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• Kochanek, Schneider & Wambsganss, Gravitational lensing:
Strong, weak & micro, proceedings of the 33rd Saas-Fee Advanced
Course, 2004, Springer
(http://www.astro.uni-bonn.de/̃ peter/SaasFee.html)

• Bartelmann & Schneider, Weak gravitational lensing, 2001,
Phys. Rep. , 340, 297 (astro-ph/9912508)

• Refregier, Weak gravitational lensing by large-scale structure,
2003, ARA&A, 41, 645 (astro-ph/0307212)

• van Waerbeke & Mellier, Gravitational lensing by large scale
structures: A review, Aussois winter school, astro-ph/0305089)

• Munshi et al. 2007, Cosmology with weak lensing surveys,
submitted to Phys.Rep., astro-ph/0612667
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Lensing by the large-scale structure

Overview

• (Weak) gravitational lensing in a nutshell
• Deflection of light in an inhomogeneous Universe
• Shear γ and convergence κ

• Projected power spectrum and cosmological parameters
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(Weak) gravitational lensing in a nutshell

Gravitational lensing theory
Phenomenon of gravitational light deflection in the limits of weak,
stationary fields and small deflection angles

Basis is General Theory of Relativity
Photons travel on null geodesics of space-time metric. Simplified
mathematical treatment of GL.

Achievements of weak lensing
Cluster masses, mass profiles, M/L-relation, SI cross-section of dark
matter, galaxy halos at large scales, power spectrum normalization σ8,
Ωm, structure growth
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Probing matter distribution using distant galaxies

• Light from distant galaxies is continuously deflected on its way
through an inhomogeneous Universe

• Light bundles are differentially distorted due to gravitational
lensing by tidal field of large-scale structure (LSS)
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• Images of galaxies are coherently
distorted leading to shape correlations
which depend on statistical properties
of LSS

• Probes total (dark+luminous) matter,
no tracer for dark matter needed

• Distortions are very small (weak
lensing regime), can be detected only
statistically using large number of
galaxies

3 Mpc

“Cosmic shear”

Weak Lensing and Cosmology 7 / 126



Lensing
by
the
large-
scale
structureLensing by the large-scale structure Deflection in an inhomogeneous Universe

Deflection angle

∇⊥φ
α̂

• Perturbed Minkowski metric, weak field φ ! c2

ds2 =
(
1 + 2φ/c2

)
c2dt2 −

(
1− 2φ/c2

)
d%2

• Fermat’s principle: light travel time stationary

t =
1
c

∫

path

(
1− 2φ/c2

)
d%

• Deflection angle

α = − 2
c2

∫ O

S
∇⊥φd%
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Propagation of light bundles
• Comoving separation x between two light rays from geodesic

deviation equation, relating neighboring geodesics via Riemann
tensor

−→ d2x

dw2
+ Kx = − 2

c2
∆

(
∇⊥φ(x, w)

)
.

(w = comoving distance, K = spatial curvature)
• Solution is integral equation

x(θ, w) = fK(w)θ − 2
c2

∫ w

0
dw′fK(w − w′)∆

(
∇⊥φ(x(θ, w′), w′)

)
.

(fK(w) = comoving angular diameter distance)

w

θ

x(w)∇⊥
φ

β(w) = x(w)/fK(w)
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Deflection angle
Solving differential equation

• Born approximation: replace x on r.h.s. with x0(θ, w) = fK(w) θ
(integrate along unperturbed ray)

• Deflection angle = difference between angular separation of two
light rays in unperturbed and perturbed Universe, at comoving
distance w

α(θ, w) ≡ θ − β(θ, w) =
fK(w)θ − x(θ, w)

fK(w)

=
2
c2

∫ w

0
dw′ fK(w − w′)

fK(w)
∇⊥φ[fK(w′)θ, w′), w′]

• Lensing potential, α = ∇ψ

ψ(θ, w) =
2
c2

∫ w

0
dw′ fK(w − w′)

fK(w′)fK(w)
φ(fK(w′)θ, w′)
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Linearizing the lens mapping

• β(θ) = θ −α(θ) is mapping from unperturbed (θ) to unperturbed
(β) coordinates (lens equation)

• Linearize mapping, defining Jacobian

Aij =
∂βi

∂θj
== δij −

∂2ψ

∂θi∂θj
=

(
1− κ− γ1 −γ2

−γ2 1− κ + γ1

)

defining convergence κ and shear γ as second-order derivatives of
lensing potential

κ =
1
2
(∂1∂1 + ∂2∂2)ψ

γ1 =
1
2

(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ

• Reduced shear gi = γi/(1− κ)
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Shear and convergence
Liouville’s theorem: Surface brightness is conserved

I(θ) = Is(β(θ)) ≈ Is(β(θ0) +A(θ − θ0))

Effect of lensing

• isotropic magnification (convergence κ)
• anisotropic stretching (shear γ)

