Weak Lensing and Cosmology

Martin Kilbinger

Institut d'Astrophysique de Paris

IPM Cosmology School and Workshop 2007, Tehran June 2 – 9 2007

Overview

Lensing by the large-scale structure

(Weak) gravitational lensing in a nutshell Deflection in an inhomogeneous Universe Shear and convergence Projected power spectrum and cosmological parameters

Weak lensing and cosmology

Second-order cosmic shear statistics Shear tomography (2 1/2 D lensing) Third-order cosmic shear statistics 3D lensing Peak statistics Shear-ratio geometry test

Observational aspects of weak lensing

Shape measurement Photometric redshifts Intrinsic alignment Non-linear structure formation Non-Gaussian errors

Books & Reviews

Books & Reviews

- Kochanek, Schneider & Wambsganss, Gravitational lensing: Strong, weak & micro, proceedings of the 33rd Saas-Fee Advanced Course, 2004, Springer (http://www.astro.uni-bonn.de/~peter/SaasFee.html)
- Bartelmann & Schneider, Weak gravitational lensing, 2001, Phys. Rep. , 340, 297 (astro-ph/9912508)
- Refregier, Weak gravitational lensing by large-scale structure, 2003, ARA&A, 41, 645 (astro-ph/0307212)
- van Waerbeke & Mellier, Gravitational lensing by large scale structures: A review, Aussois winter school, astro-ph/0305089)
- Munshi et al. 2007, Cosmology with weak lensing surveys, submitted to Phys.Rep., astro-ph/0612667

Lensing by the large-scale structure

Lensing by the large-scale structure

Overview

- (Weak) gravitational lensing in a nutshell
- Deflection of light in an inhomogeneous Universe
- Shear γ and convergence κ
- Projected power spectrum and cosmological parameters

Lensing by the large-scale structure (Weak) gravitational lensing in a nutshell

(Weak) gravitational lensing in a nutshell

Gravitational lensing theory

Phenomenon of gravitational light deflection in the limits of weak, stationary fields and small deflection angles

Basis is General Theory of Relativity

Photons travel on null geodesics of space-time metric. Simplified mathematical treatment of GL.

Achievements of weak lensing

Cluster masses, mass profiles, M/L-relation, SI cross-section of dark matter, galaxy halos at large scales, power spectrum normalization σ_8 , Ω_m , structure growth

Weak Lensing and Cosmology

Lensing by the large-scale structure (Weak) gravitational lensing in a nutshell Probing matter distribution using distant galaxies

- Light from distant galaxies is continuously deflected on its way through an inhomogeneous Universe
- Light bundles are differentially distorted due to gravitational lensing by tidal field of large-scale structure (LSS)

Weak Lensing and Cosmology

Lensing by the large-scale structure (Weak) gravitational lensing in a nutshell

- Images of galaxies are coherently distorted leading to shape correlations which depend on statistical properties of LSS
- Probes total (dark+luminous) matter, no tracer for dark matter needed
- Distortions are very small (weak lensing regime), can be detected only statistically using large number of galaxies

"Cosmic shear"

Weak Lensing and Cosmology

Propagation of light bundles

• Comoving separation x between two light rays from geodesic deviation equation, relating neighboring geodesics via Riemann tensor

$$\longrightarrow \frac{\mathrm{d}^2 \boldsymbol{x}}{\mathrm{d} w^2} + K \boldsymbol{x} = -\frac{2}{c^2} \Delta \Big(\nabla_{\perp} \phi(\boldsymbol{x}, w) \Big)$$

- (w = comoving distance, K = spatial curvature)
- Solution is integral equation

$$\boldsymbol{x}(\boldsymbol{\theta}, w) = f_K(w)\boldsymbol{\theta} - \frac{2}{c^2} \int_0^w dw' f_K(w - w') \Delta\Big(\nabla_{\perp} \phi(\boldsymbol{x}(\boldsymbol{\theta}, w'), w')\Big).$$

 $(f_K(w) =$ comoving angular diameter distance)

Deflection angle

Deflection in an inhomogeneous Univers

Solving differential equation

Lensing by the large-scale structure

- Born approximation: replace \boldsymbol{x} on r.h.s. with $\boldsymbol{x}_0(\boldsymbol{\theta}, w) = f_K(w) \boldsymbol{\theta}$ (integrate along unperturbed ray)
- Deflection angle = difference between angular separation of two light rays in unperturbed and perturbed Universe, at comoving distance w

$$\begin{aligned} \boldsymbol{\alpha}(\boldsymbol{\theta}, w) &\equiv \boldsymbol{\theta} - \boldsymbol{\beta}(\boldsymbol{\theta}, w) = \frac{f_K(w)\boldsymbol{\theta} - \boldsymbol{x}(\boldsymbol{\theta}, w)}{f_K(w)} \\ &= \frac{2}{c^2} \int_0^w \mathrm{d}w' \, \frac{f_K(w - w')}{f_K(w)} \nabla_\perp \boldsymbol{\phi}[f_K(w')\boldsymbol{\theta}, w'), w' \end{aligned}$$

