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Outline Introductory remarks

Books, Reviews and Lecture Notes

• Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
III (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

• Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

• Mandelbaum 2018, review Weak lensing for precision cosmology, ARAA
submitted, arXiv:1710.03235

• Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html
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Basics of gravitational lensing

Gravitational lensing
Gravitational lensing = light deflection and focusing by matter

Light is deflected by both dark and luminous matter.

Important to study dark matter:

• Dominant over luminous (baryonic) matter (27% vs. 5%)
• Dark matter easy to understand and simulate (N -body simulations), only

interaction is gravity

We will be looking at the small distortion of
distant galaxies by the cosmic web (weak
cosmological lensing, cosmic shear).

scales
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Basics of gravitational lensing Brief history of gravitational lensing

Brief history of gravitational lensing

• Before Einstein: Masses
deflect photons, treated as
point masses.

• 1915 Einstein’s GR
predicted deflection of
stars by sun, deflection
larger by 2 compared to
classical value. Confirmed
1919 by Eddington and
others during solar eclipse.

Photograph taken by Eddington of solar corona, and

stars marked with bars.
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Basics of gravitational lensing Brief history of gravitational lensing

Lensing on cosmological scales

• 1979 Walsh et al. detect first double image of a lenses quasar.

(Walsh et al. 1979)
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Basics of gravitational lensing Brief history of gravitational lensing

Lensing on cosmological scales

• 1979 Walsh et al. detect first double image of a lenses quasar.

Images of QSO 0957+561
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Lya ABSORPTION-LINE SYSTEMS 599

exhibits both damped and undamped Lya absorption
systems, which are at distinct redshifts of zdamped \ 1.3911
and respectively Carswell, &zLya \ 1.1249, (Walsh,
Weymann et al. et al.1979 ; Weymann 1979 ; Young 1981a).
In this paper we present HST FOS spectra obtained of the
individual lensed components, 0957]561A and B, and an
analysis of metal and hydrogen-line absorption in each
lensed component. The quality of the data allows detailed
analysis that was not possible in previous studies of this
system.

2. OBSERVATIONS

FOS spectra were obtained with the G270H grating (blue
detector) which covers the wavelength interval jj2152È3350
in the local rest frame (LRF). The wavelength uncertainty is
*j B 2 (R \ j/*j \ 1300), but the wavelength accuracyÓ
was improved with the use of galactic interstellar lines as
�ducials (see below). These spectra were acquired at roughly
2 week intervals as part of a monitoring campaign(Table 1)
to study small-timescale QSO emission variability to deter-
mine if emission lines arising from ions with di†erent ioniza-
tion potentials vary independently from each other (Dolan
et al. Here, we report only results relevant to several1995).
absorption-line systems which are present in the spectrum
of the lensed components.

Target acquisition was performed on the brightest lensed
component 0957]561A, which was centered in the 0A.86
diameter circular aperture. Accurate small o†set maneuvers
of were used to subsequently center the same apertureD6A.2
on 0957]561B. Five spectra were obtained of each com-
ponent. Exposure times of 420 s (0957]561A) and 500 s
(0957]561B) were sufficient to obtain high signal-to-noise
ratio (S/N) for QSO emission lines. In the �veFigure 1,
spectra of each component were co-added in order to
increase the S/N in the continuum and in absorption
features.

The spectra were reduced with the standard FOS pro-
cessing system using calibration constants from FOSCAL
Version 1.3.2.3 (e†ective dates 1995 August 31 through 1996
March 18), and were analyzed with astronomical spectros-
copy application programs available in the International
Ultraviolet Explorer (IUE) Interactive Data Language
(IDL) system. The same exposure time was used at each
observation for each component which resulted in(Table 1),
a S/N D 3 at the bottom of the Lya absorption trough for
component A and B at every epoch. The �ve spectra for
each lensed component were co-added by weighting equally
the Ñux from each observation ; the co-added spectra have a
S/N which is greater by a factor º2 compared each individ-

TABLE 1

OBSERVATION PROGRAM

Julian Date Lens Exposure
Epoch Date (2,450,000]) Component Time (s)

1 . . . . . . 1995 Nov 4 011.27 A 420
B 500

2 . . . . . . 1995 Nov 18 025.77 A 420
B 500

3 . . . . . . 1995 Dec 2 039.35 A 420
B 500

4 . . . . . . 1995 Dec 16 053.22 A 420
B 500

5 . . . . . . 1995 Dec 30 066.42 A 420
B 500

FIG. 1.ÈCo-added spectra of lens components Q0957]561A (top) and
B (bottom). Lya, O VI, and N V quasar emission lines are present. The
wavelength scale corresponds to the quasar redshift Absorp-zQSO \ 1.41.
tion lines associated with the damped Lya system at andzdamped \ 1.3911,
Lya and O I absorption at are shown as open and �lledzLya \ 1.1249,
triangles, respectively. Interstellar absorption (ISM) from Mg and Fe II

absorption is also indicated. Note the strong absorption associated with
features formed in the damped Lya system. QSO Lyb emission is a†ected
by the strong wings of O VI which degrades its Ñux. The absolute Ñux scale
should be multiplied by a factor to properly correct for the(1 ] zQSO)
transformation into the quasar rest frame.

ual spectrum. Co-addition was made after cross-correlating
the Lya emission centroids to remove any systematic error
in wavelength registration ; the residuals were D0.05 Ó.

Strong absorption corresponding to the damped Lya
and the Lyman limit system(zdamped \ 1.3911) (zLya \

1.1249) were detected in both lens components (Fig. 1).
Interstellar absorption lines of Mg II jj2795, 2802 and
Fe II(1) jj2260, 2383, 2600 were also found and(Table 2),
used to recalibrate the wavelength scale that decreased the
wavelength uncertainty to *j D 0.5 The equivalentÓ.
widths were obtained after deredshifting to the(W j) and rest frames and mea-zdamped \ 1.3911 zLya \ 1.1249
sured relative to the local continuum after co-addition of
spectra. If we assume the spectrum is represented by a

TABLE 2

INTERSTELLAR ABSORPTION LINES IDENTIFIED IN 0957]561A AND B

j j Wj Log Cosmic
Ion (vac)a (FOS)b (mÓ)c f a Abundance

Mg II . . . . . . 2803.53 2804.16 1421 0.3054 7.59
Mg II . . . . . . 2797.92 2796.98 1346 0.9177 7.59
Fe II . . . . . . . 2600.17 2600.33 722 0.2239 7.51
Fe II . . . . . . . 2382.04 2383.53 890 0.3000 7.51
Fe II . . . . . . . 2260.08 2260.05 284 0.0037 7.51

a Morton 1991.
b Wavelength uncertainty ^2 Ó.
c Equivalent width uncertainty ^200 mÓ.
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(Walsh et al. 1979)
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Basics of gravitational lensing Brief history of gravitational lensing

• 1987 Soucail et al.
strongly distorted
“arcs” of
background
galaxies behind
galaxy cluster,
using CCDs.
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Basics of gravitational lensing Brief history of gravitational lensing

• Tyson et al. (1990), tangential alignment around clusters.19
90
Ap
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Abell 1689

Cluster outskirts: Weak gravitational lensing.
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Basics of gravitational lensing Brief history of gravitational lensing

• 2000 cosmic shear: weak lensing in blind fields, by 4 groups (Edinburgh,
Hawai’i, Paris, Bell Labs/US).
Some 10, 000 galaxies on an area of a few square degrees on the sky.

• 2010 - 2020s: Many dedicated surveys: DLS, CFHTLenS, DES, KiDS,
HSC. Competitive constraints on cosmology.
Factor 100 increase: Millions of galaxies over 100s of degrees. Many other
improvements: Multi-band observations, photometric redshifts, image and
N -body simulations, . . ..

• 2025 -: LSST@VRO, Roman space mission (WFIRST), Euclid data will
be available.
Another factor of 100 increase: Hundred millions of galaxies, tens of
thousands of degrees area (most of the extragalactic sky).
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Basics of gravitational lensing Basic gravitational lensing effects

Light deflection
Simplest case: point mass deflects light

Deflection angle for a point mass M is

α̂ =
4GM

c2ξ
=

2RS

ξ

RS is the Schwarzschild radius.
(Einstein 1915)

This is twice the value one would get
in a classical, Newtonian calculation.

SDSS J1627-0053!
zs = 0.5, zl = 0.2, α = 2.8” (5 kpc)

HE 1104-1825!

zs = 2.3, zl = 1.7, α = 1.6” (14 kpc)

Mass deflects light from a point source

ᾱ

α

ξ

Point source:  
deflection angle

�̂ =
4GM

c2�
impact parameter

Deflection angle depends on  
integral over the  
projected mass distribution

(Einstein 1915)

SDSS J1627-0053!
zs = 0.5, zl = 0.2, α = 2.8” (5 kpc)

HE 1104-1825!

zs = 2.3, zl = 1.7, α = 1.6” (14 kpc)

Mass deflects light from a point source

ᾱ

α

ξ

Point source:  
deflection angle

�̂ =
4GM

c2�
impact parameter

Deflection angle depends on  
integral over the  
projected mass distribution

(Einstein 1915)

SDSS J1627-0053!
zs = 0.5, zl = 0.2, α = 2.8” (5 kpc)

HE 1104-1825!

zs = 2.3, zl = 1.7, α = 1.6” (14 kpc)

Mass deflects light from a point source

ᾱ

α

ξ

Point source:  
deflection angle

�̂ =
4GM

c2�
impact parameter

Deflection angle depends on  
integral over the  
projected mass distribution

(Einstein 1915)
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Basics of gravitational lensing Basic gravitational lensing effects

Deflection angle: general case

observer O

source S

∇⊥Φ

r

e

α̂

Deflection angle α̂ = r − e.

Derive from Fermat’s principle of least light travel time.

Perturbed Minkowski metric, weak-field (φ� c2)

ds2 =
(
1 + 2φ/c2

)
c2dt2 −

(
1− 2φ/c2

)
d`2

Light travels on geodesics, ds2 = 0
→ light travel time t is

t =
1

c

∫

path

(
1− 2φ/c2

)
d`
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Basics of gravitational lensing Basic gravitational lensing effects

Deflection angle: general case
Fermat’s principle: Minimize light travel time.
Analogous to refraction in medium with refractive index n > 1,

t =
1

c

∫

path

(
1− 2φ/c2

)
d` =

1

c

∫

path

n(x)d`

Minimize t to derive Snell’s law, sin θ1/ sin θ2 = n2/n1.

Assume t is stationary, δt = 0.
Integrate Euler-Lagrange equations along the light path to get

deflection angle α̂ = − 2

c2

∫ O

S

∇⊥φ d`
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Basics of gravitational lensing Basic gravitational lensing effects

Exercise: Derive the deflection angle for a point mass. I
Derive α̂ = 4GM/(c2ξ).

We can approximate the potential as

φ = −GM
R

= −c
2

2

RS

R
,

where G is Newton’s constant, M the mass of the object, R the distance, and
RS the Schwarzschild radius
The distance R can be written as

R2 = x2 + y2 + z2.

(Weak-field condition φ� c2 implies R� RS.)
(Here z is not redshift, but radial (comoving) distance.)

Martin Kilbinger (CEA) Weak lensing & Euclid 14 / 79



Basics of gravitational lensing Basic gravitational lensing effects

Exercise: Derive the deflection angle for a point mass. II

We use the so-called Born
approximation (from
quantum mechanic
scattering theory) to
integrate along the
unperturbed light ray,
which is a straight line
parallel to the z-axis with
a constant x2 + y2 = ξ2.

The impact parameter ξ is
the distance of the light
ray to the point mass.

deflected

ξ

observer

source

Born

z

y

x

light ray

point
mass
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Basics of gravitational lensing Basic gravitational lensing effects

Exercise: Derive the deflection angle for a point mass.
III

The deflection angle is then

α̂ = − 2

c2

∫ ∞

−∞
∇⊥φdz.

The perpendicular gradient of the potential is

∇⊥φ = −c
2RS

2

(
∂/∂x
∂/∂y

)(
x2 + y2 + z2

)−1/2

=
c2RS

2

1

(ξ2 + z2)
3/2

(
x
y

)
=
c2RS

2

ξ

(ξ2 + z2)3/2
ξ

ξ

The primitive for (ξ2 + z2)−3/2 is zξ−2(ξ2 + z2)−1/2. We get for the deflection
angle

α̂ = −RS

[
z

ξ(ξ2 + z2)1/2

]∞

−∞

ξ

ξ
= −RS

ξ

ξ

ξ
[1− (−1)] = −2RS

ξ

ξ

ξ
= −4GM

c2
ξ

ξ2
.
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Basics of gravitational lensing Basic gravitational lensing effects

Generalisation I: mass distribution I

Distribution of point
masses Mi(ξi, z): total
deflection angle is
linear vectorial sum
over individual
deflections.

Possible for weak fields
again, φ� c2, where
GR is linear.

point
masses

deflected

observer

source

Born

z

y

x

light ray~ξi ~ξi − ~ξ
~ξ
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Basics of gravitational lensing Basic gravitational lensing effects

Generalisation I: mass distribution II
Distribution of point masses Mi(ξi, z): total deflection angle is linear vectorial
sum over individual deflections

α̂(ξ) =
∑

i

δα̂(ξ − ξi) =
4G

c2

∑

i

δMi(ξi, zi)
ξ − ξi
|ξ − ξi|2

A small mass is related to a volume element via the density, δM = ρδV .
Perform transition to continuous density

∑

i

δMi →
∫

dM =

∫
ρ(x)d3x =

∫
d2ξ′

∫
dz′ ρ(ξ′, z′)

and introduction of the 2D

surface mass density Σ(ξ′) =

∫
dz′ ρ(ξ′, z′)

we get

α̂(ξ) =
4G

c2

∫
d2ξ′Σ(ξ′)

ξ − ξ′
|ξ − ξ′|2

Thin-lens approximation
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Basics of gravitational lensing Basic gravitational lensing effects

Generalisation I: mass distribution III
Gravitational lensing can probe complex mass profiles ρ, or (2D projected) Σ.

“Einstein cross”, zs = 1.7, zl = 0.04 WFI2033-4723, zs = 1.66, zl = 0.66

CLASS B1608+656, zs = 1.394, zl = 0.63. SDSS J2222+2745, zs = 2.82, zl = 0.49.
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Basics of gravitational lensing Basic gravitational lensing effects

Generalisation II: Extended source

Extended source: different light rays impact lens at different positions ξ, their
deflection angle α(ξ) will be different: differential deflection → distortion,
magnification of source image!
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Basics of gravitational lensing Basic gravitational lensing effects

Lens equation I

~ξ Ds

Dds

α̂

~η

θ

β
Dd

Observer

Lens plane

Source plane

α

~x

Intercept theorem:
η + x

Ds
=

ξ

Dd
.

