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Context

Upcoming astrophysical surveys such as CFIS 1 and Euclid 2 aim to constrain cosmological parameters using
properties derived from galaxy images, in particular their shapes via weak gravitational lensing. However,
various shape measurement techniques are currently available each with di�erent strengths and weaknesses.

The CosmoStat group is currently developing a weak lensing analysis pipeline in order to process currently
available CFIS images. A crucial part of this project will be to benchmark the best possible shape measurement
technique and to see what impact this has on the weak lensing analysis.

Outline of project objectives

The internship will essentially be comprised of the following tasks and objectives:

1. Get familiarised with the various galaxy shape measurement techniques currently available.

2. Implement these techniques in the weak lensing pipeline.

3. Interact with other members in CosmoStat to gauge the performance of each technique.

Candidate

The candidate should be a Master 2 (or equivalent) student with background in either physics/astrophysics
or applied maths/signal processing/data science. Experience with Python is not required, but would be
advantageous.

Internship

The internship will take place in the CosmoStat laboratory, under the supervision of Samuel Farrens and
Martin Kilbinger.

• Deadline for applications: February 28th, 2019.

• Contact: Samuel Farrens (samuel.farrens@cea.fr) and Martin Kilbinger (martin.kilbinger@cea.fr).

• Duration: 4-6 months.

1http://www.cfht.hawaii.edu/Science/CFIS/
2https://www.euclid-ec.org/
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[Day 1] Reminders from last year

Books, Reviews and Lecture Notes

• Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
III (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

• Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

• Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

• Mandelbaum 2018, review Weak lensing for precision cosmology, ARAA
submitted, arXiv:1710.03235

• Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

• Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

• Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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[Day 1] Reminders from last year

Day 1: Reminders from last year

The lens equation

Convergence, shear, and ellipticity

Basic equation of weak lensing
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[Day 1] Reminders from last year

Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

• Continuous deflection: sensitive to
projected 2D mass distribution.

• Di↵erential deflection:
magnification, distortions of
images.

• Small distortions, few percent
change of images: need statistical
measurement.

• Coherent distortions: measure
correlations, scales few Mpc to few
100 Mpc.

scales

Martin Kilbinger (CEA) WL Part cycle 2 5 / 139



[Day 1] Reminders from last year WL measurement challenges

Measuring cosmic shear“shape measurement” 

•  Average Shear Distortion equivalent to difference in 
Ellipticity between Earth and Moon 

 

Typical shear of a few percent equivalent to di↵erence in ellipticity between
Uranus and the Moon.
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[Day 1] Reminders from last year The lens equation

The lens equation

~⇠ Ds

Dds

↵̂

~⌘

✓

�

Dd

Observer

Lens plane

Source plane

↵

~x

The lens equation is

� = ✓ � ↵.

This is a mapping from lens
coordinates ✓ to source
coordinates �.

(Q: why not the other way
round?)

The deflection angle ↵(✓)
depends on the mass
distribution of the lens. It is
the gradient of the 2D lensing
potential,

↵(✓) = r (✓).
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[Day 1] Reminders from last year Convergence, shear, and ellipticity

Linearized lensing quantities I

Linearizing lens equation
We talked about di↵erential deflection last year. To first order, this involves
the derivative of the deflection angle.

Or the lens mapping:

@�i

@✓j
⌘ Aij = �ij � @i@j .

Jacobi (symmetric) matrix

A =

✓
1 � � �1 ��2

��2 1 � + �1

◆
.

• convergence : isotropic magnification

• shear �: anisotropic stretching

κ

γ

source
image

Convergence and shear are second derivatives of the 2D lensing potential.
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[Day 1] Reminders from last year Convergence, shear, and ellipticity

Convergence and shear I
Define complex shear

� = �1 + i�2 = |�|e2i';

The relation between convergence, shear, and the
axis ratio of elliptical isophotes is then

|�| = |1 � |
1 � b/a

1 + b/a

'

x

y

a

b

Summary:

• Convergence and shear describe linearised lensing transformations

• They encompass information about projected mass distribution (lensing
potential  ).