Shear transforms a circle into an ellipse.
Define complex ellipticity

γ = γ1 + iγ2 = |γ|e2iϕ;

|γ| = |1− κ|1− b/a

1 + b/a

κ

γ

source
image

ϕ

x

y

a

b
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Basic equation of weak lensing

Weak lensing regime
κ ! 1, |γ| ! 1.
The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity
and the shear:

ε ≈ εs + γ

Random intrinsic orientation of galaxies

〈εs〉 = 0 −→ 〈ε〉 = γ

The observed ellipticity is an unbiased estimator of the shear. Very
noisy though! σε = 〈|εs|2〉1/2 ≈ 0.3− 0.4 ) γ. Beat down noise by
averaging over large number of galaxies.
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Ellipticity and local shear

[from Y. Mellier]
Galaxy ellipticities are an estimator of the local shear.
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Typical numbers

Regime γ γ/σε Ngal for S/N∼ 1

weak lensing by clusters 0.03 0.1 102

galaxy-galaxy lensing 0.003 0.01 104

cosmic shear 0.001 0.003 105

Much more galaxies for precision measurements needed.

Cosmic shear galaxy surveys
ngal [arcmin−2] 10 – 30 (from ground)

60 – 100 (from space)

Area: past: from < 1 deg2 to ≈ 100 deg2.
ongoing: Subaru (33 deg2), DLS (36 deg2), CFHTLS-Wide

(170 deg2)
future: DES, KIDS, SNAP (1000–5000 deg2), Pan-

STARRS-4, LSST, DUNE (20 000 deg2)
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Relation to density contrast

Back to the propagation equation

• Since κ = 1
2∆ψ:

κ(θ, w) =
1
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
∆θΦ(fK(w′)θ, w′)

• Terms ∆w′w′Φ average out when integrating along line of sight,
can be added to yield 3d Laplacian (error O(Φ) ∼ 10−5).

• Poisson equation

∆Φ =
3H2

0Ωm

2a
δ

→ κ(θ, w) =
3
2
Ωm

(
H0

c

)2 ∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)a(w′)
δ
(
fK(w′)θ, w′) .
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Amplitude of the cosmic shear signal
Order-of magnitude estimate

κ(θ, w) =
3
2
Ωm

(
H0

c

)2 ∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)a(w′)
δ
(
fK(w′)θ, w′) .

for simple case: single lens at at redshift zL = 0.4 with size R, source at
zS = 0.8.

κ ≈ 3
2
Ωm

(
H0

c

)2 DLSDL

DS

R

a2(zL)
δρ

ρ

Add signal from N ≈ DS/R crossings:

〈κ2〉1/2 ≈3
2
Ωm

DLSDL

R2
H

√
R

DS
a−1.5(zL)

〈(
δρ

ρ

)2
〉

≈3
2

0.3× 0.1 × 0.1 × 2 × 1 ≈ 0.01
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• Convergence signal from a distribution of source galaxies with pdf
p(w)dw

κ(θ) =
wlim∫

0

dw p(w) κ(θ, w) =
wlim∫

0

dw G(w) fK(w) δ (fK(w)θ, w)

with lens efficiency

G(w) =
3
2

(
H0

c

)2 Ωm

a(w)

∫ wlim

w
dw′ p(w′)

fK(w′ − w)
fK(w′)

.

The convergence is a projection of the matter-density contrast,
weighted by the source galaxy distribution and angular distances.
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Parametrization of redshift distribution, e.g.

p(w)dw = p(z)dz ∝ (z/z0)α exp[−(z/z0)β]
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The convergence power spectrum

• Variance of convergence 〈κ(ϑ + θ)κ(ϑ)〉 = 〈κκ〉(θ) depends on
variance of the density contrast 〈δδ〉

• In Fourier space:
〈
κ̂(%)κ̂∗(%′)

〉
= (2π)2δD(%− %′)Pκ(%)

〈
δ̂(k)δ̂∗(k′)

〉
= (2π)3δD(k − k′)Pδ(k)

• Limber’s equation

Pκ(%) =
∫

dw G2(w)Pδ

(
%

fK(w)

)

using small-angle approximation, Pδ(k) ≈ Pδ(k⊥), contribution
only from Fourier modes ⊥ to line of sight

• Relations between κ and γ −→ Pκ = Pγ
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Convergence power spectrum
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Example
A simple toy model: single lens plane at redshift z0, Pδ(k) ∝ σ2

8k
n,

CDM, no Λ, linear growth:

〈κ2(θ)〉1/2 = 〈γ2(θ)〉1/2 ≈ 0.01 σ8 Ω0.8
m

(
θ

1deg

)−(n+2)/2

z0.75
0
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Born-approximation tested with numerical (ray-tracing) simulations.
560 JAIN, SELJAK, & WHITE Vol. 530

FIG. 7.ÈPower spectra of the convergence i (solid curve), shear c
(dashed curve), and the antisymmetric part of the Jacobian matrix, '12È'21(dotted curve). The power spectra of i and c are analytically predicted to be
identical. The power spectrum of is the same as the power spec-'12È'21trum of the rotational component. This is at least 3 orders of magnitude
smaller than that of i, thus validating one aspect of the weak-lensing
approximation. The model used is SCDM, for which nonlinear e†ects are
strongest.

spectrum, again because it is an integral over a broad range
of wavenumbers.

