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The MICROSCOPE space mission, launched on April 25, 2016, aims to test the weak equivalence
principle (WEP) with a 107'® precision. To reach this performance requires an accurate and robust
data analysis method, especially since the possible WEP violation signal will be dominated by a
strongly colored noise. An important complication is brought by the fact that some values will be
missing —therefore, the measured time series will not be strictly regularly sampled. Those missing
values induce a spectral leakage that significantly increases the noise in Fourier space, where the
WEP violation signal is looked for, thereby complicating scientific returns. Recently, we developed
an inpainting algorithm to correct the MICROSCOPE data for missing values. This code has been
integrated in the official MICROSCOPE data processing and analysis pipeline because it enables us
to significantly measure an equivalence principle violation (EPV) signal in a model-independent way,
in the inertial satellite configuration. In this work, we present several improvements to the method
that may allow us now to reach the MICROSCOPE requirements for both inertial and spin satellite
configurations. The main improvement has been obtained using a prior on the power spectrum
of the colored-noise that can be directly derived from the incomplete data. We show that after
reconstructing missing values with this new algorithm, a least-squares fit may allow us to significantly
measure an EPV signal with a 0.96 x 107! precision in the inertial mode and 1.20 x 10~ precision
in the spin mode. Although, the inpainting method presented in this paper has been optimized
to the MICROSCOPE data, it remains sufficiently general to be used in the general context of
missing data in time series dominated by an unknown colored-noise. The improved inpainting
software, called ICON (Inpainting for COlored-Noise dominated signals), is freely available at

http://www.cosmostat.org/software/icon.
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I. INTRODUCTION

The MICROSCOPE space mission aims to test the
weak equivalence principle (WEP) with a precision of
10~15. This is more than two orders of magnitude better
than the current ground-based constraints [I], and will al-
low a precise test of general relativity after LIGO brought
a new confirmation of its predictions by the direct detec-
tion of gravitational waves [2]. Indeed, the equivalence
principle is a cornerstone of the general theory of rela-
tivity. It states in particular that the inertial mass and
the gravitational mass are equivalent; in other words, the
acceleration imparted to a body by a gravitational field
is independent of its mass and its composition. Any de-
tection of a WEP violation would be paramount since
it may question the very basis of general relativity and,
more generally, our understanding of the Universe. On
the opposite, confirming the WEP to a precision of 10713
would place new constraints on unified models for funda-
mental interactions, since some predict a violation below
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10713 [3, 4.

Estimating a possible equivalence principle violation
(EPV), or lack thereof, will require a careful data anal-
ysis, and especially a fine characterization of the mea-
surement noise. A possible difficulty, identified in [5] [6],
originates from missing data in the time series result-
ing in irregularly sampled data. Although missing data
are a common problem in physics experiments (they oc-
cur when data acquisition fails or when a contamination
from an external source invalidates some points), they are
particularly troublesome when the measurement noise is
colored (i.e., frequency-dependent). In particular, [5l [6]
have shown that the presence of gaps has a strong impact
on the precision of the ordinary least squares fits of har-
monic signals. This is due to the spectral leakage of the
noise in the frequency domain, which increases the un-
certainty of the fit by several orders of magnitude, even
for a small fraction of missing data.

An important effort has been made to reduce the
impact of missing values in the MICROSCOPE data
analysis. A Kalman-Auto-Regressive Model Analysis
(KARMA) has been proposed in [5], which generalizes
least-squares estimation to missing data problems with-
out “filling” missing values. As it has been shown that
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KARMA allows us to reach MICROSCOPE’s require-
ments, it has been integrated in the official MICRO-
SCOPE data analysis pipeline. However, to strengthen
our conclusions after analyzing the MICROSCOPE data,
and since missing data are a crucial difficulty in the data
analysis, we want to have at least two independent tech-
niques to deal with them. That is why we have proposed
an alternative route in [6]: we use the inpainting algo-
rithm to fill in data gaps, which then allows us to use an
ordinary least-squares method to look for and character-
ize a possible EPV. We showed that this method allows us
to reach also the MICROSCOPE requirements in the so-
called “inertial” mode, where the MICROSCOPE space-
craft is kept fixed with respect to distant stars. However,
this method fails in the “spin” mode, where the space-
craft rotates about the axis normal to the orbital plane.
Hence, the method needed to be improved so that it can
be used in both experimental modes. This is the aim of
this paper, which can be seen as the natural sequel to [6]
(thereafter Paper I).

