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Lensing by the large-scale structure

Lensing by the large-scale structure

Overview

o (Weak) gravitational lensing in a nutshell
e Deflection of light in an inhomogeneous Universe
e Shear v and convergence kK

e Projected power spectrum and cosmological parameters
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Lensing by the large-scale structure (Weak) gravitational lensing in a nutshell

(Weak) gravitational lensing in a nutshell

Gravitational lensing theory

Phenomenon of gravitational light deflection in the limits of weak,
stationary fields and small deflection angles

Basis is General Theory of Relativity

Photons travel on null geodesics of space-time metric. Simplified
mathematical treatment of GL.

Achievements of weak lensing

Cluster masses, mass profiles, M/L-relation, SI cross-section of dark
matter, galaxy halos at large scales, power spectrum normalization og,
Qu, structure growth
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Probing matter distribution using distant galaxies

e Light from distant galaxies is continuously deflected on its way
through an inhomogeneous Universe

e Light bundles are differentially distorted due to gravitational
lensing by tidal field of large-scale structure (LSS)




Lensing by the large-scale structure (Weak) gravitational lensing in a nutshell

e Images of galaxies are coherently
distorted leading to shape correlations
which depend on statistical properties
of LSS

e Probes total (dark+luminous) matter,
no tracer for dark matter needed

e Distortions are very small (weak
lensing regime), can be detected only
statistically using large number of
galaxies

“Cosmic shear”
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Lensing by the large-scale structure Deflection in an inhomogeneous Universe

Deflection angle

e Perturbed Minkowski metric, weak field ¢ < c¢?
ds? = (14 2¢/c®) *dt* — (1 — 2¢/c?) d¢?
e Fermat’s principle: light travel time stationary
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Propagation of light bundles
e Comoving separation & between two light rays from geodesic
deviation equation, relating neighboring geodesics via Riemann
tensor 2 .
— d—; + Kz = —C—ZA(VJ_gb(a:,w)).
(w = comoving distance, K = spatial curvature)

e Solution is integral equation

2(0,w) = fx(w)6 — C% /Ow du fic(w — w)A(V Lo(@(8,u),u)).

(/K (w) = comoving angular diameter distance)
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Lensing by the large-scale structure Deflection in an inhomogeneous Universe

Deflection angle
Solving differential equation
e Born approximation: replace ® on r.h.s. with ¢(0,w) = fx(w) 8
(integrate along unperturbed ray)

e Deflection angle = difference between angular separation of two
light rays in unperturbed and perturbed Universe, at comoving

distance w
(6, w) = 0 — 36, w) = fK(w?K?wa;(e, w)
_ z L w/M w' W) w'
@ /o d fr(w) V1lfx(w)8,v'),w]

e Lensing potential, a = V¢

_ 2 [V B =) e e
¢(07w)_ 02/0 d fK(w/)fK(W)¢(fK( )07 )

‘Weak Lensing and Cosmology 10 / 126



Lensing by the large-scale structure Shear and convergence

Linearizing the lens mapping

e 3(0) = 0 — a(0) is mapping from unperturbed () to unperturbed
(B) coordinates (lens equation)

e Linearize mapping, defining Jacobian

Ay = 9B %Y ( l—Kk—m —72 )

80j T 892893 - -2 l-xk+m

defining convergence k and shear v as second-order derivatives of
lensing potential

1
K= 5(61(91 + 8262)1,b
1
m=3 (0101 — 0202)y; 2 = D102%)
e Reduced shear g; = v;/(1 — k)
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Lensing by the large-scale structure Shear and convergence

Shear and convergence
Liouville’s theorem: Surface brightness is conserved

Effect of lensing

e isotropic magnification (convergence k)

e anisotropic stretching (shear )

Shear transforms a circle into an ellipse.
Define complex ellipticity

vy =m +ir = |v]e?¥; ¢

l—b/a x
ol = 1= sl &‘
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Lensing by the large-scale structure Shear and convergence

Basic equation of weak lensing

Weak lensing regime

k<< 1]y <1
The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity

and the shear:

Random intrinsic orientation of galaxies

=0 — [@=1

The observed ellipticity is an unbiased estimator of the shear. Very
noisy though! o. = (|e%>)1/2 ~ 0.3 — 0.4 > ~. Beat down noise by
averaging over large number of galaxies.
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Shear and convergence

Lensing by the large-scale structure

Ellipticity and local shear
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Galaxy ellipticities are an estimator of the local shear.
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Lensing by the large-scale structure Shear and convergence

Typical numbers

Regime vy v/0e  Nga for S/N~1
weak lensing by clusters  0.03 0.1 102
galaxy-galaxy lensing  0.003 0.01 10*
cosmic shear 0.001 0.003 10°

Much more galaxies for precision measurements needed.

Cosmic shear galaxy surveys
Ngal larcmin™2] 10 ~ 30  (from ground)
60 — 100 (from space)

Area: past: from < 1 deg? to ~ 100 deg?.
ongoing: Subaru (33 deg?), DLS (36 deg?), CFHTLS-Wide
(170 deg?)

future:  DES, KIDS, SNAP (1000-5000 deg?), Pan-
STARRS-4, LSST, DUNE (20000 deg?)
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters
Relation to density contrast

Back to the propagation equation

e Since Kk = %Az/z:

w(0.) = 5 [ au PLZ I Nt i, )

o Terms A, P average out when integrating along line of sight,
can be added to yield 3d Laplacian (error O(®) ~ 1075).

e Poisson equation
B 3HE O
2

AP o

L w.w) = 3 (B0 [Y g @ I @) oo g
0.0)= 50 (50) [ aw G s (1w,
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Amplitude of the cosmic shear signal

Order-of magnitude estimate

_3q (H\P [ k@) oo
(0 = jom () [ aw PGS s (etatyo,u).

for simple case: single lens at at redshift z;, = 0.4 with size R, source at
zg = 0.8.
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Add signal from N &~ Dg/R crossings:
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z%OB x0.1 x 0.1 x2 x 1 ~ 0.01
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters

o Convergence signal from a distribution of source galaxies with pdf
p(w)dw

5(8) = / ) = / @) Bl B ) o)
0 0

with lens efficiency

The convergence is a projection of the matter-density contrast,
weighted by the source galaxy distribution and angular distances.
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Parametrization of redshift distribution, e.g.

p(w)dw = p(2)dz o (2/20)% exp[—(2/20)°]
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The convergence power spectrum

e Variance of convergence (k(¥ + 0)x(1¥)) = (kk)(0) depends on
variance of the density contrast (§6)

e In Fourier space:

e Limber’s equation

l
P.(¢ :/de2 w) Py (—)
© (w) fr(w)
using small-angle approximation, Ps(k) ~ Ps(
only from Fourier modes L to line of sight

o Relations between s and v —
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Current power spectrum P(k) [(h-! Mpc)3]
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Convergence power spectrum
2/l [arcmin]
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Example
A simple toy model: single lens plane at redshift 2, Ps(k) o o3k",

CDM, no A, linear growth:

ZO'

(RO = (PO m 00108 (L)
M\ 1deg
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Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Born-approximation tested with numerical (ray-tracing) simulations.

Power spectrum of «, ¥ and rotation
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Asymmetry of Jacobi-matrix A due to lens-lens coupling negligible
[Jain, Seljak & White 2000]