Introducing angles

β ≈ η

Ds
; θ ≈ ξ

Dd
; α̂ =

x

Dds
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Basics of gravitational lensing Basic gravitational lensing effects

Lens equation II

we find

β +
Dds

Ds
α̂ = θ.

Finally, defining the rescaled deflection angle

α =
Dds

Ds
α̂

we get to

β = θ −α(θ).

This simple equation relating lens to source extend is called lens equation

This is a mapping from lens coordinates θ to source coordinates β. Why?
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Basics of gravitational lensing Convergence, shear, and ellipticity

Cosmic shear: continuous deflection along line of sight

scales

With the Born approximations, and
assumption that structures along line of sight
are un-correlated:

Deflection angle can be written as gradient of a
potential, called lensing potential ψ:

α(θ) = ∇ψ(θ)

ψ(θ) =
2

c2

∫ χ

0

dχ′
χ− χ′
χχ′

Φ(χ′θ, χ′).

for a source at comoving distance χ.

Note: Difference between Born and actual light
path up to few Mpc!
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Basics of gravitational lensing Convergence, shear, and ellipticity

Linearizing the lens equation

We talked about differential deflection before. To first order, this involves the
derivative of the deflection angle.

∂βi
∂θj
≡ Aij = δij − ∂jαi = δij − ∂i∂jψ.

Jacobi (symmetric) matrix

A =

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
.

• convergence κ: isotropic magnification

• shear γ: anisotropic stretching

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

κ

γ

source

image

Convergence and shear are second derivatives of the 2D lensing potential.
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Basics of gravitational lensing Convergence, shear, and ellipticity

Convergence and shear I
The effect of κ and γ follows from Liouville’s
theorem: Surface brightness is conserved (no
photon gets lost).

We see that shear transforms a circular image
into an elliptical one.

Define complex shear

γ = γ1 + iγ2 = |γ|e2iϕ;

The relation between convergence, shear, and
the axis ratio of elliptical isophotes is then

|γ| = |1− κ|1− b/a
1 + b/a

ϕ

x

y

a

b

.
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Basics of gravitational lensing Convergence, shear, and ellipticity

Convergence and shear II

Further consequence of lensing: magnification.
Liouville (surface brightness is conserved) + area changes (dβ2 6= dθ2 in
general) → flux changes.

magnification µ = detA−1 = [(1− κ)2 − γ2]−1.

Magnification important to account for by other cosmological probes:
Changes population of objects (selection effects), magnitude of standard
candles (SNe Ia), standard sirens (GWs), galaxy clustering amplitude.

Summary: Convergence and shear linearly encompass information about
projected mass distribution (lensing potential ψ). They quantify how lensed
images are magnified, enlarged, and stretched. These are the main observables
in (weak) lensing.

Martin Kilbinger (CEA) Weak lensing & Euclid 26 / 79



Basics of gravitational lensing Convergence, shear, and ellipticity

Convergence and cosmic density contrast

Back to the lensing potential

• Since κ = 1
2∆ψ:

κ(θ, χ) =
1

c2

∫ χ

0

dχ′
(χ− χ′)χ′

χ
∆θΦ(χ′θ, χ′)

• Terms ∆χ′χ′φ average out when integrating along line of sight, can be
added to yield 3D Laplacian (error O(φ) ∼ 10−5).

• Poisson equation

∆Φ =
3H2

0Ωm

2a
δ

(
δ =

ρ− ρ̄
ρ

)

→ κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .
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Basics of gravitational lensing Convergence, shear, and ellipticity

Convergence with source redshift distribution

So far, we looked at the convergence for one single source redshift (distance
χ). Now, we calculate κ for a realistic survey with a redshift distribution of
source galaxies. We integrate over the pdf p(χ)dχ = p(z)dz, to get

κ(θ) =

χlim∫

0

dχp(χ)κ(θ, χ) =

χlim∫

0

dχG(χ)χ δ (χθ, χ)

with lens efficiency

G(χ) =
3

2

(
H0

c

)2
Ωm

a(χ)

∫ χlim

χ

dχ′ p(χ′)
χ′ − χ
χ′

.

The convergence is a projection of the matter-density contrast, weighted by
the source galaxy distribution and angular distances.
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Basics of gravitational lensing Convergence, shear, and ellipticity

Parametrization of redshift distribution, e.g.

p(z) ∝
(
z

z0

)α
exp

[
−
(
z

z0

)β]

 0
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G
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) 
f K

(z
)

z

α = 2, β = 1.5, z0 = 1
(dashed line: all sources at redshift 1)

Max. lensing signal from halfway distance between us and lensing galaxies.
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Basics of gravitational lensing Convergence, shear, and ellipticity

More on the relation between κ and γ
Convergence and shear are second derivatives of lensing potential → they are
related.
One can derive κ from γ (except constant mass sheet κ0).
E.g. get projected mass reconstruction of clusters from ellipticity observations.

Projected mass and distortionCONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011

overdensity
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Basics of gravitational lensing Convergence, shear, and ellipticity

Basic equation of weak lensing

Weak lensing regime
κ� 1, |γ| � 1.
The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity and
the shear:

εobs ≈ εs + γ

Random intrinsic orientation of galaxies

〈εs〉 = 0 −→ 〈εobs〉 = γ

The observed ellipticity is an unbiased estimator of the shear. Very noisy
though! σε = 〈|εs|2〉1/2 ≈ 0.4� γ ∼ 0.03. Increase S/N and beat down noise
by averaging over large number of galaxies.

Question: Why is the equivalent estimation of the convergence and/or
magnification more difficult?
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Basics of gravitational lensing Convergence, shear, and ellipticity

Ellipticity and local shear

[from Y. Mellier]
Galaxy ellipticities are an estimator of the local shear.
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Basics of gravitational lensing Projected power spectrum

More on the relation between κ and γ
Convergence and shear are second derivatives of lensing potential → they are
related.
In particular, fluctuations (variance σ2) in κ and γ are the same!

Projected mass and distortionCONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011

θ
κ

κ γ

θ
γ
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Basics of gravitational lensing Projected power spectrum

The convergence power spectrum

• Variance of convergence 〈κ(ϑ+ θ)κ(ϑ)〉 = 〈κκ〉(θ) depends on variance of
the density contrast 〈δδ〉.

• In Fourier space:

〈
κ̂(`)κ̂∗(`′)

〉
= (2π)2δD(`− `′)Pκ(`)

〈
δ̂(k)δ̂∗(k′)

〉
= (2π)3δD(k − k′)Pδ(k)

• Limber’s equation

Pκ(`) =

∫
dχG2(χ)Pδ

(
k =

`

χ

)

using small-angle approximation, Pδ(k) ≈ Pδ(k⊥), contribution only from
Fourier modes ⊥ to line of sight. Also assumes that power spectrum
varies slowly.

• It turns out that Pκ = Pγ

So we use γ in observations, and κ in modelling.
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Basics of gravitational lensing Projected power spectrum

Dependence on cosmology

Day 1: Principles of weak lensing Projected power spectrum

Dependence on cosmology

P(`) =

Z
d�G2(�)P�

✓
k =

`

�

◆

G(�) =
3

2

✓
H0

c

◆2
⌦m

a(�)

Z �lim

�

d�0 p(�0)
�0 � �

�0

Martin Kilbinger (CEA) Weak Gravitational Lensing 39 / 130

initial conditions, 
growth of structure

geometryredshift distribution"
of source galaxies

matter density
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Basics of gravitational lensing Projected power spectrum

Lensing ‘tomography’ (2 1/2 D lensing)

• Bin galaxies in redshift.

• Lensing efficiency depends on bins:
measure z-depending expansion and
growth history.

• Necessary to measure dark energy,
modified gravity.

Pκ(`) =

χlim∫
0

dχG2(χ)Pδ

(
k =

`

χ

)
→

P ijκ (`) =

χlim∫
0

dχGi(χ)Gj(χ)Pδ

(
k =

`

χ

)

Gi(χ) =
3

2

(
H0

c

)2 Ωm

a(χ)

χlim∫
χ

dχ′ pi(χ′)
χ′ − χ
χ′ .

Question: Why does Pκ increase with z?
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Basics of gravitational lensing Projected power spectrum

Comparison to CMB angular power spectrum
Unlike CMB C`’s, features in matter power spectrum are washed out by
projection and non-linear evolution.

[Planck Consortium]
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Weak lensing measurement Galaxy shape measurement

The shape measurement challenge

• Cosmological shear γ � ε intrinsic ellipticity

• Galaxy images corrupted by PSF (point-spread function)

• Measured shapes are biased
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Weak lensing measurement Galaxy shape measurement

Measuring cosmic shear“shape measurement” 

•  Average Shear Distortion equivalent to difference in 
Ellipticity between Earth and Moon 

 

Typical shear of a few percent equivalent to difference in ellipticity between
Uranus and the Moon.
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Weak lensing measurement Galaxy shape measurement

The shape measurement challenge
How do we measure “ellipticity” for irregular, faint, noisy objects?

The DES Science Verification Weak Lensing Shear Catalogues 13

The files are quite large, so loading the whole file into memory is
not generally feasible, but it is also not necessary.

The postage stamps from the original single-epoch images
were sky-subtracted and then scaled to be on a common photomet-
ric system, which simplified the model fitting using these images.
We also stored the local affine approximation of the WCS function,
evaluated at the object centre, so that models could be made in sky
coordinates and constrained using the different image coordinates
for each postage stamp.

See Appendix A for details about how we build and store the
MEDS files.

5.1 Exposure Selection

We did not use all single-epoch images for measuring shapes. We
excluded a small fraction of the CCD images that had known prob-
lems in the original data or in some step of the data reduction and
processing. We created simple “blacklist” files, in which we stored
information for CCD images we wished to exclude, and that infor-
mation was incorporated into the MEDS files as a set of bitmask
flags. Postage stamps from blacklisted images were then easily ex-
cluded from the analysis when measuring shears. Here we list some
of the reasons that images were blacklisted.

Some of the astrometry solutions (cf. §2.3) provided a poor
map from CCD coordinates to sky coordinates. This happened pri-
marily near the edges of the SPT-E region where there are not
enough overlapping exposures to constrain the fit.

Some of the PSF solutions (cf. §4) provided a poor model of
the PSF across the CCD. In some cases there were too few stars
detected to constrain the model; occasionally there was some error
when running either the star finding code or PSFEX.

A small fraction of the SV images were contaminated by
bright scattered-light artefacts. Scattered-light artefacts fall into
two broad categories: internal reflections between the CCDs and
other elements of the optics, known as “ghosts”; and grazing in-
cidence reflections off of the walls and edges of the shutter and
filter changer mechanism. Ghosts primarily occur when a bright
star is within the field of view, while grazing incidence scatters oc-
cur predominantly for stars just outside the field-of-view. Using the
positions of bright stars from the Yale Bright Star Catalogue (Hof-
fleit & Jaschek 1991) and knowledge of the telescope optics, it is
possible to predict locations on the focal plane that will be most af-
fected by scattered light. We identified and removed a total of 862
CCD images (out of 135,481) from the single-exposure SV data set
in this manner. In April 2013, filter baffles were installed to block
some of this scattered light, and non-reflective paint was applied to
the filter changer and shutter in March 2014 (Flaugher et al. 2015).
These modifications have greatly reduced the occurrence of grazing
incidence reflections in subsequent DES seasons.

It is common for human-made objects to cross the large DE-
Cam field of view during an exposure. The brightest and most im-
pactful of these are low-flying airplanes (two Chilean flight paths
pass through the sky viewable by the Blanco telescope). Airplane
trails are both bright and broad, and cause significant issues in esti-
mating the sky background in CCDs that they cross. We identified
these airplane trails by eye and removed a total of 56 individual
CCD images due to airplane contamination (corresponding to 4 dis-
tinct exposures). This rate of airplane contamination is expected to
continue throughout the DES survey.

In addition to airplanes, earth-orbiting satellites are a common
occurrence in DES images. During the 90 second exposure time of
a DES survey image, a satellite in low-earth-orbit can traverse the

Figure 11. Example galaxy image demonstrating two masking strategies.
The top row shows the original postage stamps in the MEDS file. The
second row shows the result when only the SEXTRACTOR segmentation
map was used to mask neighbors. The third row shows the result when the
überseg algorithm was used to mask neighbors, as described in the text.

entire focal plane, while geosynchronous satellites travel approxi-
mately 1.25 CCD lengths. The impact of these satellite streaks is
significantly less than that of airplanes; however, because they only
occur in a single filter, they can introduce a strong bias in the colour
of objects that they cross. For SV, the “crazy colours” cut men-
tioned in §2.1 removes most of the contaminated objects. At the
end of Year 1, an automated tool was developed by DESDM for
detecting and masking satellite streaks using the Hough transform
(Hough 1959; Duda & Hart 1972). This should greatly reduce the
impact of satellite streaks in upcoming seasons of DES observing
and will be retroactively applied to reprocessing of earlier data.

5.2 Masks

The user can construct a “mask” for each postage stamp in the
MEDS files in a variety of ways. For this analysis, we used what
we call an “überseg” mask, constructed from the weight maps, seg-
mentation maps and locations of nearby objects.

To create the überseg mask, we started with the SEXTRACTOR

segmentation map from the coadd image, mapping it on to the cor-
responding pixels of the single-epoch images. We prefer this map to
the segmentation map derived for each single-epoch image because
the coadd image is less noisy, and thus has more object detections
and more information for determining the extent of each object.

We then set pixels in the weight map to zero if they were ei-
ther associated with other objects in the segmentation map or were
closer to any other object than to the object of interest. The result
was a superset of the information found in the weight maps and
segmentation maps alone, hence the name überseg.

An example set of images and überseg maps are shown in Fig-
ure 11. In tests on a simulation with realistically blended galaxies
(cf. §6.2), we found a large reduction in the shear biases when using
the überseg masking as compared to the ordinary SEXTRACTOR

segmentation maps. In particular, when using ordinary segmenta-
tion maps we found a significant bias of the galaxy shape in the
direction toward neighbors. With the überseg masking, such a bias
was undetectable.