Paramount to MICROSCOPE, either to characterize
the confidence level of an EPV detection, or to charac-
terize a new upper limit on the WEP (if no EPV is de-
tected), is the noise characterization. This characteriza-
tion will be done in Fourier space, and therefore amounts
to estimating the noise power spectral density (PSD). As
explained above, the PSD estimation is affected by the
spectral leakage created by missing data. Methods like
KARMA and inpainting (Paper 1), although they allow
us to reach MICROSCOPE’s requirements in the charac-
terization of a possible EPV detection, fail to fully esti-
mate the PSD [B] 6], and are therefore not fully satisfac-
tory. In [7], the authors extended the KARMA technique
into a modified expectation-conditional-maximization
(M-ECM) technique; using simulated data, they showed
that this technique allows us to fully estimate the MI-
CROSCOPE’s noise PSD. This new paper aims to pro-
vide a description of the several improvements that have
been brought to the previously developed inpainting
method (Paper I) in the search of reconstructing the full
noise PSD. Those improvements enable us to reach the
MICROSCOPE’s scientific goals in both inertial and spin
modes.

This paper is organized as follows. In Sec. [, we
summarize the MICROSCOPE mission and review how
missing data affect the data analysis. Sec. describes
the improvements brought to the inpainting method and
their motivations. The major improvement has been ob-
tained by adding a prior on the noise power spectrum
directly derived from the data. The results are presented
in Sec. [[V]based on MICROSCOPE mock data; in partic-
ular, we show the gain in precision that we obtain in the
evaluation of a possible EPV signal with a Least Square
fit compared to the previous method. We conclude in

Sec. W1

II. THE MICROSCOPE MISSION

MICROSCOPE will test the WEP by measuring the
relative acceleration of two test masses of different com-
position freely falling in the earth’s gravitational field.
To achieve the highest possible stability and accuracy,
the test masses are on-board a drag-compensated and
attitude-controlled satellite which screens them from
non-gravitational accelerations. The science data will
consist of time series of differential accelerations (the
half-difference of the test masses accelerations) measured
along a sensitive axis by onboard inertial sensors. The
source of the gravitational signal used to test the WEP is
the earths gravitational field modulated by the motion of
the satellite as it orbits Earth: hence, the EPV signal is a
sine expected at a well known frequency fgp (which de-
pends on the satellites motion) along the most sensitive
axial axis of the instrument.”

The measured signal in the MICROSCOPE experi-
ment can thus be written as:

Xep(t) = %MEP(SQEP(t) + S(t) + N (1), (1)

where Mgp is an instrumental calibration factor [g], ¢
is the EPV parameter we aim to detect and charac-
terize, grp(t) is the Earth gravity field’s projection on
the measurement-axis (with g ~ 8 m.s™? at MICRO-
SCOPE’s altitude —700 km) [9], S represents systematics
errors, and N is the statistical inertial sensor noise.

Assuming perfect correction of systematics S and in-
strument’s calibration Mgp (these corrections are out of
the scope of this paper), we will measure a sine-wave sig-
nal (0ggp(t)/2) at frequency frp dominated by a colored-
noise (N (t)).

Different experimental modes can be used, which will
allow us to confirm (or exclude) an EPV detection. In
particular, the inertial mode is defined as keeping the
satellite’s attitude fixed with respect to distant stars; in
this case, the WEP test frequency is equal to the orbital
frequency fgp, iner = forb = 1.8 x 107* Hz. In the spin
mode, the satellite rotates about the axis normal to the
orbital plane in opposite to the rotation due to to the
orbital motion, with a frequency fspin, thereby offset the
WERP test frequency to fEP,spin = forb"’fspin; by choosing
fspin > 0, we increase fgp, moving it to a frequency
where the measurement noise is lower. In this paper, we
assume fspin = 4.5 forb, thereby fep. spin = 1073Hz. The
orbital frequency can be measured in-flight with precise
orbit determination; it is then used in the data analysis
to look for the EPV signal through a Least-Square fit.

The duration of each session is chosen in such a way to
ensure a measurement noise of about 4 x 10715 ms=2 on
the differential acceleration at fgp, as needed to reach
a 10715 precision on the EPV parameter §. Thus, the
inertial and spin sessions last respectively 120 and 20
orbits (inertial and spin sessions will be performed se-
quentially, one after another). The MICROSCOPE data
analysis challenge is then to be able to detect and esti-



mate the amplitude of the periodic signal with a precision
of 4 x 10715 ms™2 in both the inertial and spin modes.
In case no violation is detected, the challenge is to char-
acterize the noise with the same precision.