• They quantify how lensed images are magnified, enlarged, and stretched.

• These are the main quantities in (weak) lensing.

• Shear is easier to measure (see below), convergence more intuitive to interpret
and plot (“mass” maps). One can be transformed into the other, with caveats
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[Day 1] Reminders from last year Basic equation of weak lensing

Basic equation of weak lensing

Weak lensing regime
 ⌧ 1, |�| ⌧ 1.
The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity and
the shear:

"
obs

⇡ "
s + �

Random intrinsic orientation of galaxies

h"
s
i = 0 �! h"

obs
i = �

The observed ellipticity is an unbiased estimator of the shear. Very noisy
though! �" = h|"

s
|
2
i
1/2

⇡ 0.4 � � ⇠ 0.03. Increase S/N and beat down noise
by averaging over large number of galaxies.

Question: Why is the equivalent estimation of the convergence and/or
magnification more di�cult?
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[Day 1] Reminders from last year Basic equation of weak lensing

Ellipticity and local shear

[from Y. Mellier]
Galaxy ellipticities are an estimator of the local shear.
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[Day 1] Measurement of weak lensing

Day 1: Measurement of weak lensing

Galaxy shape measurement

Shear biases and calibration

PSF correction & diagnostics

PSF systematics

Martin Kilbinger (CEA) WL Part cycle 2 12 / 139



[Day 1] Measurement of weak lensing Galaxy shape measurement

The shape measurement challenge

• Cosmological shear |�| ⌧ |"| intrinsic ellipticity

• Galaxy images corrupted by PSF

• Measured shapes are biased
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[Day 1] Measurement of weak lensing Galaxy shape measurement

The shape measurement challenge
How do we measure “ellipticity” for irregular, faint, noisy objects?

The DES Science Verification Weak Lensing Shear Catalogues 13

The files are quite large, so loading the whole file into memory is
not generally feasible, but it is also not necessary.

The postage stamps from the original single-epoch images
were sky-subtracted and then scaled to be on a common photomet-
ric system, which simplified the model fitting using these images.
We also stored the local affine approximation of the WCS function,
evaluated at the object centre, so that models could be made in sky
coordinates and constrained using the different image coordinates
for each postage stamp.

See Appendix A for details about how we build and store the
MEDS files.

5.1 Exposure Selection

We did not use all single-epoch images for measuring shapes. We
excluded a small fraction of the CCD images that had known prob-
lems in the original data or in some step of the data reduction and
processing. We created simple “blacklist” files, in which we stored
information for CCD images we wished to exclude, and that infor-
mation was incorporated into the MEDS files as a set of bitmask
flags. Postage stamps from blacklisted images were then easily ex-
cluded from the analysis when measuring shears. Here we list some
of the reasons that images were blacklisted.

Some of the astrometry solutions (cf. §2.3) provided a poor
map from CCD coordinates to sky coordinates. This happened pri-
marily near the edges of the SPT-E region where there are not
enough overlapping exposures to constrain the fit.

Some of the PSF solutions (cf. §4) provided a poor model of
the PSF across the CCD. In some cases there were too few stars
detected to constrain the model; occasionally there was some error
when running either the star finding code or PSFEX.

A small fraction of the SV images were contaminated by
bright scattered-light artefacts. Scattered-light artefacts fall into
two broad categories: internal reflections between the CCDs and
other elements of the optics, known as “ghosts”; and grazing in-
cidence reflections off of the walls and edges of the shutter and
filter changer mechanism. Ghosts primarily occur when a bright
star is within the field of view, while grazing incidence scatters oc-
cur predominantly for stars just outside the field-of-view. Using the
positions of bright stars from the Yale Bright Star Catalogue (Hof-
fleit & Jaschek 1991) and knowledge of the telescope optics, it is
possible to predict locations on the focal plane that will be most af-
fected by scattered light. We identified and removed a total of 862
CCD images (out of 135,481) from the single-exposure SV data set
in this manner. In April 2013, filter baffles were installed to block
some of this scattered light, and non-reflective paint was applied to
the filter changer and shutter in March 2014 (Flaugher et al. 2015).
These modifications have greatly reduced the occurrence of grazing
incidence reflections in subsequent DES seasons.