MNRAS 000, 1–37 (2015)

[Y. Mellier/CFHT(?)] — (Jarvis et al. 2016)8 L. Miller et al.

fitted, allowing for astrometric offsets and camera distortion as de-
scribed in Sections 4& 6 below. Inevitably, some galaxies had sizes
too large to be fitted in this size of postage stamp; such galaxies
were excluded from the analysis.

In some cases, two or more neighbouring galaxies appeared
within the same postage stamp. The algorithm can only fit one
galaxy at a time, so the solution adopted was to first see whether
it was possible to mask out one galaxy (set its pixel values equal
to the background) without disturbing the isophotes of the galaxy
being fitted. To this end, a co-added image postage stamp was cre-
ated, averaging all the exposures available for that galaxy, shifted
so the relative positions agreed to the nearest pixel, which was
then smoothed by a gaussian of FWHM equal to that of the lo-
cal PSF. Isophotes were created for each smoothed galaxy: if a
separate galaxy or other object was identified with non-touching
isophotes, at a level of twice the smoothed pixel noise, that other
galaxy was masked out and the fitting would proceed. Such close
pairs of galaxies are thus included in the output catalogues from
CFHTLenS. We note, however, that low-level light leaking below
the two-sigma isophote could still contaminate the measurement,
and thus we expect the ellipticity measurements of galaxies in close
pairs, whose isophotes may be contaminated by their neighbour, to
be artificially correlated.

Within each postage stamp, it may be that some pixels should
be masked because of image defects. The THELI pipeline provided
images of pixel masks to be applied. If such masked pixels occurred
within the two-sigma isophote of a galaxy on one individual expo-
sure, that exposure was not used in the joint analysis. If such pixels
occurred outside the two-sigma isophote, the pixel values were set
equal to the background and that masked exposure was used in the
joint fitting.

Other galaxies may be sufficiently close that their smoothed
isophotes overlapped, and there may also be individual galaxies
with complex morphology, not well described by a simple bulge-
plus-disk model. These galaxies were identified using a deblend-
ing algorithm, testing for the presence of significant independent
maxima in the smoothed surface brightness distribution6. Any such
complex or blended galaxies that were found were excluded from
the analysis. A further criterion was imposed, that the intensity-
weighted centroid of a galaxy, measured from the pixels within the
smoothed 2σ isophote, should lie within 4 pixels of the nominal
target position: this criterion guarded against any blended galaxies
that had been identified as blends in the original input catalogue
but that had not been identified by the other tests described in this
section. Some examples of images of galaxies excluded by these
criteria are shown in Fig. 3, which shows examples of the stacked,
smoothed images used for testing for object complexity. Visual in-
spection indicated that the great majority of galaxies excluded in
this way had isophotes that overlapped with neighbouring galaxies.

The fraction of galaxies that were excluded in this way varied
somewhat between fields, as the criteria were affected by the size
of the PSF. Typically, 20% of galaxies were excluded. Although

6 The algorithm was similar to that of Beard et al. (1990). Maxima in the
smoothed surface brightness distribution associated with the target galaxy
were identified, and regions ‘grown’ around those maxima by successively
lowering a threshold isophote level from that maximum level. Pixels above
the threshold were either identified with the corresponding maximum of any
identified pixels that they touched, or otherwise were defined to be a new,
secondary, maximum. Regions with fewer than 8 pixels were amalgamated
into any touching neighbours. If multiple regions remained after this pro-
cess, within the limiting 2σ isophote, the galaxy was flagged as ‘complex’.

Figure 3. Examples of four galaxies excluded from measurement by the
criteria described in Section 3.7, in field W1m0m1. Each panel shows a
coadded image 48 pixels (approximately 9′′) square, centred on each target
galaxy, and the inverted grey scale is linear up to some maximum value
which varies between images.

this fraction seems high, such a loss of galaxy numbers does not
significantly degrade the signal-to-noise of the final cosmological
analysis, but it does help ensure that galaxies whose measurements
would be poor because of their size, or because they would be
poorly modelled, have been excluded. These exclusion criteria are
likely to introduce small-scale selection effects into the galaxy dis-
tribution (e.g. neighbouring galaxies would have been classed as
being blended with greater or lesser probability depending on how
they were aligned with respect to the PSF) and so lensing signals
on arcsec scales, ! 5′′, should be excluded from analyses of this
survey, even though nominal measurements are reported in the out-
put catalogues. We note that the exclusion of some fraction of close
pairs of galaxies may introduce a bias at a level of a few percent into
cosmological parameters (Hartlap et al. 2011): we do not currently
have any way to estimate the size of this bias in an actual survey
such as CFHTLenS, without a detailed model of the true distribu-
tion of galaxy pairs and of the effect of the measurement process
on those pairs.

4 OPTIMAL COMBINATION OF MULTIPLE IMAGES

The algorithm presented in Papers I & II, and also the simulations
of the GREAT08 (Bridle et al. 2010) and GREAT10 (Kitching et al.
2012) challenges, assume that each galaxy is measured on a single
image. However, actual galaxy surveys use combinations of multi-
ple exposures in the same waveband, or even across different filters.
The reasons for having multiple exposures in the same filter are: (i)
to increase the dynamic range of the observations; (ii) to prevent
an excessive build-up of cosmic ray artifacts on any one image;
(iii) to allow dithering of observations, filling in gaps where CCD
boundaries or CCD artifacts prevent useful data being obtained and
mitigating the effects of the finite pixel sampling. Thus any shear
measurement method should make optimal use of such multiple
images. In CFHTLenS typically seven dithered exposures were ob-
tained in each field (Section 2).

c⃝ 2011 RAS, MNRAS 000, 1–24

[CFHTLenS/KiDS image — CFHTlenS postage stamps]
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Weak lensing measurement Galaxy shape measurement

Shape measurement
Example: Model fitting

Forward model-fitting (example lensfit)

• Convolution of model with PSF instead of devonvolution of image
• Combine multiple exposures (in Bayesian way, multiply posterior

density), avoiding co-adding of (dithered) images
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Weak lensing measurement Galaxy shape measurement

Dithering

Left: Image of the MegaCam focal plane (CCD array). (4 new chips were
added recently.)

Middle: Co-add of two r-band exposures of CFHTLenS (without the 4 new
CCDs).

Right: Weight map.
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Weak lensing measurement Galaxy shape measurement

Shear measurement biases I
Origins

• Noise bias: In general, ellipticity is non-linear in pixel data
(e.g. normalization by flux). Pixel noise → biased estimators.

• Model bias: Assumption about galaxy light distribution is in general
wrong.

• Other: Imperfect PSF correction, detector effects (CTI — charge
transfer inefficiency), selection effects (probab. of detection/sucessful ε
measurement depends on ε and PSF)

Characterisation
Bias can be multiplicative (m) and additive (c):

γobsi = (1 +m)γtruei + c; i = 1, 2.

Biases m, c are typically complicated functions of galaxy properties (e.g. size,
magnitude, ellipticity), redshift, PSF, . . .. They can be scale-dependent.

Current methods: |m| = 1%− 10%, |c| = 10−3 − 10−2.

Blind simulation challenges have been run to quantify biases, getting ideas
from computer science community (e.g. http://great3challenge.info).
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Weak lensing measurement Galaxy shape measurement

Shear measurement biases II
Calibration

Using simulated or emulated data
(or self-calibration).

Functional dependence of m on
observables must not be too
complicated (e.g. not smooth,
many variables, large parameter
space), or else measurement is not
calibratable!

18 M. Jarvis, E. Sheldon, J. Zuntz, T. Kacprzak, S. Bridle, et al.

Figure 13. Shear bias for IM3SHAPE measurements on the GREAT-DES simulation: multiplicative bias (left) and PSF leakage (right), as functions of the
measured (S/N)w and Rgp/Rp. The fits, which are used to calibrate the shear estimates on the data, are smooth functions in both of these variables. Solid
lines show the fits vs (S/N)w at particular choices of Rgp/Rp.

function of pixel intensities affected by Gaussian noise, resulting in
noise bias in the estimated shear values. The IM3SHAPE algorithm,
being a maximum likelihood estimator, is known to suffer from this
effect.

In addition, we found a small selection bias, which is intro-
duced by using recommended IM3SHAPE flags (cf. §7.3.3) and the
selection based on galaxy size and S/N (cf. §9.1). We also expect
a small amount of model bias due to realistic galaxies not always
being well fit by our bulge-or-disc model. This model bias is ex-
pected to be small compared to the requirements (Kacprzak et al.
2014).

To account for all of these sources of error in our shape
measurements, we calculated bias corrections of the form shown
in equation 3.4. Specifically, we fit for m and ↵ as functions of
(S/N)w (defined in equation 7.3) and Rgp/Rp (the FWHM of the
PSF-convolved galaxy divided by the FWHM of the PSF) on sim-
ulated data from the GREAT-DES simulation (cf. §6.1). We ran
IM3SHAPE on the simulated data in the same way as we do on the
DES data, including the same choices of input parameters.

In principle, the two multiplicative terms, m1 and m2 should
be treated as independent biases. In practice, however, when av-
eraged over many galaxies we find virtually no difference be-
tween the two. As such, we correct both e1 and e2 by the average
m = (m1 + m2)/2.

We fit both m and ↵ as two-dimensional surfaces in the S/N
and size parameters. Due to the complicated structure of this sur-
face, we fit m with 15 terms of the form (S/N)�x

w (Rgp/Rp)�y ,
where x and y are various powers ranging from 1.5 to 4. To control
overfitting, we used a regularization term in the least-square fit and
optimized it such that the fitted surface has a reduced �2 = 1. A
similar procedure was applied to ↵, where we used 18 parameters
in the fit. In Figure 13 we show these fits as curves in (S/N)w in
bins of Rgp/Rp. However, the actual functions are smooth in both
parameters.

We checked if our calibration is robust to the details of this
model by (1) varying the number of terms in the basis expansion
and (2) splitting the training data into halves. For both tests the
changes in the mean multiplicative and additive corrections applied
to the SV data did not vary by more than 1%.

In §7.2, we mentioned that (S/N)w is a biased measure of

S/N with respect to shear, so if it is used to select a population of
galaxies, it will induce a selection bias on the mean shear. Rgp/Rp

similarly induces such a bias. Thus, when we bin the shears by
these quantities to construct the calibration functions, there is a se-
lection bias induced in every bin. The scale of selection bias reaches
m ' �0.05 for the most populous bins. This is not a problem for
the correction scheme so long as the overall selection is also made
using these same quantities. In that case, the shear calibration au-
tomatically accounts for the selection bias in addition to the noise
bias.

We tried using (S/N)r in the calibration model rather than
(S/N)w to help reduce the level of the selection bias in each bin,
but we found that it does not perform as well as using the standard
(S/N)w. Perhaps not surprisingly, the noise bias seems to be more
related to the S/N of the actual galaxy than it is to the counterfac-
tual round version of the galaxy used for (S/N)r . In future work, it
would be interesting to seek an effective shear calibration scheme
that disentangles noise and selection biases, but we have not found
one yet.

We used these fits to estimate the multiplicative and addi-
tive corrections to use for every galaxy in the IM3SHAPE cata-
logue. However, it should be stressed that this bias estimate is it-
self a noisy quantity, being based on noisy estimates of the size
and S/N . Therefore one should not directly apply the correction to
each galaxy individually. Rather, the mean shear of an ensemble of
galaxies should be corrected by the mean shear bias correction of
that same ensemble (cf. §9.2).

Note that a selection bias can appear whenever a subset of
galaxies is selected from a larger sample. In the cosmological anal-
ysis, we apply recommended IM3SHAPE flags, cut on Rgp/Rp and
(S/N)w, and then typically split the galaxies into redshift bins.
The redshift selection in particular is not used in the shear calibra-
tion process, so it is possible for there to be uncorrected selection
biases in the different redshift bins. In §8.5, we test that the shear
calibration nevertheless performs well in this scenario by applying
the same selection procedure to the GREAT-DES simulation. There
we demonstrate that all biases are removed to the required tolerance
level in all redshift bins.

MNRAS 000, 1–37 (2015)

(Jarvis et al. 2016) - image simulations
Requirements for surveys
Necessary knowledge of residual biases |∆m|, |∆c| (after calibration):
Current surveys 1%.
Future large missions (Euclid, LSST, . . .) 10−4 = 0.1%!
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Weak lensing measurement Galaxy shape measurement

Shear measurement biases III
Complex bias dependencies
Need to account for bias as function of more than one galaxy property.
E.g. size and SNR. Also need to know bulge and disc fraction of observed
population. DES Year 1 Results: Weak Lensing Shape Catalogues 19

Figure 13. Top: Multiplicative bias estimates for Y1 IM3SHAPE, using the HOOPOE image simulations for objects fitted using bulge profiles (right) and disc
profiles (left) . The colored circles represent the grid of directly evaluated m described in the text. The underlying colour map is generated using radial basis
functions to interpolate between nodes, and is for illustrative purposes only. Bottom: Bulge fraction as a function of galaxy signal-to-noise and size. The bulge
fraction is calculated on a 16 ⇥ 16 grid and interpolated to generate the smooth map shown. The circles represent the grid cell positions, and are drawn at a
size proportional to the total IM3SHAPE lensing weight of galaxies contained.
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Figure 14. Multiplicative bias for IM3SHAPE measured from the full Y1 simulations, as a function of galaxy signal-to-noise and size. The blue circles in both
panels are the measured biases prior to calibration. The other points, labelled grid, RBF and polynomial are the result of correction using the three methods
described in the text. The shaded band marks the ±1� Gaussian width of the recommended m prior for the Y1 IM3SHAPE catalogue.
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(Zuntz et al. 2018)
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Weak lensing measurement Galaxy shape measurement

Shear measurement biases IV
Local bias measurement

Introduction Multiplicative shear bias Baryonic feedback Mean redshift bias Results Conclusion

PARAMETERS - RSHEAR

10
[CFIS patch P3] (Ayçoberry et al. 2022) [M2 stage 2021.]
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Weak lensing measurement PSF correction

PSF correction
The DES Science Verification Weak Lensing Shear Catalogues 9

Figure 5. An example size-magnitude diagram for a single CCD image,
used to identify stars. The size T = 2�2 is based on the scale size of the
best-fitting elliptical Gaussian. The pink and green points are the objects
initially identified as stars. The green points are the ones that pass our se-
lection criteria outlined in §4.2, most notably the magnitude cut to avoid
objects contaminated by the brighter-fatter effect. These objects are then
used to constrain the PSF model. The blue circles show an an alternate
star classification, called the Modest Classification within DES, which was
found not to work as well for our specific purpose.