Touboul [§] computed the expected MICROSCOPE’s
error budget. We use this model to specify the noise PSD
(Fig. [1} black curve). In-flight performance sessions will
be dedicated to fully and finely characterize the actual
noise. We will then be able to take into account any
evolution of the noise characteristics in the data analysis.
However, we expect the actual in-flight noise PSD to not
differ much from the model [§], so the results of this paper
are robust enough for the upcoming MICROSCOPE data
analysis.

Nominally, the measured accelerations are regularly
spaced, with a time sampling of 0.25 second. However,
missing data are almost inevitable in long observations.
Most expected data alteration in MICROSCOPE come
from tank crackles and Multi-Layer Insulation (MLI)
coating crackles and are shorter than one second.; mi-
crometeorite impacts are expected to be rare and create
very short gaps; tele-transmission losses are wider (up
to several seconds) but very rare. If both accelerome-
ters of a differential accelerometer were perfect, such tank
crackes and other spacecraft-related disturbance (such as
micrometeorit impacts) would not appear in the differ-
ential acceleration, since both accelerometer would mea-
sure them in the same way. However, the accelerometers
are not perfectly identical, and small differences in their
electronics’s transfer function create small differences in
their measurement. Those differences are compensated
for in steady-state regime by a posteriori data analysis.
However, they currently cannot be easily compensated
for in the transient regime created by glitches; an empir-
ical model from the data should allow us to eventually
correct for those glitches without the need to mask them.

In the case of MICROSCOPE, we expect in the worst-
case scenario up to about 3% of missing data (resp. 4%
of missing data) in the inertial mode (resp. in the spin
mode). As mentioned in [I0], some crackles come from
the temperature varaitions of the satellite’s multi-layer
insulation cover due to changes in the orientation of the
satellite with respect to the Earth (the earth’s albedo
heats one or another side of the satellite along its or-
bit); in the spin mode, such changes are more frequent,
resulting in more crackles, and therefore more missing
data than in the inertial mode. Further discussion about
the sources of missing values in MICROSCOPE can be
found in [5] [I0]. Detailing how invalid data points are de-
tected, and how gaps’ location and size are set up after
the detection such invalid data, goes beyond the scope of
this paper. In a few words, we can detect invalid data
with a o-clipping technique; the size of gaps will be set
empirically, to remove any transient behavior after crak-
les (Bergé et al in prep). Rather, we assume that that
all such invalid data are correctly detected and masked.
We follow [6] to define the size and distribution of gaps.

Although the fraction of missing data is very small,
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FIG. 1: The black curve shows the MICROSCOPE PSD es-
timate for a 120 orbits simulation. An example of a possible
EPV signal of 3 x 107*® in the inertial mode is shown by the
peak at 1.8 x 10™* Hz. The grey curve shows the spectral
leakage affecting the PSD estimate when gaps are present in
the data.

the detection and estimation of a possible EPV signal
is seriously complicated by this data losses and/or alter-
ation. This is because the spectral leakage induced by
missing data makes the noise power from high-power re-
gions spread over the frequency domain; hence, the noise
in Fourier space where the EPV signal is looked for is
significantly increased, since the measurement noise is
strongly colored. Fig. [I| shows the effect of missing data
in the MICROSCOPE PSD estimate (grey curve). Miss-
ing data create an important spectral leakage from f ~ 1
Hz to surrounding frequencies. As a result, the noise
in the band [107* — 107!]Hz, where the EPV signal is
looked for, is largely dominated by the spectral leakage
from the high-frequency noise. We added to the PSD
shown in Fig. [I|an EPV signal of 3 x 107! (red arrow);
it is clear that the spectral leakage due to missing data
makes its detection extremely difficult in Fourier space.
On the opposite, without missing data, the EPV peak
emerges clearly from the noise (black curve).