It is common for human-made objects to cross the large DE-
Cam field of view during an exposure. The brightest and most im-
pactful of these are low-flying airplanes (two Chilean flight paths
pass through the sky viewable by the Blanco telescope). Airplane
trails are both bright and broad, and cause significant issues in esti-
mating the sky background in CCDs that they cross. We identified
these airplane trails by eye and removed a total of 56 individual
CCD images due to airplane contamination (corresponding to 4 dis-
tinct exposures). This rate of airplane contamination is expected to
continue throughout the DES survey.

In addition to airplanes, earth-orbiting satellites are a common
occurrence in DES images. During the 90 second exposure time of
a DES survey image, a satellite in low-earth-orbit can traverse the

Figure 11. Example galaxy image demonstrating two masking strategies.
The top row shows the original postage stamps in the MEDS file. The
second row shows the result when only the SEXTRACTOR segmentation
map was used to mask neighbors. The third row shows the result when the
überseg algorithm was used to mask neighbors, as described in the text.

entire focal plane, while geosynchronous satellites travel approxi-
mately 1.25 CCD lengths. The impact of these satellite streaks is
significantly less than that of airplanes; however, because they only
occur in a single filter, they can introduce a strong bias in the colour
of objects that they cross. For SV, the “crazy colours” cut men-
tioned in §2.1 removes most of the contaminated objects. At the
end of Year 1, an automated tool was developed by DESDM for
detecting and masking satellite streaks using the Hough transform
(Hough 1959; Duda & Hart 1972). This should greatly reduce the
impact of satellite streaks in upcoming seasons of DES observing
and will be retroactively applied to reprocessing of earlier data.

5.2 Masks

The user can construct a “mask” for each postage stamp in the
MEDS files in a variety of ways. For this analysis, we used what
we call an “überseg” mask, constructed from the weight maps, seg-
mentation maps and locations of nearby objects.

To create the überseg mask, we started with the SEXTRACTOR
segmentation map from the coadd image, mapping it on to the cor-
responding pixels of the single-epoch images. We prefer this map to
the segmentation map derived for each single-epoch image because
the coadd image is less noisy, and thus has more object detections
and more information for determining the extent of each object.

We then set pixels in the weight map to zero if they were ei-
ther associated with other objects in the segmentation map or were
closer to any other object than to the object of interest. The result
was a superset of the information found in the weight maps and
segmentation maps alone, hence the name überseg.

An example set of images and überseg maps are shown in Fig-
ure 11. In tests on a simulation with realistically blended galaxies
(cf. §6.2), we found a large reduction in the shear biases when using
the überseg masking as compared to the ordinary SEXTRACTOR
segmentation maps. In particular, when using ordinary segmenta-
tion maps we found a significant bias of the galaxy shape in the
direction toward neighbors. With the überseg masking, such a bias
was undetectable.

MNRAS 000, 1–37 (2015)

[Y. Mellier/CFHT(?)] — (Jarvis et al. 2016)8 L. Miller et al.

fitted, allowing for astrometric offsets and camera distortion as de-
scribed in Sections 4& 6 below. Inevitably, some galaxies had sizes
too large to be fitted in this size of postage stamp; such galaxies
were excluded from the analysis.

In some cases, two or more neighbouring galaxies appeared
within the same postage stamp. The algorithm can only fit one
galaxy at a time, so the solution adopted was to first see whether
it was possible to mask out one galaxy (set its pixel values equal
to the background) without disturbing the isophotes of the galaxy
being fitted. To this end, a co-added image postage stamp was cre-
ated, averaging all the exposures available for that galaxy, shifted
so the relative positions agreed to the nearest pixel, which was
then smoothed by a gaussian of FWHM equal to that of the lo-
cal PSF. Isophotes were created for each smoothed galaxy: if a
separate galaxy or other object was identified with non-touching
isophotes, at a level of twice the smoothed pixel noise, that other
galaxy was masked out and the fitting would proceed. Such close
pairs of galaxies are thus included in the output catalogues from
CFHTLenS. We note, however, that low-level light leaking below
the two-sigma isophote could still contaminate the measurement,
and thus we expect the ellipticity measurements of galaxies in close
pairs, whose isophotes may be contaminated by their neighbour, to
be artificially correlated.