We found that, for some CCD images, the sets of objects iden-
tified as stars by the Modest Classification scheme10 included a
relatively high number of galaxies, and in other cases too few stars
were identified. The cause of these failures is dependent on many
factors, but may be partly related to the use of coadd data for the
classification. The coadd PSF can change abruptly at the locations
of chip edges in the original single-epoch images, which may have
affected the stellar classification near these discontinuities.

Ultimately, the problems with the modest classifier were com-
mon enough that we decided to develop a new algorithm tailored
specifically to the identification of a pure set of PSF stars. Our algo-
rithm works on each CCD image separately, using a size-magnitude
diagram of all the objects detected on the image. For the magni-
tude, we use the SEXTRACTOR measurement MAG_AUTO. For the
size, we use the scale size, �, of the best-fitting elliptical Gaus-
sian profile using an adaptive moments algorithm. We found that
these measures produce a flatter and tighter stellar locus than the
FLUX_RADIUS value output by SEXTRACTOR, and is thus better
suited for selection of stars. As a further improvement, we initialize
the algorithm with some stars identified by SEXTRACTOR to have
CLASS_STAR between 0.9 and 1.0. This was found to give a decent
estimate of the size of the PSF, providing a good starting guess for
the location of the stellar locus.

The stars are easily identified at bright magnitudes as a locus
of points with constant size nearly independent of magnitude. The
galaxies have a range of sizes, all larger than the PSF size. Thus,
the algorithm starts with a tight locus at small size for the stars
and a broad locus of larger sizes for the galaxies for objects in the
brightest 5 magnitudes (excluding saturated objects). Then the al-
gorithm proceeds to fainter magnitudes, building up both loci, until

10 Stars were identified as (bright_test OR locus_test) in terms
of the pseudo-code presented in §2.2

the stellar locus and the galaxy locus start to merge. The precise
magnitude at which this happens is a function of the seeing as well
as the density of stars and galaxies in the particular part of the sky
being observed. As such the faint-end magnitude of the resulting
stellar sample varies among the different exposures.

Figure 5 shows such a size-magnitude diagram for a repre-
sentative CCD image. The stellar locus is easily identified by eye,
and the stellar sample identified by our algorithm is marked in pink
and green. The pink points are stars that are removed by subse-
quent steps in the process outlined below, while the green points are
the stars that survive these cuts. The blue circles show the objects
identified as stars according to the Modest Classification, which in-
cludes more outliers and misses some of the objects clearly within
the stellar locus.

While the algorithm we currently use is found to work well
enough for the SV data, we plan to investigate whether the neural
net star-galaxy separator recently developed by Soumagnac et al.
(2015) is more robust or could let us include additional stars.

4.2 Selection of PSF Stars

Some of the stars in this sample are not appropriate to use for
PSF modeling, even ignoring the inevitable few galaxies that get
misidentified as stars. The CCDs on the Dark Energy Camera each
have six spots where 100 micron thick spacers were placed behind
the CCDs when they were glued to their carriers (cf. Flaugher et al.
2015), which affects the electric field lines near each 2mm ⇥ 2mm
spacer. These features, which we call tape bumps, distort the shapes
in those parts of the CCDs, so the stellar images there are not ac-
curate samples of the PSF. We exclude any star whose position is
within 2 PSF FWHM separation of the outline of a tape bump. The
tape bumps are relatively small, so this procedure excludes less than
0.1% of the total area of the CCD, but removes a noticeable bias in
the PSF model near the bumps.

Another problem we addressed with regards to star selection
is the so-called “brighter-fatter effect” (Antilogus et al. 2014; Guy-
onnet et al. 2015). As charge builds up in each pixel during the
exposure, the resulting lateral electric fields and increased lateral
diffusion push newly incoming charges slightly away from the ex-
isting charge. This makes bright objects appear a bit larger than
fainter objects. In addition, an asymmetry in the magnitude of the
effect between rows and columns can make bright stars more ellip-
tical. The galaxies we used for weak lensing are generally faint, so
the brightest stars do not accurately sample the PSF that we need to
measure. Furthermore, the brighter-fatter effect does not manifest
as a convolution of the signal, so the bright stars do not even pro-
vide an estimate of the correct PSF to be used for bright galaxies.

The appropriate solution is to move the shifted charge back to
where it would have fallen in the absence of this effect. This will be
implemented in future DES data releases (Gruen et al. 2015). For
the current round of catalogues, we instead partially avoided the
problem by removing the brightest stars from our sample. Specif-
ically, we removed all stars within 3 magnitudes of the saturation
limit for the exposure. That is, in our final selection of PSF stars
we required that the brightest pixel in the stellar image be less than
6% of the pixel full well. Since the brighter-fatter effect scales ap-
proximately linearly with flux, this reduces the magnitude of the
effect by a factor of 16. We were left with stars of lower S/N , so it
is not the ideal solution, but it is an acceptable interim measure (as
we demonstrate below) until the more sophisticated solution can be
implemented.

In Figure 6 we show the mean difference between the mea-
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is the so-called “brighter-fatter effect” (Antilogus et al. 2014; Guy-
onnet et al. 2015). As charge builds up in each pixel during the
exposure, the resulting lateral electric fields and increased lateral
diffusion push newly incoming charges slightly away from the ex-
isting charge. This makes bright objects appear a bit larger than
fainter objects. In addition, an asymmetry in the magnitude of the
effect between rows and columns can make bright stars more ellip-
tical. The galaxies we used for weak lensing are generally faint, so
the brightest stars do not accurately sample the PSF that we need to
measure. Furthermore, the brighter-fatter effect does not manifest
as a convolution of the signal, so the bright stars do not even pro-
vide an estimate of the correct PSF to be used for bright galaxies.

The appropriate solution is to move the shifted charge back to
where it would have fallen in the absence of this effect. This will be
implemented in future DES data releases (Gruen et al. 2015). For
the current round of catalogues, we instead partially avoided the
problem by removing the brightest stars from our sample. Specif-
ically, we removed all stars within 3 magnitudes of the saturation
limit for the exposure. That is, in our final selection of PSF stars
we required that the brightest pixel in the stellar image be less than
6% of the pixel full well. Since the brighter-fatter effect scales ap-
proximately linearly with flux, this reduces the magnitude of the
effect by a factor of 16. We were left with stars of lower S/N , so it
is not the ideal solution, but it is an acceptable interim measure (as
we demonstrate below) until the more sophisticated solution can be
implemented.

In Figure 6 we show the mean difference between the mea-
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Figure 9. Whisker plots of the mean PSF pattern (left) and of the mean residual after subtracting off the model PSF (right) as a function of position in the
focal plane. The length of each whisker is proportional to the measured ellipticity, and the orientation is aligned with the direction of the ellipticity. There is
still some apparent structure in the plot of the residuals, but the level is below the requirements for SV science. Reference whiskers of 1% and 3% are shown
at the bottom of each plot, and we have exaggerated the scale on the right plot by a factor of 10 to make the residual structure more apparent.

Figure 10. The ⇢ statistics for the PSF shape residuals. Negative values are shown in absolute value as dotted lines. The shaded regions are the requirements
for SV data.
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A&A 549, A1 (2013)

True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 8.26 ⇥ 10�4 3.60 ⇥ 10�5 4.59 ⇥ 10�3 1.45 ⇥ 10�4

IDW 1.28 ⇥ 10�3 5.67 ⇥ 10�5 9.37 ⇥ 10�3 2.95 ⇥ 10�4

Kriging 7.06 ⇥ 10�4 3.16 ⇥ 10�5 3.57 ⇥ 10�3 1.13 ⇥ 10�4

Polyfit 8.37 ⇥ 10�4 3.73 ⇥ 10�5 5.23 ⇥ 10�3 1.64 ⇥ 10�4

B-splines 6.28 ⇥ 10�4 2.80 ⇥ 10�5 6.53 ⇥ 10�3 2.06 ⇥ 10�4

of FWHM, masking and telescope e↵ects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more e↵ec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 4.36 ⇥ 10�2 1.81 ⇥ 10�3 4.57 ⇥ 10�3 1.44 ⇥ 10�4

IDW 4.42 ⇥ 10�2 1.79 ⇥ 10�3 9.05 ⇥ 10�3 2.85 ⇥ 10�4

Kriging 4.61 ⇥ 10�2 1.79 ⇥ 10�3 1.11 ⇥ 10�2 3.49 ⇥ 10�4

Polyfit 5.82 ⇥ 10�2 1.89 ⇥ 10�3 5.04 ⇥ 10�3 1.58 ⇥ 10�4

B-splines 5.97 ⇥ 10�2 1.88 ⇥ 10�3 6.31 ⇥ 10�3 1.99 ⇥ 10�4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods
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overall winner of our evaluation. According to our bench-
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scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
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show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.
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methods (see Sect. 3.4) obtains the second best average E(e)
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Figure 8. The mean PSF ellipticity (left) and mean residual after subtracting the PSFEX model ellipticity (right), binned by position in the focal plane. The
residual is multiplied by a factor of 10 to be visible in the same colour scale.

When the modelling errors are uncorrelated between exposures for
a given star or galaxy target, the survey-averaged statistics scale as
⇢ / 1/Nexposures. As such, the amplitude of the ⇢1 statistic is sig-
nificantly larger for Y1 than reported for SV in J16. In addition,
the fact that we are using reserved stars this time also increased
the measured correlations somewhat compared to SV, especially at
large scales. In the SV statistics the mean residual was close to zero
by construction, so the statistics were probably spuriously low. The
mean residual of the reserved stars is expected to be a better esti-
mate of the actual error in the fitted PSF models.

The PSF modelling residuals constitute the largest known ad-
ditive systematic error on the estimated shear values. For two-point
shear statistics such as ⇠+, we expect the additive error due to these
statistics to be (J16, eqn. 3.17):

�⇠+(✓) =

⌧
TPSF

Tgal

�2

(⇢1(✓) + ⇢3(✓) + ⇢4(✓))

� ↵

⌧
TPSF

Tgal

�
(⇢2(✓) + ⇢5(✓)) (3.9)

where ↵ is the amount of “leakage” of the PSF shape into the
galaxy shape (see §6.2.2). We discuss the impact of this contribu-
tion to ⇠+ further in Troxel et al. (2017). For other analyses of these
data that are sensitive to additive errors, we also recommend explic-
itly accounting for the potential impact of additive systematics due
to the PSF model residual.

4 THE METACALIBRATION CATALOGUE

4.1 METACALIBRATION Overview

Our primary catalogue uses metacalibration, a new method for
shear measurement that derives shear calibrations directly from
the available imaging data. Metacalibration is decribed in detail in
Huff & Mandelbaum (2017) and Sheldon & Huff (2017), hereafter
SH17.

The principle behind METACALIBRATION is to measure the
response of a shear estimator e to shear. Unlike in most methods
this response is not estimated from a suite of simulated images,
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Figure 5: The color scale shows the PSF model radial ellipticity residual (�e+) averaged

over many HSC survey exposures. Here ‘radial’ refers to the ellipticity component defined

with respect to the focal plane center. The rings of nonzero values indicate a coherent

misestimation of the radial ellipticity of the PSF near the focal plane edge edge. Figure

provided by Bob Armstrong, based on figures and data from Bosch et al. 2017.

and interpolation di↵er for ground- and space-based imaging. The optical PSF can be

thought of as varying slowly over the field-of-view and exhibiting a limited set of predictable

patterns, which is one of the appeals of space-based weak lensing measurements. In contrast,

the atmospheric PSF exhibits stochastic behavior (for which the power spectrum can be

measured, and each exposure is a di↵erent realization of that power spectrum).

Some PSF modeling and interpolation methods are purely empirical. These involve

choosing a set of basis functions to describe the bright star images, and some functions

for interpolating between those images within a single CCD chip (e.g., regular or Cheby-

shev polynomials, though more sophisticated options exist). The PSF tends to exhibit

discontinuities at chip boundaries due to slight inconsistencies in chip heights, which makes

modeling purely within chips a common process. An example of an empirical PSF modeling

algorithm is PSFEx (Bertin 2011), which was used for both DES and HSC. Figure 5 shows

a typical failure mode for empirical approaches: failure to properly describe PSF variations

in parts of the focal plane with the adopted interpolation functions.

One method that has the potential to address both the PSF modeling and interpolation

problems is Principal Component Analysis, or PCA (Jee et al. 2007; Schrabback et al.

2010). The PCA method considers all of the survey data, and identifies the most important

patterns in PSF model variation across that data. PCA analysis can be done at the level of

PSF images or any compact representation of the PSF, such as its second moments. Due

to its use of all survey data, with stars in di↵erent exposures sampling di↵erent locations

in the focal plane, the method can determine PSF model variation as a function of focal

plane position at higher spatial frequency than is possible using only the stars observed on

8 Mandelbaum

HSC, (Mandelbaum 2018)
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Weak lensing measurement PSF correction

PSF model residuals, more examplesAxel Guinot et al.: ShapePipe: a new shape measurement pipeline and weak-lensing application to UNIONS/CFIS data

Fig. 5. PSF ellipticity (upper panels), ePSF, and PSF ellipticity residuals (lower panels), �ePSF, maps of the 40 CCDs of the MegaCAM focal plane.

Fig. 6. PSF size (left panel), TPSF, and PSF size residuals (in pixels2) (right panel), �TPSF/Tstar, maps of the 40 CCDs of the MegaCAM focal plane.

this assumption, we measure c1 = (�4.95 ± 0.58) ⇥ 10�4, and
c2 = (4.66 ± 0.59) ⇥ 10�4 for the two ellipticity components.
These numbers are of the same order of magnitude compared
to previous measurements for this shape measurement method
(Sheldon & Hu↵ 2017). It is important to note that a small addi-
tive bias does not imply zero PSF leakage, as we have observed.

6.3.2. Global PSF leakage

In the first test, for which the results are shown in Fig. 8, we esti-
mate the global PSF leakage by measuring the galaxy ellipticies
in bins of PSF ellipticity. For this test we use the PSF elliptic-
ity measured at the position of galaxies averaged over the con-
tributing single exposures. For each of the equi-populated bins
we estimate the weighted average via a jackknife, where the er-
ror bars represent the standard deviation. The weights are de-

fined in Eq. ((12)). We find correlations between egal
i and ePSF

i of
less than 2% for both components i = 1, 2. The cross-correlation
between di↵erent components is close to 0. No correlations are
observed with the PSF size as presented in Fig. 9. To compute
the correlations we fit a linear model on the unbinned data.