III. SPARSE INPAINTING
A. The missing data problem

The problem of missing data can be formalized as:
Y(t) = M(t)X(1), (2)

with X (¢) the ideal complete (i.e. regularly sampled)
time series, Y (¢) the observed time series (with gaps),



and M (t) the binary mask (i.e., window function with
M(t) = 1, if we have information at data point X (¢);
M (t) = 0 otherwise). In Fourier space, the multiplication
by the mask becomes a convolution:

Y(t) = M(t) * X(1), 3)

where " denotes the Fourier transform. The convolution
by the spectral window M (t) causes the energy at each
frequency of the power spectrum to leak into surrounding
frequencies, producing a spectral leakage in the Fourier
domain.

B. Sparse inpainting

In Paper I, we proposed to use a method of sparse in-
painting to estimate the missing data. The method pro-
posed was introduced by [II] and consists in recovering
X (t) knowing Y (¢) and M (¢) by imposing a prior of spar-
sity on the solution X (¢). This inpainting method already
had some major successes in astrophysics (e.g. Weak
Lensing [12| 13], CMB [14], Asteroseismology, [15] [16]).
The sparse inpainting method uses the prior that there is
a representation ®7 of the time series X (t) where most
coefficients o = ®7' X are close to zero (T represents the
transpose matrix). For example, if the time series X (t)
was a single sine wave, the representation ®7 would be
the Fourier transform because all but one coefficient of
the Fourier representation of a sine are equal to zero.
The solution of this problem is obtained by solving:

min [|a||; subject to || Y — MX [|?< o2, (4)

where ||.|[; is the convex I; norm (i.e. ||z|[1 = >, |2kl),
||.]| is the classical Iy norm (i.e. [[z]|* = >, (2x)?) and
o is the standard deviation of the noise in the observed
time series.

The solution of such an optimization task can be
obtained through an iterative algorithm introduced by
[I1]. Let X; denotes the reconstructed time series at
iteration . If the time series is sparse enough in the
representation ®7, in this representation the largest
coefficients should originate from the time series we want
to recover. Thus, the algorithm is based on a threshold
that decreases exponentially (at each iteration) from a
maximum value to zero. By accumulating more and
more high coefficients through each iteration, the gaps in
X; are filling up steadily and the power of the coefficients
due to the gaps is decreasing. This algorithm needs as
inputs the observed incomplete data Y and the binary
mask M.

The algorithm can be described as follows:

1. Set the maximum number of iterations
I ez = 100, the solution XY is initialized to
zero, the maximum threshold \,,,, = max(]
®TY |) with ®T being a global Discrete Co-
sine Transform (DCT), and the minimum
threshold ),,;, = 0.

2. Set i =0, A\ = A\ 0z Iterate:

3. Set U = X'+ M (Y — X*) to enforce the time series
to be equal to the observed data where the mask
M is equal to 1.

4. Compute the forward transform of U?: o = ®TU?.

5. Compute the threshold level A’ = F(i, Anaz, Amin ),
where F is a function that describes the decreasing
law of the threshold.

6. Compute & by keeping only the coefficients a above
the threshold A* and setting the others to zero.

7. Reconstruct X “+1 from the remaining coefficients
a: X' = da.

8. Seti =14+ 1. If i < I,,,4s, return to step 3.

In Paper I, ®7 is chosen to be a global DCT because it
provides a sparse representation for the EPV signal. The
function F' used to describe the threshold decreases (at
each iteration ¢) from A4, to zero following the empirical
law below:

Fi, Amax) = Amas (1 o ( P 1)) NG

with f = 2.8. This law is commonly used because it
follows the fast (i.e. exponential) decay of the coefficients
that is commonly observed in a sparse representation.

In Fig. 2| the black curve shows the estimated MI-
CROSCOPE differential acceleration PSD in the inertial
mode averaged over 100 simulations of 120 orbits. The
blue curve shows the effect of missing 3% of the data.
The red curve shows the PSD estimated after filling miss-
ing values using the inpainting algorithm just described
above.

In the inertial mode (upper panel), a least-squares fit
of a sinusoidal function at fgp = 1.8 x 10~ Hz allowed us
to detect the EPV peak with a precision of 1.18 x 10717,
which is very close to the MICROSCOPE requirements.
However, if we wanted to confirm the detection of the
EPYV signal in the spin mode (lower panel), there is still
an important spectral leakage in the intermediate fre-
quency region where the EPV peak is expected for this
second configuration (fgp = 1072 Hz). Note also that
the peak in the spin mode appears smaller in the PSD
representation due to the different integration time.