• Lensing potential, $\boldsymbol{\alpha} = \nabla \psi$

$$\psi(\boldsymbol{\theta}, w) = \frac{2}{c^2} \int_0^w \mathrm{d}w' \frac{f_K(w - w')}{f_K(w') f_K(w)} \phi(f_K(w')\boldsymbol{\theta}, w')$$

Weak Lensing and Cosmology

Linearizing the lens mapping

Shear and convergence

- $\beta(\theta) = \theta \alpha(\theta)$ is mapping from unperturbed (θ) to unperturbed (β) coordinates (lens equation)
- Linearize mapping, defining Jacobian

Lensing by the large-scale structure

$$\mathcal{A}_{ij} = \frac{\partial \beta_i}{\partial \theta_j} == \delta_{ij} - \frac{\partial^2 \psi}{\partial \theta_i \partial \theta_j} = \begin{pmatrix} 1 - \kappa - \gamma_1 & -\gamma_2 \\ -\gamma_2 & 1 - \kappa + \gamma_1 \end{pmatrix}$$

defining convergence κ and shear γ as second-order derivatives of lensing potential

$$\kappa = \frac{1}{2} (\partial_1 \partial_1 + \partial_2 \partial_2) \psi$$
$$\gamma_1 = \frac{1}{2} (\partial_1 \partial_1 - \partial_2 \partial_2) \psi; \qquad \gamma_2 = \partial_1 \partial_2 \psi$$

• Reduced shear $g_i = \gamma_i/(1-\kappa)$

Weak Lensing and Cosmology

Basic equation of weak lensing

Weak lensing regime

Lensing by the large-scale structure

 $\kappa \ll 1, |\gamma| \ll 1.$

The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity and the shear:

 $\varepsilon \approx \varepsilon^{\rm s} + \gamma$

Random intrinsic orientation of galaxies

$$\langle \varepsilon^{\rm s} \rangle = 0 \quad \longrightarrow \quad \left\langle \varepsilon \right\rangle = \gamma$$

The observed ellipticity is an unbiased estimator of the shear. Very noisy though! $\sigma_{\varepsilon} = \langle |\varepsilon^{s}|^2 \rangle^{1/2} \approx 0.3 - 0.4 \gg \gamma$. Beat down noise by averaging over large number of galaxies.

Weak Lensing and Cosmology

[from Y. Mellier] Galaxy ellipticities are an estimator of the local shear.

Weak Lensing and Cosmology

Lensing by the large-scale structureShear and convergenceTypical numbersRegime γ $\gamma/\sigma_{\varepsilon}$ $N_{\rm gal}$ for S/N~1

Regime	γ	$\gamma/\sigma_{arepsilon}$	$N_{\rm gal}$ for S/N~.
weak lensing by clusters	0.03	0.1	10^{2}
galaxy-galaxy lensing	0.003	0.01	10^{4}
cosmic shear	0.001	0.003	10^{5}

Much more galaxies for precision measurements needed.

Cosmic shear galaxy surveys

$n_{\rm gal}$ [ar	$\operatorname{cmin}^{-2}]$	$\begin{array}{ll} 10-30 & (\text{from ground}) \\ 60-100 & (\text{from space}) \end{array}$	
Area:	past: ongoing:	from $< 1 \text{ deg}^2$ to $\approx 100 \text{ deg}^2$. Subaru (33 deg ²), DLS (36 deg ²), CFHTLS-(170 deg ²)	Wide
	future:	DES, KIDS, SNAP $(1000-5000 \text{ deg}^2)$, STARRS-4, LSST, DUNE (20000 deg^2)	Pan-
Wea	k Lensing an	d Cosmology	15 / 126

Relation to density contrast

Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Back to the propagation equation

• Since $\kappa = \frac{1}{2}\Delta \psi$:

$$\kappa(\boldsymbol{\theta}, w) = \frac{1}{c^2} \int_0^w \mathrm{d}w' \frac{f_K(w - w') f_K(w')}{f_K(w)} \Delta_{\boldsymbol{\theta}} \Phi(f_K(w')\boldsymbol{\theta}, w')$$

- Terms $\Delta_{w'w'}\Phi$ average out when integrating along line of sight, can be added to yield 3d Laplacian (error $\mathcal{O}(\Phi) \sim 10^{-5}$).
- Poisson equation

$$\Delta \Phi = \frac{3H_0^2 \Omega_{\rm m}}{2a} \,\delta$$

$$\rightarrow \kappa(\boldsymbol{\theta}, w) = \frac{3}{2} \Omega_{\rm m} \left(\frac{H_0}{c}\right)^2 \int_0^w \mathrm{d}w' \frac{f_K(w - w') f_K(w')}{f_K(w) a(w')} \,\delta\left(f_K(w')\boldsymbol{\theta}, w'\right).$$