Within each postage stamp, it may be that some pixels should
be masked because of image defects. The THELI pipeline provided
images of pixel masks to be applied. If such masked pixels occurred
within the two-sigma isophote of a galaxy on one individual expo-
sure, that exposure was not used in the joint analysis. If such pixels
occurred outside the two-sigma isophote, the pixel values were set
equal to the background and that masked exposure was used in the
joint fitting.

Other galaxies may be sufficiently close that their smoothed
isophotes overlapped, and there may also be individual galaxies
with complex morphology, not well described by a simple bulge-
plus-disk model. These galaxies were identified using a deblend-
ing algorithm, testing for the presence of significant independent
maxima in the smoothed surface brightness distribution6. Any such
complex or blended galaxies that were found were excluded from
the analysis. A further criterion was imposed, that the intensity-
weighted centroid of a galaxy, measured from the pixels within the
smoothed 2� isophote, should lie within 4 pixels of the nominal
target position: this criterion guarded against any blended galaxies
that had been identified as blends in the original input catalogue
but that had not been identified by the other tests described in this
section. Some examples of images of galaxies excluded by these
criteria are shown in Fig. 3, which shows examples of the stacked,
smoothed images used for testing for object complexity. Visual in-
spection indicated that the great majority of galaxies excluded in
this way had isophotes that overlapped with neighbouring galaxies.

The fraction of galaxies that were excluded in this way varied
somewhat between fields, as the criteria were affected by the size
of the PSF. Typically, 20% of galaxies were excluded. Although

6 The algorithm was similar to that of Beard et al. (1990). Maxima in the
smoothed surface brightness distribution associated with the target galaxy
were identified, and regions ‘grown’ around those maxima by successively
lowering a threshold isophote level from that maximum level. Pixels above
the threshold were either identified with the corresponding maximum of any
identified pixels that they touched, or otherwise were defined to be a new,
secondary, maximum. Regions with fewer than 8 pixels were amalgamated
into any touching neighbours. If multiple regions remained after this pro-
cess, within the limiting 2� isophote, the galaxy was flagged as ‘complex’.

Figure 3. Examples of four galaxies excluded from measurement by the
criteria described in Section 3.7, in field W1m0m1. Each panel shows a
coadded image 48 pixels (approximately 900) square, centred on each target
galaxy, and the inverted grey scale is linear up to some maximum value
which varies between images.

this fraction seems high, such a loss of galaxy numbers does not
significantly degrade the signal-to-noise of the final cosmological
analysis, but it does help ensure that galaxies whose measurements
would be poor because of their size, or because they would be
poorly modelled, have been excluded. These exclusion criteria are
likely to introduce small-scale selection effects into the galaxy dis-
tribution (e.g. neighbouring galaxies would have been classed as
being blended with greater or lesser probability depending on how
they were aligned with respect to the PSF) and so lensing signals
on arcsec scales, � 500, should be excluded from analyses of this
survey, even though nominal measurements are reported in the out-
put catalogues. We note that the exclusion of some fraction of close
pairs of galaxies may introduce a bias at a level of a few percent into
cosmological parameters (Hartlap et al. 2011): we do not currently
have any way to estimate the size of this bias in an actual survey
such as CFHTLenS, without a detailed model of the true distribu-
tion of galaxy pairs and of the effect of the measurement process
on those pairs.