C. Sparse inpainting improvements: ICON

The inpainting developed in Paper I gives really
promising results in the inertial mode. However, it re-
mains unsatisfactory to detect and characterize a possi-
ble EPV peak in the spin mode. Fig. 2] shows that there
is still a residual spectral leakage from the high-frequency
noise peak to the low frequency region of the spectrum
where we try to detect a possible EPV signal. In this
section, we describe the improvements we brought to the
algorithm.
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FIG. 2: Estimated MICROSCOPE differential acceleration
power spectral density (PSD) averaged over 100 120-orbit sim-
ulations in the inertial mode (upper panel) and over 100 20-
orbit simulations in the spin mode (lower panel). The black
line shows the PSD when all the data is available, the blue line
shows the effect of missing values and the red line shows the
PSD estimated from data filled with the inpainting method
developed in Paper 1. Note the EPV peaks of 3 x 107!° at
1.8 10™* Hz (in the upper panel) and 1072 Hz (in the lower
panel).

1. Noise constraint

A major problem in the previous version of the inpaint-
ing, is that the minimisation problem of eq. [d]is only op-
timal for white noise data. However, this minimization
can be extended to the colored-noise case. An effective
way to do so and thus reduce the spectral leakage is to
introduce a prior on the noise. This prior could be easily
introduced in the algorithm by forcing, at each iteration,
the high frequency part of the spectrum to follow an a
priori model of the noise. However, this would break
the required model-independence of the method. To by-
pass this problem, so that the method remains model-
independent, the noise constraint is based on the data.

To do so, at each iteration i of the algorithm, we per-
form a wavelet transform of the signal X*(¢) at this iter-
ation using the a trous algorithm:

J
Xi(t) = es(t) + > wild), (6)
=1

where J is an input parameter, c¢; is a smooth version
of the original signal X*(t) and w; are the wavelet bands
that give the details of the signal X*(t) at different res-
olutions (see Starck et al. [17), [18] for details). Thus, if
the signal X%(¢) is of size N, the algorithm outputs J + 1
arrays of size N. In this application, J is chosen to
be equal to 10 in the spin case and 14 in the iner-
tial case to properly handle the residual spectral
leakage at the position of the EPV peak.

The wavelet filters ¢ (z) used for this application are
defined as

) = pla) = 50(3). (7)

the difference between two B3-Spline functions o(z) at
two different resolutions with:

1
p(z) = 5 (le =2 = 4o =11 +6]2* —4lo+1]° +]z+2f).
(8)

Thus, at a given scale [, the wavelet filters are defined
as

1 x 1 =z 1 T
FWF) = ?90(7) - W@(ﬁ)~ (9)

Fig.[3]shows the shape of the power spectra of the wavelet
filters for [ = 0 to 10 (in colors) and the smoothing filter
©(x) (in black) used for the spin case. Note the position
of the EPV peak at fgp = 1073 Hz, represented in the
figure as a vertical dashed red line. The wavelet filters
derived in this way have a compact support in real space
and are well localized in the Fourier domain. Addition-
ally, the wavelet decomposition is very fast.

Once the signal is decomposed into several wavelet
bands [, the estimation of the standard deviation of wy ()
with ¢ constrained to be outside gaps enables us to esti-
mate the mean power spectrum of the noisy signal in this
frequency band. Hence, we have now a way to estimate
a broad-band power spectrum of the noisy signal from
incomplete data. This being said, for each wavelet band
[ the code finds the standard deviation of w;(t) with ¢
constrained to be outside gaps, and does the same for ¢
constrained to be inside gaps. And then, w;(t) is rescaled
inside the gaps by a constant v; chosen so that the stan-
dard deviation inside gaps is the same as outside gaps for
that [. Thus, we reduce the spectral leakage by imposing
that constraint for each wavelet band. In this process,
the fgp frequency is considered to avoid a rescaling of a
possible EPV signal. This is the major improvement of
the code.
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FIG. 3: Frequency response of the wavelet filters (in differ-
ent colors) and smoothing filter ¢(x) (in black). The wavelet
filters have been used to add a constraint about the power
spectrum of the noisy signal. Each wavelet band w; is ob-
tained by the convolution of the signal with the wavelet filter
functions of various characteristic scales as described in the
text
. Thus, each wavelet band contains the frequency
information of the band selected by the corresponding
wavelet filter.

2. Threshold law

The way the threshold is decreased at each iteration
has also an impact on the results. Ideally, we would like
to have a number of iterations as large as the number
of points in the time series and decrease the threshold in
such a way so to add one single additional coefficient to a
at each iteration. However, this number is too large and
instead, we have to find a trade-off between the speed of
the algorithm and its quality.