6.3.3. Scale-dependent PSF leakage

Another test we perform to estimate the leakage was presented
in Jarvis et al. (2016). The leakage ↵ can be written as the ratio
between the star-galaxy cross-correlation, ⇠gp

+ , and the star-star
auto-correlation, ⇠pp

+ . For this test, we use the ellipticity of the
PSF model at the position of the stars (test sample only). It is
defined as follows:

↵(✓) =
⇠

gp
+ (✓) � hegali⇤hePSFi
⇠

pp
+ (✓) � |hePSFi|2

. (24)

Article number, page 9 of 21

CFIS, (Guinot et al. 2022)
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The Euclid survey
Observe billions of galaxies as statistical “trackers” 
permitting to understand the universe large structures 
formation

The Euclid survey is of 15 000 deg² constituted from :
30 000 observation fields of 0,5 deg² each on the sky

10 000 calibration fields
Choice of the better areas of the sky (minimization of zodiacal light

and stars contamination)
Complex constraints on the satellite to minimize thermal perturbations

10 billions of galaxies observed 
in visible and infra red photometry

Imagerie
Visible

R+i+z

Photométrie
Infra Rouge (1.0 µm)

Y

Photométrie
Infra Rouge (1.2 µm)

J

Photométrie
Infra Rouge (1.7 µm)

H

Spectroscopie
Infra Rouge (1-2 µm)

50 millions 
of infra red spectra

Survey of 15000 deg²
Visible & infra red

Telescope diameter 1.2 m
Field of view 0.5 deg²

Euclid area = 15, 000 deg2 (extra-galaxtic and
-ecliptic sky). Ground-based observations for

photometric redshifts.
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The Euclid survey

Observe billions of galaxies as statistical “trackers” 
permitting to understand the universe large structures 
formation

The Euclid survey is of 15 000 deg² constituted from :

30 000 observation fields of 0,5 deg² each on the sky
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Choice of the better areas of the sky (minimization of zodiacal light
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Euclid imaging and spectroscopy.



Euclid

Euclid

Two instruments:

• Visible imager, WL, 1.5× 109 galaxies

• Near-IR imager + spectrograph, 3× 107 galaxy spectra

Cosmology

• Dark-energy equation of state w to 2% (currently ∼ 20%)

• Constrain models of modified gravity

• Neutrino masses to 0.02 eV (currently ∼ 0.3 eV)

• Map dark matter distribution

• Early-universe conditions, inflation: limit non-Gaussianity fNL to ±2
(currently ∼ ±6)

“Legacy”

• High-redshift galaxies, AGN & clusters @ z > 1, QSO @ z > 8, strong
lensing galaxy candidates: Increase of numbers by several orders of
magnitude
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Euclid imaging
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Euclid

Euclid WL challenge: PSF

PSF is complex, diffraction-limited.

PSF is undersampled.

Martin Kilbinger, SAp/LCSEuclid: Univers sombre et distortions cosmiques 16

Euclid: new challenges
under-sampled PSF

CTI 
(charge transfer inefficiency)

color gradients

unresolved binary stars
PSF varies with wavelength over broad VIS band.

Rethinking data-driven PSF modeling with a di↵erentiable optical model 7

(a) (b) (c) (d)

(e)

Figure 1: Di↵erent representations of a space-like PSF at a single position in the field-of-

view. The SED used corresponds to one of the templates from the numerical experiments

described in subsection 5.2. (a) Noisy polychromatic PSF at observation resolution, (b)

Noiseless polychromatic observation at observation resolution, (c) High-resolution noiseless

polychromatic observation, (d) Wavefront error map representing the aberrations in the optical

system. Units are in µm, (e) High-resolution chromatic variations of the PSF at equally spaced

wavelengths in the passband [550, 900]nm.

To do so, we have as input a set of noisy degraded polychromatic observations

{Ī(xi, yi)}i=1,...,nobs
. The way we constrain our model with the observations is to

minimize some type of reconstruction error between our model and the observations,

for example,
Pnobs

i=1 kĪ(xi, yi)� H̄(xi, yi)k2F , where k.kF denotes the Frobenius norm of a

matrix. We need to consider the same degradations applied to I(xi, yi;�) in Equation 1

to the model H in order to match the observation. This inverse problem is ill-posed

due to the degradations in Fd, the broad passband integration, and the noise. As a

consequence, many PSF models can reproduce the observations.

To regularize the inverse problem, we can inject some type of prior knowledge we

have about the PSF field. For example:

• PSF field regularity : The most used regularization is to exploit the regularity of

the PSF field in the FOV. This regularization imposes that two close-by positions

in the FOV should have a close PSF representation. The regularity translates as a

correlation in space (and time) of the PSFs. Most current PSF models rely on this

fact to build a PSF model that can obtain a good generalization to target positions.

Each PSF model imposes the regularity di↵erently, e.g. [8, 11, 15, 30].

• Positivity : Given the way the PSF physically forms it should not contain negative

values. The presence of negative values in the observations is due to the noise.

Therefore, one can then consider the positivity of the PSF to regularize the problem.

• Smoothness of the PSF : One can consider that the PSFs are structured, and

(Liaudat et al. 2022)

Martin Kilbinger (CEA) Weak lensing & Euclid 56 / 79



Euclid

Euclid WL challenge: PSF
Modelling PSF in wavefront instead of pixel space.Rethinking data-driven PSF modeling with a di↵erentiable optical model 12

(a)

Incoming plane
wavefront Focal plane

Ideal wavefront 
(reference sphere)

Aberrated
wavefront

Aberrated optical
system

Wavefront Error

Pixel PSF

Pupil plane

(b)

Figure 2: The figure in the left hand-side, (a), shows a schematic functional view of the

Euclid ’s payload module taken from [50]. The figure in the right-hand side, (b), shows

a one-dimensional illustration of the single-lens equivalent system were the wavefront

error is visible.

high accuracy and complexity using powerful commercial optic simulators. They depend

on ray-tracing techniques to account for each optical surface. Although very accurate,

these simulators are not practical for our problem due to their high complexity and

are not suited for massive PSF computations as are required in survey-type missions.

Nevertheless, we can consider a simpler optical system that is a good approximation of

the actual system. It should be able to reproduce some e↵ects of the real system while

being more accessible to model. We use some ideas from parametric models [26], and

adopt a single converging lens system. Stars are well approximated by point sources

at infinity and will be considered as plane waves when entering the system. An ideal

optical system turns the plane waves into spherical waves, and the rays converge in a

single point at the focal plane of the instrument. The exact point at which the rays

converge depends on the angle of incidence of the incoming rays with respect to the

optical axis.

Due to imperfections and aberrations of the optical system, the outgoing wavefront

is not exactly spherical, and the rays do not converge in a single point. The di↵erence

between the real aberrated wavefront and the ideal spherical wavefront is called the

wavefront error (WFE). Figure 2b presents a simplified sketch of the WFE. The

advantage of this simpler optical system is that we can take advantage of Fraunhofer’s

approximation of di↵raction [51, Chapter 4.3] and its e↵ect on the wavefront [51,

Chapter 5.2]. These approximations allow us to relate the electric field’s propagation

(Liaudat et al. 2022)
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Euclid WL challenge: PSF

Differentiable forward-model.
Rethinking data-driven PSF modeling with a di↵erentiable optical model 14

 

Wavefront
space

Optical system 

High resolution
pixel space

Degradations 

Low resolution
pixel space

Differentiable forward model

?

?

?
 

Field of view

 

Reconstruction

Observations

Targets

 

 

  PSF model

Figure 3: A schematic of the proposed framework for data-driven wavefront PSF

modeling.

following equation of the electric field at the pupil plane

Up(xi, yi;�) = P � exp


2⇡i

�
�✓(xi, yi)

�
, (7)

where � is the Hadamard or element-wise product, Up(xi, yi;�) 2 CK⇥K , and

P,�✓(xi, yi) 2 RK⇥K . For the sake of simplicity, we use a fixed obscuration P that

does not depend on the FOV position and wavelength. The WFE PSF model depends

on some parameters, represented with ✓, and its goal is to compute a WFE map at any

position in the FOV. To conduct this task, we have to estimate, or learn, the parameters

✓ of our model from the observed images using the full di↵erentiable forward model that

includes the degradations from the observational model in Equation 1. A schematic of

the proposed framework is presented in Figure 3. We provide more detail of the forward

model in subsection 4.3.

Our framework shifts a large part of the complexity from the PSF model into the

forward model, which encodes all the di↵raction phenomena and degradations. This

change allows us to simplify the construction of the WFE PSF model block seen in

Figure 3. This framework adds a physical meaning to the model as the WFE can be

interpreted from a physical perspective. The WFE could even be measured directly on

the telescope.

We next focus on a reliable generalization capability of the PSF to target positions,

and the model’s adaptation to observed data. For this reason we propose to use a

weighted sum of wavefront features (or eigenWFE if we draw a parallel with the notion

of eigenPSF [15, 16, 30]). A wavefront feature is distributed across the FOV and,

therefore, shared by all the PSFs at any FOV position. Then, the weight that goes

with that wavefront feature will change depending on the FOV position. To facilitate

the optimization of the model we consider two classes of wavefront features: fixed

(Liaudat et al. 2022)
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Further PSF modelling: JWST
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Euclid

Euclid WL challenges
Color gradientsHow	do	colour	gradients	impact	the	Euclid	shear	measurement?

• Could	poten@ally	affect	cosmological	parameters	e.g.	w	at	~1%	level	

• Requirements	on	mul@plica@ve	bias	m	from	colour	gradient	~	5	x	10-4	(Cropper+2012)

Euclid observes without optical filter (equiv. R+ I + z). Calibrate color effects
using HST multi-band observations.
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Euclid WL challenges

Intrinsic alignment of galaxies

Galaxy Alignments: An Overview 9

Fig. 3 Sketch of the gravitational lensing signal and its intrinsic alignment contamination. Light travels
from the top of the sketch downwards, from the source plane via the lens plane to the plane at the bottom
containing the images as seen by an observer. The matter structure (green ellipsoid) deflects the light from
the background source galaxies (blue discs) and distorts their images tangentially with respect to the apparent
centre of the lens (as seen in the bottom plane). As a consequence, the galaxy images become aligned (GG
signal). Galaxies which are physically close to the lens structure (red ellipsoids) may be subjected to forces
that cause them to point towards the structure, which results in the alignment of their images (II signal).
Images of galaxies close to the lens are then preferentially anti-aligned with the gravitationally sheared images
of background galaxies (GI signal)

They come in principle with their own intrinsic correlations of galaxy observables, which
we will not discuss further here.

Galaxies as light sources are intrinsically non-circular in general, and the deviation from
a circular image can to first order be described by an intrinsic ellipticity ϵs. This ellipticity
is intrinsic in the sense that it is a property of the galaxy itself rather than induced by gravi-
tational deflection as the light travels to the observer, after leaving the galaxy. The observed
ellipticity under the gravitational lens mapping is then given by (Seitz and Schneider 1997)

ϵ = ϵs + g

1 + ϵsg∗ ≈ ϵs + γ with g ≡ γ

1 − κ
, (2)

where g is called the reduced shear. Both ellipticities and shear are understood as complex
numbers in this equation (with the complex conjugate denoted by a star), encoding the shape
in the absolute value and the orientation with respect to some reference axis in the phase,
e.g. ϵ = |ϵ| e2iϕ . The simple summation of shear and ellipticity in the second equality of
Eq. (2) only holds in the limit of very weak lensing effects,2 i.e. |γ |,κ ≪ 1. It is important
to note that the term ‘ellipticity’ is not uniquely defined in general and, even if galaxy images
were simple solid ellipses with semi-minor to semi-major axis ratio b/a, could correspond

2There is a subtlety involved in this approximation: for an individual galaxy, as Eq. (2) has been written, the
expansion produces another term that is first order in the shear and proportional to g∗(ϵs)2. However, since
the relation is only considered in practice when averaging over large numbers of galaxies, this term (as well
as all higher-order terms) becomes negligible if the intrinsic galaxy shapes are uncorrelated, or only weakly
correlated, with the shear acting on them.

(Joachimi et al. 2015)

Galaxy shapes are correlated to
surrounding tidal density field.
Shape of galaxies is sum of shear (G)
and intrinsic (I) shape (remember
ε ≈ εs + γ).
The total correlation of galaxy shapes
is not only shear-shear (GG), but also
intrinsic-intrinsic (II) and
shear-intrinsic (GI; (Hirata &
Seljak 2004)).

Contamination to cosmic shear at ∼ 1 - 10%.
Need to model galaxy formation.
Not well known, in particular at high z and low halo masses.
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Intrinsic alignment measurements

Measurement of galaxy-galaxy lensing
(bg - fg galaxy pairs) and intrinsic
alignments (fg - fg galaxy pairs) in
CFIS survey.

Learn about:

• IA as function of galaxy type,
redshift, environment.

• Galaxy formation and evolution in
dark-matter halos.

• Bias and mitigation strategies for
Euclid cosmology.

[Elisa Russier, M2 stage 2022.]
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Shear calibration from deep learning I

Train neural network to learn (via linear
regression) shear bias as function of observed
galaxy (and PSF) properties.
NN automatically finds most relevant input
quantities to predict shear bias.
Using trained network (model), use real data
as input to estimate shear bias.

A&A 643, A158 (2020)

Fig. 2. Visual schema of the ML approach of the method. A set of
measured image properties is used as input features for the neural net-
work. The system is then trained to produce the shear bias parameters as
output.

precisely, a multi-layer feed-forward neural network, is particu-
larly well adapted to solve the underlying regression problem.

More precisely, a feed-forward neural network is composed
of L layers, taking measured image properties as inputs and pro-
viding the shear bias as output. The resulting network aims at
mapping the relationship between the measured properties of the
galaxy images and the shear bias. The parameters of the network
are then learnt in a supervised manner by minimising the resid-
ual between the true and the estimated shear bias. The shear bias
is estimated individually for each galaxy given their measured
properties.

