seymour A. Papert

25t Winter: 1993
SVM
Vapnik & Cortes (1963)

3rd Winter or
Plateau of Productivity?

Gartner Hype Cycle for Emerging Technologies, 2017

/

Expectations

! ‘Deep Learning

Virtual Assistants -

loT Platform
Smart Robots N

Edge Computing

Discovery

Smart Workspace

Conversational
Brain-Computer /\ User Interfaces
Interface AA Volumetric

Gt Dlsplays
computing

Cognitive Expert Advisors ve h i C I es

Serverless
PaaS

5G

/\ Human
Augmentation

Neuromorphic

Hardware )

Deep Reinforcement

Learning Software-Defined
/A Artificial General Security

4D Printing /X " Intelligence

Augmented

* Deep Learning
'  Machine learning
Commercial UAVs (Drones) [ J Autonomous

* Virtual assistants
« Smart robots
wewen o Edge computing
* loT platforms
“ e Connected home

Smart Dust /X
As of July 2017
i i Peak of 7 h of Plat f
n#qva fon Inflated Di AlrlouAg 2 Slope of Enlightenment P adea;{ 2
rigger Expectations isillusionment roductivity
=

Time

gartner.com/SmarterWithGartner

Source: Gartner (July 2017)
© 2017 Gartner, Inc. and/or its affiliates. All rights reserved.

Gartner
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Thank you for your attention
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Special thank you to Olivier Bichler, Christian Gamrat _
And Yann LeCun for their slides | borrowed. C-MINATEC' digiteo
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