We optimize the decreasing law F for the MICRO-
SCOPE data by modifying slightly the slope (8 = 4.8),
and we add a constant p corresponding to the ratio of
missing values:

Flinnn) = o (1t (2)). 10

The number of iterations I,,,; has been raised to 1000.
Higher values for I,,,, have a small impact on the result.
The value p has been chosen equal to 0.03 in the inertial
mode (resp. 0.04 in the spin mode) which is the ratio
of missing values. This value ensures that the maximum
threshold A4, will be larger than the “plateau” due to
the spectral leakage before inpainting (see the blue curve
in Fig. . Indeed, the algorithm does not need to spend
time on high-power density values of the threshold where
the spectral leakage is negligible. Thus, the constant p
makes the threshold start at a lower value and the new
value for the slope of the decreasing law S makes the
threshold decrease more quickly to the low amplitudes
where the EPV signal is expected. With this new de-
creasing law, most of the coeflicients due to the high-
frequency noise are caught at the first iterations, thus
saving more iterations for the small coefficients where

the spectral leakage is high.

3. Algorithm

The new algorithm can be described as follows:

1. Set the maximum number of iterations
Imaz = 1000, the solution X© is initialized to
zero, the maximum threshold \,,,, = max(]
®TY |) with ®7 a global Discrete Cosine
Transform (DCT) and the minimum thresh-
old \,,;, = 0.

2. Set i =0, A\ = \pqq. Iterate:

3. Set U = X'+ M (Y — X) to enforce the time series
to be equal to the observed data where the mask
M is equal to 1.

4. Compute the forward transform of U’: a = ®TU".

5. Compute the new threshold level \%:

S )
with f = 4.8.

6. Compute & by keeping only the coefficients o above
the threshold \* and setting the others to zero.

7. Reconstruct X**! from the remaining coefficients
G X = da.

8. Set XUH1(#) = ¢;(t') + Y, viwy(t') for ¢/ inside
the gaps to apply the noise constraint described in
section

9. Locate the position of the EPV signal in the DCT
and remove the effect of the noise constraint at the
position of the peak.

10. Set i =i+ 1. If i < 1,540, return to step 3.

IV. RESULTS

A. Simulations

To assess inpainting’s performance on MICROSCOPE-
like data, we design a suite of simulations with the as-
sumption that all nuisance parameters are perfectly cor-
rected for. Hence, the signal consists of just a pure sine
at a well known frequency and a noise:

yep(t) = gup(t)/2 + N(1). (11)

The simulated time series are sampled at f, = 4 Hz.
For the sake of clarity in this section, and to have an
acceptable signal-to-noise ratio, we set 6 = 3 x 10715
following [5] and Paper 1.

We then consider the two satellite configurations de-
scribed in Sect [T



o Inertial mode: 120 orbits, fEp iner = 1.8 X 10~* Hz
e Spin mode: 20 orbits, frp spin = 1073 Hz

Following the experimental setup used in Paper I, we
define missing values in a worst case scenario, with 3%
of missing values (resp. 4% of missing values) in the
inertial mode (resp. in the spin mode), due to 260 tank
crackles per orbit, 24 (resp. 111) MLI coating crackles
per orbit in the inertial mode (resp. spin mode), 0.2
micrometeorite impacts per orbit and 0.05 telemetry
loss per orbit. The mean duration of saturated data
due to crackles and micrometeorite impacts is set to
0.75 seconds (corresponding to 3 data points), and
the telemetry losses can vary from 1 second to 250
seconds. Gaps are distributed randomly within the time
series, following a uniform distribution. Gaps are not
pre-defined, but their distribution is drawn randomly
for each simulation, therefore we have access to their
statistics only. The exact probability of occurrence of
these events is unknown at the time of writing. However,
the worst case scenario used in the simulations have
been estimated by on-ground tests. Finally, we generate
100 similar simulations for each configuration to perform
a statistical analysis of our estimates.

B. Missing data interpolation

The sets of simulations presented above are analyzed
using the inpainting method developed in Paper I (de-
scribed in Sect. and the new version of the code,
ICON presented in this paper (described in Sect. .
The PSD estimates averaged over 100 simulations ob-
tained with these two methods are shown in Fig. [4] for
the inertial mode (upper panel) and for the spin mode
(lower panel). The black curves show the averaged esti-
mated MICROSCOPE differential acceleration. The red
curves show the averaged PSD after filling missing values
using the inpainting method developed in Paper I and the
green curves show the averaged PSD after filling values
with the new algorithm proposed in this paper.