If xi denotes a vector containing m measured properties xi[ j]
for j = 1, . . . ,m for a single galaxy i, then the output of the first
layer ` = 1 of the neural network is defined by some vector h(1)

j
of size m1,

h(1)
i = A

⇣
W(1)xi + b(1)

⌘
, (5)

where W(1) (b(1)) stands for the weight matrix (the bias vector)
at layer ` = 1, xi is the vector of the galaxy with index i, and
j is the index referring to a measured property. The term A is
the so-called activation function, which applies entry-wise on
its argument. For a layer ` = n, the output vector of size mn
is defined as

h(n)
i = A

⇣
W(n)h(n�1)

i + b(n)
⌘
. (6)

For ` = 5, the output vector h(L)
j stands for the estimated shear

bias components. Only in this last layer is the activation function
not used, so that we gain a linear function to obtain the shear bias
components. A visual schema of the method is shown in Fig. 2.

3.2.2. Learning

The learning stage amounts to estimating the parametersn
W(`), b(`)

o
`=1,...,L

by minimising the following cost function

defined as some distance (the �2) between the shear bias
components and their estimates:

C =
1
bs

bsX

i=0

2X

↵=1

(mt
i,↵ � me

i,↵)
2 + (ct

i,↵ � ce
i,↵)

2, (7)

where mt
↵, ct

↵ and me
↵, ce

↵ are the true and estimated ↵th compo-
nent of the shear multiplicative and additive bias, respectively,
and bs is the number of objects used in each training step (also
referred to as the batch size). We use as true shear bias the values
from Eqs. (2) and (4) obtained as described in Sect. 2 and pre-
sented in Pujol et al. (2019). The NNSC learns to estimate these
shear biases.

We used m = 27 measured properties used as input for the
model as described in Sect. 4.2, and details of the network archi-
tecture and the implementation of the learning stage are given in
Appendix A.

3.2.3. Calibration

The NNSC method estimates the shear responses and biases
of individual galaxies from the measurements of 27 properties
applied to the images. The shear bias and the corresponding cal-
ibration were made for a previously chosen shape measurement.
Any shape measurement algorithm can be chosen for this pur-
pose. We used the estimation from the ksb method using the
software shapelens. When these estimations were completed,
we applied the shear calibration over the statistics of interest,
in our case, the estimated shear from Eq. (1). The bias calibra-
tion was applied as hRi�1heobs � hcii, where R and c are the
estimated average shear response and additive bias, respectively
(see Sheldon & Hu↵ 2017). This calibration is similar to other
common approaches, and we expect similar behaviours for the
post-calibration bias as discussed in Gillis & Taylor (2019).

Our method gives estimates for the individual shear bias of
objects, in common with the new method MetaCalibration.
However, the two methods are very di↵erent. While NNSC
relies on image simulations for a supervised ML approach,
MetaCalibration uses the data images themselves to obtain
the individual shear responses. To do this, the original data
images are deconvolved with an estimated PSF, and after some
shear is applied, they are re-convolved with a slightly higher
PSF. Because this method is very complementary with respect
to NNSC and has recently been used in surveys such as the
Dark Energy Survey (DES; Zuntz et al. 2018), we used it in
this study for a calibration comparison of both models. For more
details of MetaCalibration, we refer to a description of the
implementation in Appendix B and the original papers (Hu↵ &
Mandelbaum 2017; Sheldon & Hu↵ 2017).

4. Data

4.1. Image simulations

We considered two sets of Galsim simulations (Rowe et al.
2015). They correspond essentially to the control-space-constant
(CSC) and real-space-constant (RSC) branch simulated in
GREAT3 (Mandelbaum et al. 2014), with some modifications to
ensure precise measurement of the shear response as prescribed
in PKSB19.

The CSC branch contains galaxies with parametric profiles
(either a single Sérsic or a de Vaucouleurs bulge profile to which
an exponential disc was added) obtained from fits to Hubble
Space Telescope (HST) data from the COSMOS survey with
realistic selection criteria (Mandelbaum et al. 2014). This data
set is intended to provide a realistic distribution of galaxy prop-
erties (in particular in terms of morphology, size, and S/N),
which we therefore used for training and testing our calibration
network.
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Table 1. Measured properties for the training process of NNSC.

gFIT SExtractor ksb

Galaxy ellipticity e1,gFIT, e2,gFIT Galaxy flux Fout Ellipticity e1,ksb, e2,ksb
Axis ratio Galaxy size Ellipticity with respect to the PSF e+,ksb, e⇥,ksb
Orientation angle S/Nobs Axis ratio qksb
Galaxy flux Galaxy magnitude Orientation angle �ksb
Disc radius PSF flux Window function size
Bulge radius PSF size S/N
Disc fraction PSF S/N
Number of �2 evaluations PSF magnitude
Noise level PSF FWHM

As for GREAT3, the two million galaxy images were divided
into 200 images of 10 000 galaxies, to each of which a di↵erent
pre-defined shear and PSF was applied. Each galaxy was ran-
domly oriented, and its orthogonal version was also included in
the data set to allow for nulling the average intrinsic ellipticity.
Out of these 200 images, we selected a first set for training and a
second set for testing and comparing calibration approaches. For
the training set, we followed the approach of PKSB19 described
above to obtain an estimate of the true shear response that
needed to be learnt. For each galaxy in the training set, five
sheared versions were simulated keeping PSF and noise reali-
sations the same. The shear g for each galaxy was chosen as
gi = {(g1, g2)i} = {(0, 0), (±0.02, 0), (0,±0.02)}.

To further investigate the e↵ect of model bias on our pro-
cedure, the network predictions were also tested for more real-
istic galaxies simulated as in the RSC branch of GREAT3.
These galaxies are based on actual observations from the HST
COSMOS survey, fully deconvolved with the HST PSF (see the
procedure in Mandelbaum et al. 2013), before we applied ran-
dom rotation, translation, and the prescribed shear followed by
convolution with the target PSF and resampling in the target grid.
In this scenario, the same procedure as for CSC was followed to
obtain estimates of the shear response for these realistic galax-
ies, which were then compared to the network predictions based
on the CSC training set.

4.2. Learning input data

The image properties that are used to estimate the shear bias can
be chosen depending on the interest. The NNSC learns to esti-
mate shear bias as a function of these properties, which means
that the more properties we use, the more capable the NNSC
is to learn complex dependences (if we use the appropriate
training).

We used 27 measured properties as input for the NNSC.
These properties correspond to the output from the gFIT
(Gentile et al. 2012; Mandelbaum et al. 2015) software (prop-
erties such as ellipticities, fluxes, sizes, fitted disc fraction, and
other fitting statistics), the shapelens (Viola et al. 2011) ksb
implementation (ellipticities, S/N, and the size of the window
function) and SExtractor (Bertin & Arnouts 1996) software
(properties such as flux, size, S/N, and magnitude from both the
galaxy and the PSF). We refer to Paper I for the details on the
algorithms and implementations and to Table 1 for the list of
measured properties we used for the training. In the following we
report the results obtained with the selected network as described
in Appendix A associated with the superscript “fid”, referring to
the fiducial implementation of the method.

Fig. 3. Comparison between true and estimated shear bias. The mul-
tiplicative shear bias m1 is shown in the top panel, and in the bottom
panel, we show the additive bias c1.

5. Results

5.1. Bias predictions

In Fig. 3 we show the distribution of estimated and true shear
biases in the validation set of the CSC branch. We show m1 (top
panel) and c1 (bottom panel), but similar results are found for m2
and c2. The estimated and true biases are correlated, although the
relation is scattered. The value distribution is also narrower for
the estimated than for the true biases because the estimated bias
is a function of the measured parameters with no noise stochas-
ticity. This has been learned from the stochastic true values that
are a↵ected by noise (which is the main cause of the scatter of
the true-bias values), but the estimated function is not stochastic.

A158, page 5 of 16

A. Pujol et al.: Calibration methods

Table 1. Measured properties for the training process of NNSC.

gFIT SExtractor ksb

Galaxy ellipticity e1,gFIT, e2,gFIT Galaxy flux Fout Ellipticity e1,ksb, e2,ksb
Axis ratio Galaxy size Ellipticity with respect to the PSF e+,ksb, e⇥,ksb
Orientation angle S/Nobs Axis ratio qksb
Galaxy flux Galaxy magnitude Orientation angle �ksb
Disc radius PSF flux Window function size
Bulge radius PSF size S/N
Disc fraction PSF S/N
Number of �2 evaluations PSF magnitude
Noise level PSF FWHM

As for GREAT3, the two million galaxy images were divided
into 200 images of 10 000 galaxies, to each of which a di↵erent
pre-defined shear and PSF was applied. Each galaxy was ran-
domly oriented, and its orthogonal version was also included in
the data set to allow for nulling the average intrinsic ellipticity.
Out of these 200 images, we selected a first set for training and a
second set for testing and comparing calibration approaches. For
the training set, we followed the approach of PKSB19 described
above to obtain an estimate of the true shear response that
needed to be learnt. For each galaxy in the training set, five
sheared versions were simulated keeping PSF and noise reali-
sations the same. The shear g for each galaxy was chosen as
gi = {(g1, g2)i} = {(0, 0), (±0.02, 0), (0,±0.02)}.

To further investigate the e↵ect of model bias on our pro-
cedure, the network predictions were also tested for more real-
istic galaxies simulated as in the RSC branch of GREAT3.
These galaxies are based on actual observations from the HST
COSMOS survey, fully deconvolved with the HST PSF (see the
procedure in Mandelbaum et al. 2013), before we applied ran-
dom rotation, translation, and the prescribed shear followed by
convolution with the target PSF and resampling in the target grid.
In this scenario, the same procedure as for CSC was followed to
obtain estimates of the shear response for these realistic galax-
ies, which were then compared to the network predictions based
on the CSC training set.

4.2. Learning input data

The image properties that are used to estimate the shear bias can
be chosen depending on the interest. The NNSC learns to esti-
mate shear bias as a function of these properties, which means
that the more properties we use, the more capable the NNSC
is to learn complex dependences (if we use the appropriate
training).

We used 27 measured properties as input for the NNSC.
These properties correspond to the output from the gFIT
(Gentile et al. 2012; Mandelbaum et al. 2015) software (prop-
erties such as ellipticities, fluxes, sizes, fitted disc fraction, and
other fitting statistics), the shapelens (Viola et al. 2011) ksb
implementation (ellipticities, S/N, and the size of the window
function) and SExtractor (Bertin & Arnouts 1996) software
(properties such as flux, size, S/N, and magnitude from both the
galaxy and the PSF). We refer to Paper I for the details on the
algorithms and implementations and to Table 1 for the list of
measured properties we used for the training. In the following we
report the results obtained with the selected network as described
in Appendix A associated with the superscript “fid”, referring to
the fiducial implementation of the method.

Fig. 3. Comparison between true and estimated shear bias. The mul-
tiplicative shear bias m1 is shown in the top panel, and in the bottom
panel, we show the additive bias c1.

5. Results

5.1. Bias predictions

In Fig. 3 we show the distribution of estimated and true shear
biases in the validation set of the CSC branch. We show m1 (top
panel) and c1 (bottom panel), but similar results are found for m2
and c2. The estimated and true biases are correlated, although the
relation is scattered. The value distribution is also narrower for
the estimated than for the true biases because the estimated bias
is a function of the measured parameters with no noise stochas-
ticity. This has been learned from the stochastic true values that
are a↵ected by noise (which is the main cause of the scatter of
the true-bias values), but the estimated function is not stochastic.

A158, page 5 of 16
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Euclid

Shear calibration from deep learning IIA&A 643, A158 (2020)

Fig. 4. Comparison of estimated vs. true multiplicative shear bias m1 as a function of several properties. Top panels: m as a function of galaxy flux;
bottom panels: m as a function of S/N. Left panels: input simulation properties from the galsim parameters; right panels: the measured parameters
from SExtractor that were used as inputs in training the NN.

The errors on the estimated average biases, defined as
�m1,2 = hmfid

1,2 � mt
1,2i (and analogous for c1,2), are �m1 =

(4.9±1.1)⇥10�4 and �c1 = (�3.1±0.7)⇥10�4 (similar values are
found for the second components, with �m2 = (0.0± 1.1)⇥ 10�4

and �c2 = (1.6 ± 0.7) ⇥ 10�4). These values are well below
the Euclid requirements (�m < 2 ⇥ 10�3 and �c < 5 ⇥ 10�4),
although a proper test of Euclid simulations should be made to
quantify the performance for this mission and to quantify the
e↵ct on post-calibration bias, for which the requirements are set
(Massey et al. 2013). However, this performance was obtained
using only 128 000 objects with ⇠15 CPU training hours.

To obtain this precision, we used a validation set of about
1 800 000 objects. According to the results from PKSB19, we
expect an error on the mean bias of ⇠3⇥10�4. However, here we
show the error on mt

1�mest
1 . If these two quantities are correlated

(as they are), the error on their di↵erence can be smaller, as we
show.

5.2. 1D dependences

In Fig. 4 we show some examples of shear bias dependences
for di↵erent cases. In black we show the true multiplicative
bias obtained as described in Sect. 2.2 that was used for the
supervised training. The dark red line corresponds to the per-
formance of the NNSC estimation, referred to as mfid because
it represents the fiducial training parametrisation used for this
paper (for other parametrisations, see Appendix A). In the left
panels we show dependences on input simulation parameters.
These are parameters that were used to generate the image sim-

ulations with Galsim, but they were not used for NNSC. The
training therefore does not have access to these properties. In the
right panels we show dependences on measured parameters that
were used for the training. The top panels show the m depen-
dence on galaxy flux, and the bottom panels the dependence on
S/N. The excellent performance in the right panels shows that the
training correctly reproduces the dependences on the measured
parameters that were used as the training input. The left panels
show that although the performance is not perfect, the measured
parameters used in NNSC capture enough information to repro-
duce the dependences with good precision2.

5.3. 2D dependencies

Figure 5 shows examples of the multiplicative shear bias 2D
dependences. Here the multiplicative bias m1 is represented in
colour, the left panels show the true bias, and the right panels the
estimates from NNSC. In this case, the top four panels show the
dependences as a function of input simulation parameters (not
accessible for NNSC), and the bottom panels show the depen-
dences on measured parameters used for the training. NNSC
clearly predicts the shear bias as a function of combinations of
two input properties well. As before, the method was trained to

2 Only single Sérsic galaxies were used in the top left panel because
the true bulge flux only contains a fraction of the flux information for
disc galaxies. For this reason, the average di↵erence between estimated
and true bias is di↵erent than in the rest of the panels, where the whole
population was used.