Weak Lensing and Cosmology

Amplitude of the cosmic shear signal

Projected power spectrum and cosmological parameters

Order-of magnitude estimate

Lensing by the large-scale structure

$$\kappa(\boldsymbol{\theta}, w) = \frac{3}{2} \Omega_{\rm m} \left(\frac{H_0}{c}\right)^2 \int_0^w \mathrm{d}w' \frac{f_K(w - w') f_K(w')}{f_K(w) a(w')} \,\delta\left(f_K(w')\boldsymbol{\theta}, w'\right)$$

for simple case: single lens at at redshift $z_{\rm L} = 0.4$ with size R, source at $z_{\rm S} = 0.8$.

$$\kappa \approx \frac{3}{2} \Omega_{\rm m} \left(\frac{H_0}{c}\right)^2 \frac{D_{\rm LS} D_{\rm L}}{D_{\rm S}} \frac{R}{a^2(z_{\rm L})} \frac{\delta \rho}{\rho}$$

Add signal from $N \approx D_{\rm S}/R$ crossings:

$$\langle \kappa^2 \rangle^{1/2} \approx \frac{3}{2} \Omega_{\rm m} \frac{D_{\rm LS} D_{\rm L}}{R_{\rm H}^2} \sqrt{\frac{R}{D_{\rm S}}} a^{-1.5}(z_{\rm L}) \left\langle \left(\frac{\delta \rho}{\rho}\right)^2 \right\rangle$$
$$\approx \frac{3}{2} 0.3 \times 0.1 \times 0.1 \times 2 \times 1 \approx 0.01$$

Weak Lensing and Cosmology

• Convergence signal from a distribution of source galaxies with pdf

Lensing by the large-scale structure Projected power spectrum and cosmological parameters

$$p(w) \mathrm{d} w$$

$$\kappa(\boldsymbol{\theta}) = \int_{0}^{w_{\lim}} \mathrm{d}w \, p(w) \, \kappa(\boldsymbol{\theta}, w) = \int_{0}^{w_{\lim}} \mathrm{d}w \, G(w) \, f_K(w) \, \delta\left(f_K(w)\boldsymbol{\theta}, w\right)$$

with lens efficiency

$$G(w) = \frac{3}{2} \left(\frac{H_0}{c}\right)^2 \frac{\Omega_{\rm m}}{a(w)} \int_w^{w_{\rm lim}} {\rm d}w' \, p(w') \frac{f_K(w'-w)}{f_K(w')}.$$

The convergence is a projection of the matter-density contrast, weighted by the source galaxy distribution and angular distances.

Weak Lensing and Cosmology

 $18 \ / \ 126$

The convergence power spectrum

Lensing by the large-scale structure Projected power spectrum and cosmological parameters

- Variance of convergence $\langle \kappa(\boldsymbol{\vartheta} + \boldsymbol{\theta})\kappa(\boldsymbol{\vartheta}) \rangle = \langle \kappa\kappa \rangle(\boldsymbol{\theta})$ depends on variance of the density contrast $\langle \delta\delta \rangle$
- In Fourier space:

$$\langle \hat{\kappa}(\boldsymbol{\ell}) \hat{\kappa}^*(\boldsymbol{\ell}') \rangle = (2\pi)^2 \delta_{\mathrm{D}}(\boldsymbol{\ell} - \boldsymbol{\ell}') P_{\kappa}(\boldsymbol{\ell}) \\ \left\langle \hat{\delta}(\boldsymbol{k}) \hat{\delta}^*(\boldsymbol{k}') \right\rangle = (2\pi)^3 \delta_{\mathrm{D}}(\boldsymbol{k} - \boldsymbol{k}') P_{\delta}(\boldsymbol{k})$$

• Limber's equation

$$P_{\kappa}(\ell) = \int \mathrm{d}w \, G^2(w) P_{\delta}\left(\frac{\ell}{f_K(w)}\right)$$

using small-angle approximation, $P_{\delta}(k) \approx P_{\delta}(k_{\perp})$, contribution only from Fourier modes \perp to line of sight

• Relations between κ and $\gamma \longrightarrow P_{\kappa} = P_{\gamma}$

Weak Lensing and Cosmology

Example

A simple toy model: single lens plane at redshift z_0 , $P_{\delta}(k) \propto \sigma_8^2 k^n$, CDM, no Λ , linear growth:

Lensing by the large-scale structure Projected power spectrum and cosmological parameters

$$\langle \kappa^2(\theta) \rangle^{1/2} = \langle \gamma^2(\theta) \rangle^{1/2} \approx 0.01 \,\sigma_8 \,\Omega_{\rm m}^{0.8} \left(\frac{\theta}{1 \rm deg}\right)^{-(n+2)/2} z_0^{0.75}$$

Weak Lensing and Cosmology

Lensing by the large-scale structure Projected power spectrum and cosmological parameters

Born-approximation tested with numerical (ray-tracing) simulations.