It is obvious that the original PSD is better recovered
with the inpainting method presented in this paper. In-
deed, the spectral leakage in the PSD estimate is more
than one order of magnitude smaller than the residual
spectral leakage obtained with the inpainting method de-
veloped in Paper I which already reduces the spectral
leakage by more than two order of magnitudes if com-
pared to the PSD estimated from incomplete data (see
Fig. . Although the residual spectral leakage has not
totally disappeared, the new version of the inpainting al-
gorithm allows the EPV signal to clearly emerge from
the noise both in the inertial and spin modes. It is there-
fore possible to detect and estimate the amplitude of the
signal in both configurations after running the improved
algorithm.
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FIG. 4: MICROSCOPE differential acceleration PSD esti-
mates averaged over 100 simulations in the inertial mode (up-
per panel) and in the spin mode (lower panel). The black lines
show the PSD estimated when all the data is available, the
red lines show the PSD estimated from data filled with the
inpainting method developed in Paper I and the green lines
show the PSD estimated from data filled with the new in-
painting method (ICON) presented in this paper.

C. Detection and characterization of the EPV

To further quantify the results obtained with inpaint-
ing, we can use common techniques to detect and charac-
terize the EPV signal since the inpainting interpolation
enables us to recover a regularly sampled time series.

In this work, because we are assuming perfect correc-
tion of systematics and instrumental’s calibration, the
signal we are looking for is just a pure sine wave, of known
frequency and phase. Thus, a simple least-squares fit to
the corrected data is sufficient to estimate the amplitude
of the EP parameter 6. For more realistic signals, a more
general regression technique will be required, like a least-
squares fit with a more complex model or a MCMC tech-
nique, which will allow us to constrain more parameters.

As aforementioned, we have run 100 realizations for
the two configurations described in Sect. [[] to perform a
statistical analysis of our estimate. The errors we quote



are the rms of the least-squares estimators estimated on
these 100 simulations; in this way, we are able to quantify
the combination of errors coming both from the inpaint-
ing interpolation and from the least-squares estimation.

In this work, because we have noted a bias in the
amplitude of the EPV peak estimated after inpainting,
we adopt an ordinary least-squares estimator different
from the Paper I. We perform a simple least-squares fit
in the temporal domain to remove all possible bias intro-
duced by the method. The results of the least-squares
estimation are summarized in Table [Il

Table [l shows that while the inpainting algorithm of
paper I strongly decreases the EPV measurement uncer-
tainty oy, further improvement can be expected from the
new (ICON) method presented in this paper, especially
for the spin mode. Therefore, the new version of the
inpainting code allows us to have a significant measure-
ment of a 3 x 10~!° EPV signal in both configurations,
which would be impossible by simply performing an Or-
dinary Least Square fit on the available data. Given our
estimated 1o statistical error, we can conclude that with
only one measurement run of 120 orbits (inertial mode)
or 20 orbits (spin mode), we may be able to characterize
a possible EPV signal with a 0.96 x 10~ precision in the
inertial mode and 1.20x 10715 in the spin mode assuming
an instrumental noise at the level of the simulated one.

However, in view of the number of simulations
(N = 100) used to perform the statistical analysis, the
results show a bias on the estimated mean value of the
EPV peak in the spin mode. Indeed, the expected stan-
dard deviation of the mean should be oyean = 0/ VN =
0.12 x 10715 in the spin mode (resp. 0.096 x 1071% in
the inertial mode) and the estimated mean value of the
EPV peak is outside the 30can error bars in the spin
mode.