A158, page 6 of 16

A. Pujol et al.: Calibration methods

Fig. 5. Simultaneous comparison of true (left panels) and estimated (right panels) multiplicative shear bias m1 as a function of two properties.
The multiplicative shear bias is represented in colours. Each point is to the mean over an equal number of galaxies, and the point size is inversely
proportional to the error bar, so that large points are more significant. Top panels: dependences on Sérsic index n and bulge half-light radius in the
simulation. Middle panels: dependences on intrinsic ellipticity modulus q and orientation angle � in the simulation. Bottom panels: dependences
on the measured flux and S/N from SExtractor.

describe shear bias as a function of the measured properties, in
consistency with the good performance in the bottom panels,
but the predictions on the input simulation parameters depend
on how strongly these properties are constrained by the mea-
sured parameters. The method describes shear bias as a function
of shape parameters very well (middle panels), but it underesti-
mates the values for some galaxies with a very low Sérsic index
n and intermediate radius because n was not estimated and no
properties referring to this parameter were used for the training.
The performance of the model would improve when more mea-
sured properties on the training that are correlated with n were
used (e.g. a fitting parameter estimation of the galaxy profile).

5.4. Residual bias

In order to test the performance of the shear calibrations, we
analysed the residual bias estimated from a linear fit of Eq. (1)
after the galaxy samples were corrected for their bias. Here we
include MetaCalibration as a reference for an advanced shear
calibration method so that we can compare our performance with
currently used approaches. With this we do not aim to show
a competitive comparison of the methods, but to confirm the
consistency of NNSC with respect to what can be expected for
a reliable method. The two methods are intrinsically di↵erent
and a↵ected by di↵erent systematics, therefore a combination

A158, page 7 of 16

(Pujol et al. 2020)
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Euclid

Metacalibration
Reminder: Shear bias.

γobsi = (1 +m)γtruei + c; i = 1, 2.

Multiplicative bias m can be interpreted as response of observed to true shear.

m = ∂γobsi /γtruei .

Estimate by applying artificial shear to galaxy images, finite differences.

Guinot Axel

Metacalibration

Deconvolution of the PSF

Application of an artificial shear

Re-convolution with 

the PSF

(Ref : Huff E., Mandelbaum R. 2017, arXiv:1702.02600)

Presentation of ShapePipe, First results on CFIS/UNIONS
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Euclid

Metacalibration+: automatic differentiation
Further development of metacalibration (1/2): galflow, autocal

• Use automatic differentiation to replace finite differences.

• (Re-)implement metacalibration in tensorflow.

• All differentiable operations (pixellisation, shearing, convolution, . . .), are
“recorded”, gradients can be computed automatically, without the need of
numerical derivatives.

• No need to generate 4 additional images

• Hope: Reconvolution PSF smaller, better noise properties

AutoMetaCal 3

Figure 1. Median, 68%, and 95% contours of the di�erence between ' calculated by AD and FD for individual galaxies. The vertical black line indicates the
usual choice of step when using �����.

Figure 2. Each horizontal stripe depicts a running median of di�erences between the autodi� and finite di� response matrices, calculated at di�erent average
noise level stamp collections. The x axis represent the step size for the finite di� method, and the vertical axis the noise level of each stamp collection. TODO:
reverse color scheme

Figure 3.

DATA AVAILABILITY

The inclusion of a Data Availability Statement is a requirement for
articles published in MNRAS. Data Availability Statements provide

Figure 4.

a standardised format for readers to understand the availability of data
underlying the research results described in the article. The statement
may refer to original data generated in the course of the study or to

MNRAS 000, 1–4 (2015)

[Figure from André Zamorano Vitorelli.]
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Results from current surveys

Results from weak-lensing surveys

1. Early era: 2000 - 2006

2. Consolidating era: 2007 – 2012

3. Small-survey era: 2013 – 2016

4. Medium survey era: 2017 – 2021

5. Large survey era: 2022 – 2030
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Results from current surveys

State of the art ∼ 2013: CFHTLenS
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Results from current surveys

State of the art ∼ 2013

CFHTLenS CFHTLenS: cosmological model comparison using 2D weak lensing 15
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of ⟨M2

ap⟩
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of ⟨M2

ap⟩
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of ⟨M2

ap⟩
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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CFHTLenS: tomographic weak lensing 2447

Figure 7. Joint parameter constraints on curvature showing constraints on the curvature parameter !K and the matter density parameter !m from WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11 (pink) and CFHTLenS combined with BOSS, WMAP7
and R11 (white).

"CDM cosmology the constraint σ 8 = 0.799 ± 0.015 is almost
entirely driven by CFHTLenS in combination with WMAP7 alone.

4.3.2 Curved cosmological models

We consider two curved cosmologies where the sum of the different
density components of the Universe is no longer limited to the
critical density. Fig. 7 shows joint parameter constraints on the
curvature !K and the matter density parameter !m for WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS
combined with WMAP7 and R11 (pink) and CFHTLenS combined
with BOSS, WMAP7 and R11 (white). In both the curved "CDM
and curved wCDM cosmology, we find that the data are consistent
with a flat Universe with !K ≃ −0.004 ± 0.004 (see Table 3 for
exact numbers for the different cosmologies and data combinations).

In this parameter space, we find a factor of 2 improvement when R11
is included in combination with CFHTLenS and WMAP7. This is
partly because when curvature is allowed the degeneracy direction
of the CMB in the σ8−!m plane changes such that the combination
of lensing with the CMB becomes less powerful. Little improvement
is found in the constraining power when BOSS is included in our
parameter combination, but the mean !K changes by nearly 2σ .

4.3.3 Constraints on dark energy

Finally, we turn to the constraints that can be placed on the dark en-
ergy equation-of-state parameter w0 in flat and curved cosmologies.
Fig. 8 shows joint parameter constraints in the w−!m plane and also
the w−!K plane for a curved wCDM cosmology. As with the other
parameter planes that we have commented upon in this section, we

Figure 8. Joint parameter constraints on the dark energy equation-of-state parameter w0 and the matter density parameter !m, and curvature parameter !K
for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).
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6-bin tomography
(Heymans et al. 2013)

(σ8: power-spectrum normalisation; RMS of density fluct. in 8 Mpc spheres.)
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Results from current surveys

Ongoing surveys: KiDS
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Results from current surveys

Ongoing surveys: DES
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Results from current surveys

Ongoing surveys: UNIONS/CFIS

CFHT: u, r. Pan-STARSS: i, z. Subaru-HSC: g, z.
Part of Euclid survey to provide photometric redshifts in Northern sky.
3, 500/5, 000 deg2 analysed, 100 million weak-lensing galaxies.
Excellent image quality (median seeing ∼ 0.65”). Overlap with deep
spectroscopic data from SDSS+eBOSS, DESI.
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Results from current surveys

Some more results ∼ 2017

(DES Coll. et al. 2017) - DES WL + GC (Troxel et al. 2017) - DES18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the

present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.

The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see

MNRAS 000, 1–48 (2016)
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Results from current surveys

Discrepancy with Planck? I

• Only 2 - 3σ. However, also discrepancy of CMB C`’s with SZ cluster counts.

• Additional physics, e.g. massive neutrinos? Not sufficient evidence.

• WL systematics? (E.g. shear bias, baryonic uncertainty on small scales.) KiDS
say not likely.

Updates

1. Weak-lensing, (Troxel et al. 2018). Improved computation of shape noise, shear

bias correction, and angular scales weighting.5002 M. A. Troxel et al.

Figure 2. Left-hand panels: The impact of data vector and covariance corrections on the KiDS-450 cosmic shear results in the H17 analysis configuration.
’θ corr.’ refers to the update of the θ values for the data vector that appropriately averages the mean pair separation noted in Footnote 1 of Joudaki et al.
(2018). ’θ+Cov corr.’ refers to additionally including the covariance corrections discussed in Section 3 – updating the CovSN and σm components. The CovSN

update alone has relatively little impact on the cosmological constraints compared to the σm change. Right-hand panels: A comparison of the final cosmic
shear results from the KiDS-450 and the DES Y1 data in the T17 analysis configuration. In both panels, we include constraints from the CMB (Planck) for
comparison, analysed separately in the two analysis configurations, and show the marginalized S8 constraints on each side. Note that, among other differences
described in the text, the neutrino mass density is fixed in the left-hand panels (H17) and marginalized over in the right-hand panels (T17), which causes the
Planck contours in particular to differ. The cosmic shear results of the DES and KiDS analyses are strongly consistent, though the complete overlap found here
is likely coincidental and not necessarily expected statistically. The 2D 68 per cent CL of both overlap with those of the CMB in the right-hand panels (and
nearly so in the left-hand panels).

30 per cent on most scales due to the effects described in Section 3
can significantly worsen the best-fitting reduced χ2 for a cosmo-
logical model, even if it does not (as found in T17) significantly
modify the resulting cosmological constraints. The effect is larger
for the KiDS-450 geometry, due to the presence of multiple disjoint
fields, leading to changes in both the χ2 and, to a small degree, the
inferred model parameters. In the original parameter space of H17,
we find significant improvements to the $CDM best-fitting χ2 of
the KiDS-450 cosmic shear data due to the shape noise update. The
best-fitting χ2 is reduced from 161 to 121 for 118 dof, correspond-
ing to an increase in the p-value from 5 × 10−3 to 0.4. Similarly,
in the parameter space of T17, the best-fitting χ2 is reduced from
122 to 78 for 67 dof. The interpretation of the DES cosmic shear
best-fitting χ2 in this parameter space is similar, with a χ2 that was
reduced from 268 to 227 for 211 dof, with p = 0.21.

The update to the way σ m is included in the covariance in equa-
tion (7) more strongly impacts the inferred cosmology, while not
significantly modifying the χ2. This is shown in the left-hand pan-
els of Fig. 2 combined with the shape noise update (solid contour),
along with the impact of updating the reported θ value in the data
vector (dotted), both relative to the analysis of the original data
vector and covariance (dashed). Both of these updates increase the
inferred S8. We find a similar shift in S8 in the T17 parameter space.
This shift improves agreement in the S8–%m plane compared to both
DES Y1 (T17) and Planck (TT+lowP; Ade et al. 2016) results. How-
ever, the complete overlap of the KiDS and DES constraints found
here is likely coincidental and not necessarily expected statistically.

We compare the final parameter constraints from KiDS-450 and
DES Y1 in the right-hand panels of Fig. 2, finding complete over-
lap of the KiDS-450 and DES Y1 cosmic shear contours in S8

and %m, with constraints of S8 = 0.782+0.027
−0.027 for DES Y1 and

S8 = 0.772+0.037
−0.031 for KiDS-450 in the T17 analysis configuration.

Beyond the primary cosmological parameters, it is also important to
recognize (as recently highlighted in Efstathiou & Lemos 2018) the
impact that the major astrophysical systematic in cosmic shear, the
intrinsic alignment of galaxies (IA) (see Joachimi et al. 2015; Troxel
& Ishak 2015, and references therein), can have on the interpreta-
tion of cosmological results. One diagnostic of potential residual
systematics is an inconsistent model fit for the IA signal, up to
a potential difference in the effective amplitude due to the use of
different shape measurement methods. We also find excellent agree-
ment here, with an amplitude for the intrinsic alignment model of
AIA = 1.0+0.4

−0.7 (DES Y1) and AIA = 0.9+0.9
−0.6 (KiDS-450) in the T17

analysis configuration, marginalizing over a free redshift power-law
evolution that is also strongly consistent. This is a powerful demon-
stration of consistency between the cosmic shear analyses of these
two surveys, which lends credence to the robustness of constraints
shown here from cosmic shear.

5 C O N C L U S I O N S A N D O U T L O O K

We have demonstrated that using an exact measurement [e.g. the
actual Np(θ )] of the shape noise component of analytic cosmic
shear covariance matrix estimates is critical for ongoing and future
analyses where the survey footprint is non-compact or disjoint. In
the case of KiDS-450, we have demonstrated that this correction
increases the shape noise term in the covariance by up to a factor
of 3.5 on the largest scales. This shape noise correction is sufficient
to completely resolve the large best-fitting reduced χ2 for $CDM
from the original analysis of H17, and the first preprint version of
T17. With these updates, there is no longer any evidence for a lack of
internal model consistency in this basic test for these cosmic shear
analyses. We find that these changes can also relieve previously
discussed tensions in other internal consistency tests, such as those

MNRAS 479, 4998–5004 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/479/4/4998/5057023
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Results from current surveys

Discrepancy with Planck? II
2. Planck 2018 results, (Planck Collaboration et al. 2018)Planck Collaboration: Cosmological parameters
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Fig. 19. Base-⇤CDM model 68 % and 95 % constraint contours
on the matter-density parameter ⌦m and fluctuation amplitude
�8 from DES lensing (Troxel et al. 2017, green), Planck CMB
lensing (grey), and the joint lensing constraint (red). For compar-
ison, the dashed line shows the constraint from the DES cosmic
shear plus galaxy-clustering joint analysis (DES Collaboration
2017a), the dotted line the constraint from the original KiDS-450
analysis (Hildebrandt et al. 2017, without the corrections con-
sidered in Troxel et al. 2018), and the blue filled contour shows
the independent constraint from the Planck CMB power spectra.

fits are shown in Fig. 18. Note that intrinsic alignments con-
tribute significantly to the observed shear correlation functions
(as shown by the dotted lines in the figure). This introduces ad-
ditional modelling uncertainty and a possible source of bias if
the intrinsic alignment model is not correct. The DES model is
validated in Troxel et al. (2017); Krause et al. (2017).

Figure 19 shows the constraints in the ⌦m–�8 plane from
DES lensing, compared to the constraints from the CMB power
spectra and CMB lensing. The DES cosmic shear constraint is of
comparable statistical power to CMB lensing, but due to the sig-
nificantly lower mean source redshift, the degeneracy directions
are di↵erent (with DES cosmic shear approximately constrain-
ing ⌦m�

0.5
8 and CMB lensing constraining ⌦m�

0.25
8 ). The corre-

lation between the DES cosmic shear and CMB lensing results
is relatively small, since the sky area of the CMB reconstruction
is much larger than that for DES, and it is also mostly not at
high signal-to-noise ratio. Neglecting the cross-correlation, we
combine the DES and Planck lensing results to break a large
part of the degeneracy, giving a substantially tighter constraint
than either alone. The lensing results separately, and jointly, are
both consistent with the main Planck power-spectrum results,
although preferring �8 and ⌦m values at the lower end of those
allowed by Planck. The DES joint analysis of lensing and clus-
tering is also marginally consistent, but with posteriors prefer-
ring lower values of ⌦m (see the next subsection). Overlap of
contours in a marginalized 2D subspace does not of course guar-
antee consistency in the full parameter space. However, the val-
ues of the Hubble parameter in the region of ⌦m–�8 parameter
space consistent with Planck ⌦m and �8 are also consistent with
Planck’s value of H0. A joint analysis of DES with BAO and a
BBN baryon-density constraint gives values of the Hubble pa-

Planck power spectrum constraints are much less sensitive to priors and
we use our default priors for those.

rameter that are very consistent with the Planck power spectrum
analysis (DES Collaboration 2017b).