5. MEASURES OF NON-GAUSSIANITY

Given a patch of the sky with measured ellipticities of
background galaxies, we would like to extract cosmological
information with as little loss as possible. For a Gaussian
distribution (likely to be valid on large scales for popular
models of structure formation), one only needs to extract
the power spectrum from the data, which completely deter-
mines all the statistical properties of weak lensing. There is
a well-deÐned procedure for doing this (Seljak 1998), based
on a maximum -likelihood (ML) method : one writes the full
probability distribution (likelihood function) for the mea-
surements as a multivariate Gaussian, whose unknown
parameters are the power spectrum coefficients as a func-
tion of scale. By Ðnding the maximum of the likelihood
function, we Ðnd the estimated values of the power-
spectrum coefficients. The method is asymptotically
unbiased and has minimum variance. One can also derive a
quadratic estimator from this ML method, which is easier
to compute and leads to the same ML solution (Seljak
1998). For scales that are small compared to the survey size,
the quadratic estimator reduces to a simple Fourier method
(Kaiser 1998) : the Fourier transform coefficients of the
reconstructed i are squared and added together for all the
modes contributing to a given power-spectrum bin. The
power-spectrum estimates are Ðnally obtained by subtrac-
ting the noise contribution.

For non-Gaussian distributions, which arise from nonlin-
ear gravitational evolution on small scales, the problem of
how to optimally extract the information in the data is
more difficult to solve. Nonlinear evolution develops corre-

lations between Fourier modes that were uncorrelated in
the linear regime. This mode-mode coupling does not show
up in the two-point correlator of Fourier modes because of
translational invariance, but is present in all the higher
moments. The full likelihood function would have to
describe all these correlations and is therefore not amenable
to analytic expressions.

Given that the full likelihood function is not achievable,
what is the next best thing? In previous studies of nonlinear
clustering, various statistical descriptions of non-
Gaussianity have been developed. Among these are
moments, N-point correlation functions, the bispectrum,
Edgeworth expansion of the PDF, etc. In light of the many
possible statistics one can devise, it is difficult to take a
rigorous, systematic approach. Nevertheless, the fact that
the non-Gaussian signatures have been produced by gravity
allows one to make some general statements regarding the
merits of di†erent estimators. We should emphasize that we
are interested in the best possible statistic to determine )

m
,

the principal free parameter in addition to the power spec-
trum that weak lensing can probe. In some applications of
non-Gaussianity, such as in galaxy clustering, one is inter-
ested in both the biasing relation and To break the)

m
.

degeneracy between the two, the data must be compressed
in more than a single number (e.g., bispectrum, cumulant
correlators, or the three-point correlation function ; Scocci-
marro et al. 1998 ; Szapudi 1998). These complications are
not present in the case of weak lensing, so we can concen-
trate on the simplest statistics and compress all the informa-
tion on into a single number.)

mThe Ðrst question is whether one should look for non-
Gaussian signatures in Fourier space or in real space. We
can, for example, compare the third moment in real space,
Si(r)3T (or skewness, where the inser-S3 \ Si(r)3T/Si(r)2T2,
tion of the extra powers of second moment makes inde-S3pendent of power-spectrum amplitude in perturbation
theory) to the bispectrum, deÐned in Fourier space as

where We found theSi8 (l1)i8 (l2)i8 (l3)T, l1 ] l2 ] l3 \ 0.
bispectrum to be a very noisy statistic, so that even with a
large number of realizations the signal remained very weak.
In contrast, the skewness shows a clear signature of nonlin-
ear evolution and can be measured robustly, as shown in
the next section. This is not surprising, since the bispectrum
has one more parameter (the shape of the triangle of
Fourier modes), and one must compress the data from dif-
ferent triangle shapes Ðrst to obtain more robust informa-
tion. The question of how to combine this information is,
however, not trivial. The skewness in real space is one way
to compress this information into a single number at a given
scale, and while it may not be optimal, it has the advantage
of being physical and easy to compute. Note that to observe
it, we need to reconstruct convergence from the shear,
which is only feasible with sufficiently large Ðelds. As we
show below, large Ðelds are required in any case for the
signal to be observable, so this is less of a constraint than it
would appear at Ðrst. All the results we show are based on
convergence as reconstructed from shear and include any
additional systematic e†ects that could in principle arise
from this procedure. One example of such e†ects is forcing
periodic boundary conditions to the data. This generates
unphysical structure on the edges of the Ðeld, but the e†ects
are very small and do not show up as a signiÐcant e†ect in
any of the statistical tests we applied.

The other reason for using real-space methods is that the

Asymmetry of Jacobi-matrix A due to lens-lens coupling negligible
[Jain, Seljak & White 2000]
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