We further investigated the bias introduced by inpaint-
ing by considering different amplitudes for the EPV sig-
nal (10715, 3 x 1071%, 8 x 10715, 3 x 107, 10713) in
the two satellite configurations (see Fig. |5). The bias is
more important in the spin mode. Indeed, in the iner-
tial mode (upper panel), the bias appears for EPV peaks
larger than 3 x 10715 and in the spin mode (lower panel),
a bias is significant even for the small amplitudes of the
peak. The likely reason for the bias in the EPV signal
estimation is that the sparsity condition in the inpainting
method is not fully verified. Although the decomposition
into a set of oscillating functions of the DCT is ideal to
represent the EP sine-wave signal (dggp(t)/2), the global
DCT is much less efficient to represent the continuous
spectrum of the colored-noise. Indeed, we checked that
the bias disappears in white-noise simulations. Although
the bias seems to increase with the amplitude of the EPV
peak, the relative bias decreases with the amplitude. The
bias is related to the noise spectral leakage: the more the
peak is embedded in the noise after spectral leakage, the
larger the bias. This explains why the bias is more im-
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FIG. 5: EPV signal estimation for different amplitudes

(10715, 3 x 10715, 8 x 1075, 3 x 107**, 107'3) in the in-
ertial case (upper panel) and in the spin case (lower panel).
The points correspond to the mean and the error bars to the
standard deviation of the mean obtained on a set of 100 sim-
ulations.

portant in the spin mode.

The inpainting code (ICON) presented in this paper
is dedicated to reliably asserting the detection of a pos-
sible EPV signal in parallel with the other code present
in the pipeline, KARMA [5]. Having these two indepen-
dent techniques allow us to cross-check our results. If an
EPV peak is detected and confirmed, further work will
be needed to fully characterize the peak.

V. CONCLUSION

We have presented an updated version of the in-
painting algorithm used to judiciously fill-in the missing
values in MICROSCOPE data. Several improvements
have been made to lower the noise spectral leakage
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spin configuration

|
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|

] I <é> ;s I <dé> o5 |
Complete data 3.15 x 107151 0.90 x 10" []2.97 x 10~ 15[ 0.60 x 10~ °
Incomplete data 4.63 x 107 1°]14.66 x 10~ °][0.61 x 10~ °[39.01 x 10~
Inpainted data (Paper 1)[[2.40 x 10~ °[ 1.18 x 10~ ™ [[2.563 x 10~ [ 3.08 x 10~ ®
Inpainted data (ICON) [[2.74 x 10~ 0.96 x 10~ [[2.05 x 10" [ 1.20 x 10~ ™

TABLE I: EPV signal estimation and statistical errors for a simulated EPV peak of 3 x 107*®. These numbers correspond to
the mean and the standard deviation of a time-domain least-squares estimators obtained on a set of 100 simulations.

residuals of the inpainting method. The major improve-
ment was obtained by the introduction of a prior on
the noise power spectrum. We showed how this prior
can be directly derived from the incomplete data using
a multi-scale representation. The second improvement
consists in changing the threshold law of the iterative al-
gorithm used to solve the minimization problem in Eq.[4
The idea behind this modification is to spend more
time on small coefficients (depending on the missing
data ratio) where the spectral leakage is more important.

The performance of the new inpainting code was
assessed based on MICROSCOPE simulations in a
worst-case scenario for missing data assuming perfect
correction of systematics and perfect instrumental
calibration. Further work is under way to test the code
in more realistic simulated data including calibration
imperfections and other additional perturbations (Bergé
et al in prep). We showed that the performance of
the new inpainting algorithm presented in this paper
reach the MICROSCOPE requirements for both the
inertial and spin modes. With the simulated noise,
our estimated statistical 1o error for the detection of
a 3 x 10715 EPV signal is 0.96 x 107!° in the inertial
mode and 1.20 x 107!% in the spin mode. Thus, the new
version of the inpainting code will replace the previous
version in the official MICROSCOPE’s data processing
and analysis pipeline.

In the performance study, we noticed a bias in the
estimation of the EPV signal that is explained by the
fact that the sparsity constraints is not fully verified
because the colored-noise is not sparse enough in the
DCT representation. This bias in the EPV signal
estimation makes the inpainting code suboptimal to
characterize a possible EPV signal with an ordinary

least-squares method. The major asset of the inpainting
technique is that it is model-independent; this allows
us to cross-check any EPV signal detection with the
KARMA independent method. The characterization of
the EPV signal, if any detection is confirmed will require
further work.

While the inpainting method presented in this pa-
per has been optimized to process MICROSCOPE
simulated data, it also provides a robust method to
deal with missing data in the general context of time
series dominated by an unknown colored-noise. This is
because the code is model-independent, fully adaptive
to the data and should behave well in more complex
data. Following the reproducible research guidelines,
the inpainting software presented in this study, named
ICON (Inpainting for COlored-Noise dominated sig-
nals), is now freely available at the following address:
http://www.cosmostat.org/software/icon/.
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