5.6. Galaxy clustering and cross-correlation

The power spectrum of tracers of large-scale structure can yield
a biased estimate of the matter power spectrum, which can then
be used as a probe of cosmology. For adiabatic Gaussian ini-
tial perturbations the bias is expected to be constant on large
scales where the tracers are out of causal contact with each
other, and nearly constant on scales where nonlinear growth
e↵ects are small. Much more information is available if small
scales can also be used, but this requires detailed modelling of
perturbative biases out to k ⇡ 0.3–0.6 Mpc�1, and fully non-
linear predictions beyond that. Any violation of scale-invariant
bias on super-horizon scales would be a robust test for non-
Gaussian initial perturbations protected by causality (Dalal et al.
2008). However, using the shape of the biased-tracer power
spectrum on smaller scales to constrain cosmology requires at
least a model of constant bias parameters for each population at
each redshift, and, as precision is increased, or smaller scales
probed, a model for the scale dependence of the bias. Early
galaxy surveys provided cosmology constraints that were com-
petitive with those from CMB power spectrum measurements
(e.g., Percival et al. 2001), but as precision has improved, fo-
cus has mainly moved away to using the cleaner BAO and RSD
measurements and, in parallel, developing ways to get the quasi-
linear theoretical predictions under better control. Most recent
studies of galaxy clustering have focussed on investigating bias
rather than background cosmology, with the notable exception
of WiggleZ (Parkinson et al. 2012).

Here we focus on the first-year DES survey measurement
of galaxy clustering (Elvin-Poole et al. 2017) and the cross-
correlation with galaxy lensing (Prat et al. 2017, “galaxy-galaxy
lensing”). By simultaneously fitting for the clustering, lensing,
and cross-correlation, the bias parameters can be constrained
empirically (DES Collaboration 2017a). Similar analyses using
KiDS lensing data combined with spectroscopic surveys have
been performed by van Uitert et al. (2018) and Joudaki et al.
(2018).

To keep the theoretical model under control (nearly in the
linear regime), DES exclude all correlations on scales where
modelling uncertainties in the nonlinear regime could begin to
bias parameter constraints (at the price of substantially reduc-
ing the total statistical power available in the data). Assuming
a constant bias parameter for each of the given source red-
shift bins, parameter constraints are obtained after marginaliz-
ing over the bias, as well as a photometric redshift window
mid-point shift parameter to account for redshift uncertainties.
Together with galaxy lensing parameters, the full joint analysis
has 20 nuisance parameters. Although this is a relatively com-
plex nuisance-parameter model, it clearly does not fully model
all possible sources of error: for example, correlations between
redshift bins may depend on photometric redshift uncertainties
that are not well captured by a single shift in the mean of each
window’s population. However, Troxel et al. (2017) estimate
that the impact on parameters is below 0.5� for all more com-
plex models they considered. The DES theoretical model for the
correlation functions (which we follow) neglects redshift-space
distortions, and assumes that the bias is constant in redshift and k
across each redshift bin; these may be adequate approximations
for current noise levels and data cuts, but will likely need to be
re-examined in the future as statistical errors improve.
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Results from current surveys

Discrepancy with Planck? III
3. KiDS + DES, redshift calibration.The KiDS Collaboration: Combined analysis of KV450 and DES-Y1

Fig. 2: DES-Y1 redshift distributions for the four tomographic bins (in black, blue, cyan, red, respectively), showing the publicly
released distributions (dashed) and the spectroscopically determined distributions using the DIR approach (solid). The distributions
based on spectroscopy are systematically shifted to larger redshifts compared to the original distributions (accounting for �zi), and
hence favor a lower value of S 8 compared to the original DES-Y1 analysis in T18. See Table 1 for the mean redshifts of the di↵erent
tomographic bins for the two approaches. The vertical dotted lines denote the tomographic bin boundaries. The small inset shows
the redshift distribution of the matched photometry/spectroscopy catalogue for DES-Y1 containing approximately 30, 000 objects
used in the DIR method. The spectroscopic calibration samples are obtained from zCOSMOS, VVDS-Deep (2h), CDFS, DEEP2
(2h), VVDS-Wide (22h). We do not show the uncertainties in the n(z) for visual clarity (instead see Table 1 for uncertainties in the
mean redshifts).

The KV450 constraint on S 8 = 0.734+0.043
�0.034 corresponds to

a 2.4� discrepancy with Planck 2018. The original DES-Y1
cosmic shear constraint from the publicly released chain4 is
S 8 = 0.778+0.030

�0.024 (we note that T18 quotes the marginal pos-
terior maximum of 0.782 instead of the more common poste-
rior mean given here). Compared with the corresponding Planck
2018 result, where the neutrino mass varies, this is a 1.7� dif-
ference. The DES-Y1 constraint using the KV450 setup is S 8 =
0.793+0.037

�0.034, which di↵ers by 1.0� from both the Planck 2018
and KV450 constraints. This change reflects a shift in the poste-
rior mean and an increase in uncertainty as a result of using hm-
code instead of halofit, wider priors on the amplitude and spec-
tral index of the primordial power spectrum, uniformly sampling
ln(1010As) instead of As, and fixing the sum of neutrino masses
instead of varying it.

We note that when KV450 and DES-Y1 are homogenized
to the same assumptions and using the fiducial angular scales,
the constraining power of the two datasets is comparable, with
the DES-Y1 uncertainty in S 8 smaller by 8% (instead of 30%
smaller uncertainty when simply comparing the DES-Y1 con-
straint in T18 with the KV450 constraint in H18). However, this
does not account for the improvement in the DES-Y1 constrain-
ing power when extending the scale cuts from the fiducial ap-
proach in T18 to better agree with the range of angular scales ✓
probed by KV450. We find that such a modification to the angu-
lar scales (such that {✓+ > 3, ✓� > 7} arcmin for all tomographic
bin combinations) in our correlation function analysis improves
the DES-Y1 uncertainty in S 8 by approximately 30% (with a
0.5� decrease in the posterior mean) after marginalizing over
baryonic feedback, increasing the deviation from Planck.

4 http://desdr-server.ncsa.illinois.edu/despublic/
y1a1_files/chains/s_l3.txt

3. Spectroscopic determination of the DES-Y1
source redshift distributions

The redshift distributions for DES and HSC have so far been
obtained by using data from the 30-band photometric dataset
‘COSMOS-2015’ (Laigle et al. 2016). In HSC-Y1, the fiducial
redshift distributions are obtained as a histogram of reweighted
COSMOS-2015 photometric redshifts (using the weights of the
HSC source galaxies and a self-organizing map, or ‘SOM’), and
the uncertainties in these distributions are obtained by compar-
ing against the photometric redshift distributions from six dif-
ferent codes where the probability distribution functions of the
source galaxy redshifts are stacked (Hikage et al. 2019). In DES-
Y1, the Bayesian photometric redshift code bpz (Benítez 2000) is
used to compute a stacked redshift distribution, which is shifted
along the redshift axis to best fit a combination of resampled
COSMOS-2015 redshift distributions and (for the first three to-
mographic bins) the clustering of the DES source galaxies and
a high-quality photo-z reference sample (redMaGiC; Rozo et al.
2016) over a limited redshift range (Hoyle et al. 2018).

To compare these approaches to direct spectroscopic deter-
mination, which fully decouples the photo-z from the determi-
nation of the n(z), H18 considered a DIR estimate of the KV450
redshifts with the help of COSMOS-2015, finding a coherent
downward shift in the redshift distributions and a consequent in-
crease in the posterior mean for S 8. H18 argue that estimating
the redshift distributions from COSMOS-2015 might however
be unreliable given the ‘catastrophic outlier’ fraction of ⇠6% in
the magnitude range 23 < i < 24 reported in Laigle et al. (2016)5

and a residual photo-z bias of hzspec � zphoti ⇡ 0.02 after rejec-
tion of outliers. This can be compared to ⇠1% unreliable red-

5 For 22 < i < 23, the outlier rate is significant at 3.5% (O. Ilbert,
private communication).
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Table 1: DES-Y1 mean redshifts of the four tomographic bins
calibrated with COSMOS-2015 (T18) and spectroscopic red-
shifts (this work). The spectroscopic calibration consistently
favors distributions with larger mean redshifts compared to
COSMOS-2015 (the same is found for the median redshifts).

Tom. COSMOS-2015 Spec-z (DIR)
bin < z > < z >
1 0.389 ± 0.016 0.403 ± 0.008
2 0.507 ± 0.013 0.560 ± 0.014
3 0.753 ± 0.011 0.773 ± 0.011
4 0.949 ± 0.022 0.984 ± 0.009

shifts for the combined spectroscopic calibration sample6. The
outliers in the COSMOS-2015 photo-z are problematic because
their e↵ect is most probably asymmetric. Outliers that are truly
objects at high-z but are assigned a low COSMOS-2015 photo-z
are more likely to fall inside the DES-Y1 tomographic bins than
outliers that are bona-fide low-z galaxies but are assigned a high
COSMOS-2015 photo-z. Additionally, the bias in the core of the
zspec � zphot distribution is in the same direction, i.e. overall the
redshifts are underestimated by the COSMOS-2015 photo-z.

In the DES-Y1 analyses, the case is made that a spectro-
scopic determination of the source redshift distributions would
not be su�ciently accurate due to the incompleteness of the
existing spectroscopic surveys at the faint end of the DES ob-
servations (Hoyle et al. 2018). We find, however, that even the
deeper KV450 source sample is well covered by our spectro-
scopic compilation, implying that the coverage should also be
su�cient for the calibration of the DES-Y1 sample. This is con-
firmed by a SOM approach to redshift calibration (Masters et al.
2015) that will be presented in Wright et al. (in prep.). DES-
Y1 overlaps with almost the same deep spectroscopic redshift
surveys that were used by H18. As shown in Fig. 2 (inset), this
overlap contains some 30,000 objects with spectroscopic red-
shifts from zCOSMOS (Lilly et al. 2009), the DEEP2 Redshift
Survey (Newman et al. 2013), the VIMOS VLT Deep Survey
(VVDS; Le Fèvre et al. 2013), and the Chandra Deep Field South
(CDFS; Vanzella et al. 2008; Popesso et al. 2009; Balestra et al.
2010; Le Fèvre et al. 2013). We find that the KV450 source
sample is well covered as long as spectroscopic redshifts from
DEEP2 – the highest-redshift calibration survey – are included
and the same is true for DES-Y1.

The KV450 and DES-Y1 spectroscopic calibration samples
used here di↵er in detail: DES-Y1 overlaps on the sky with
VVDS in both the Deep (2h) and Wide (22h) fields compared
to only the Deep (2h) field for KV450, and the DES-Y1 calibra-
tion does not include the 23h field of DEEP2 and the GAMA-
G15Deep sample (Kafle et al. 2018) which are included in the
KV450 calibration. Overall, we obtain the DES-Y1 and KV450
redshift distributions using five and six spectroscopic calibration
samples, respectively, of which four are identical7. Note that no
shear data from these calibration fields are used in both the KiDS
and DES cosmological analyses, maintaining independence in
the measured shear correlation functions from the two surveys.

Figure 2 shows that the spectroscopic calibration shifts DES-
Y1 redshift distributions to higher redshifts compared to the
original photo-z recalibration with COSMOS-2015, consistent

6 We show that the change in the estimated redshift distributions from
catastrophic spec-z failures in the spectroscopic compilation is negligi-
ble in Wright et al. (in prep.).
7 Note that the exact area in each of these fields di↵ers slightly between
surveys because of the di↵erent footprints of KiDS and DES.
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Fig. 3: Marginalized posterior contours in the S 8 – ⌦m plane
(inner 68% CL, outer 95% CL) for KV450 (green), DES-Y1 fol-
lowing a spectroscopic calibration of the redshift distributions
and identical setup to the KV450 analysis (purple), the above
combined (pink), and Planck 2018 (orange).

with the findings of H18. Mean redshifts of the four tomographic
bins are reported in Table 1 for both cases. The spectroscopically
determined distributions peak closer to the centre of the corre-
sponding tomographic bins, and contain higher-redshift galax-
ies. These shifts between the spectroscopically estimated and
published DES-Y1 n(z) are significant because of their coher-
ence, i.e. all tomographic bins shift in the same direction. We
emphasize that widening the priors on the uncorrelated �zi nui-
sance parameters cannot account for such a coherent shift as this
is fully degenerate with the cosmological parameters of interest
(see the discussion at the end of section 3 in H18).

4. Cosmological impact of DES-Y1 n(z) recalibration
and combined constraints with KV450

We now quantify the impact of the spectroscopic calibration of
the DES-Y1 redshift distributions on the cosmological parame-
ter constraints. As it is now on an equal footing with KV450,
we moreover perform a combined analysis of the two surveys,
shown in Fig. 3.

The DES-Y1 constraint following the spectroscopic calibra-
tion of the redshift distributions is S 8 = 0.763+0.037

�0.031. Compared
to using the original redshift distributions, this is a change in
the posterior mean by �S 8 = �0.030 and a marginal (5%) im-
provement in the S 8 uncertainty. We verified that this shift in S 8
is largely recovered by coherently shifting the original DES-Y1
redshift distributions by the �zi di↵erence with the spectroscop-
ically calibrated distributions as reported in Table 1 (i.e. changes
in the structure of the ni(z) have a subdominant impact on S 8).
This substantial change in the DES-Y1 constraint highlights the
importance of the redshift calibration. The size of �S 8 corre-
sponds to a 0.8� shift in terms of the larger DES uncertainty
in the KV450 setup, and a 1.1� shift in terms of the original
DES-Y1 uncertainty quoted in T18. The DES-Y1 constraint us-
ing a KV450 analysis setup and spectroscopically calibrated red-
shift distributions is di↵erent from the Planck 2018 constraint on
S 8 by 1.9�. The goodness of fit with the spectroscopically cali-
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