4 OPTIMAL COMBINATION OF MULTIPLE IMAGES

The algorithm presented in Papers I & II, and also the simulations
of the GREAT08 (Bridle et al. 2010) and GREAT10 (Kitching et al.
2012) challenges, assume that each galaxy is measured on a single
image. However, actual galaxy surveys use combinations of multi-
ple exposures in the same waveband, or even across different filters.
The reasons for having multiple exposures in the same filter are: (i)
to increase the dynamic range of the observations; (ii) to prevent
an excessive build-up of cosmic ray artifacts on any one image;
(iii) to allow dithering of observations, filling in gaps where CCD
boundaries or CCD artifacts prevent useful data being obtained and
mitigating the effects of the finite pixel sampling. Thus any shear
measurement method should make optimal use of such multiple
images. In CFHTLenS typically seven dithered exposures were ob-
tained in each field (Section 2).

c� 2011 RAS, MNRAS 000, 1–24

[CFHTLenS/KiDS image — CFHTLenS postage stamps]
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[Day 1] Measurement of weak lensing Galaxy shape measurement

Model fitting methods

Forward model-fitting (example lensfit)

• Convolution of model with PSF instead of devonvolution of image

• Combine multiple exposures avoiding co-adding of (dithered) images.
• Bayesian: fit each exposure independently, multiply posterior density
• Freqeuentist: fit joint model to each exposure
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[Day 1] Measurement of weak lensing Galaxy shape measurement

Moment-based methods

Moments and ellipticity
Simple case: qualitatively, what are the 0th

, 1st
, 2nd moments of a 1D

distribution? Of a 2D distribution?
Quadrupole moment of weighted light distribution I(✓):

Qij =

R
d2
✓ q[I(✓)] (✓i � ✓̄i)(✓j � ✓̄j)R

d2 ✓ q[I(✓)]
, i, j = 1, 2

q : weight function

✓̄ =

R
d2
✓ qI [I(✓)] ✓R

d2✓ qI [I(✓)]
: barycenter (first moment!)

Ellipticity

" =
Q11 � Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 � Q
2
12)

1/2

Circular object Q11 = Q22, Q12 = Q21 = 0
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[Day 1] Measurement of weak lensing Shear biases and calibration

Shear measurement biases I

For basically all shape measurement methods: observed shear 6= true shear.
This is called shear bias.

Origins

• Noise bias

In general, ellipticity is non-linear in pixel data (e.g. normalization by
flux). Pixel noise ! biased estimators.

• Model bias

Assumption about galaxy light distribution is in general wrong.

• Model-fitting method: wrong model
• Perturbative methods (KSB, DEIMOS, HOLICS): weight function not

appropriate
• Non-perturbative methods (shapelets): truncated expansion, bad

eigenfunction representation
• Color gradients
• Non-elliptical isophotes
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[Day 1] Measurement of weak lensing Shear biases and calibration

Shear measurement biases II
• Other

• Imperfect PSF correction
• Detector e↵ects (CTI — charge transfer ine�ciency)
• Selection e↵ects (probab. of detection/sucessful " measurement depends on
" and PSF)

Characterisation

Bias can be multiplicative (m) and additive (c):

⌦
"
obs
i

↵
= �

obs
i = (1 + mi)�

true
i + ci; i = 1, 2.

Biases m, c are typically complicated functions of galaxy properties (e.g. size,
magnitude, ellipticity), redshift, PSF, . . .. They can be scale-dependent.

Current methods: |m| = a few to a few 10

Challenges such as STEP1, STEP2, great08, great10, great3 quantified these
biases with blind simulationes.
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[Day 1] Measurement of weak lensing Shear biases and calibration

Shear measurement biases III
Calibration

Usually biases are calibrated using simulated or emulated data, or
self-calibration using the observed data themselves.

Many surveys produce their own image simulations with properties of galaxy
sample and PSF matching to data.

Calibration using the observed data has been developped in the last 5 years
(mainly by DES people), this is called Metacalibration.

However, image simulations are still required to

• Check and validate the metacalibrated shear measurements

• Quantify other biasa, e.g. detection bias
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[Day 1] Measurement of weak lensing Shear biases and calibration

Shear measurement biases IV

Functional dependence of m on
observables must not be too
complicated (e.g. not smooth,
many variables, large parameter
space), or else measurement is not

calibratable!

18 M. Jarvis, E. Sheldon, J. Zuntz, T. Kacprzak, S. Bridle, et al.

Figure 13. Shear bias for IM3SHAPE measurements on the GREAT-DES simulation: multiplicative bias (left) and PSF leakage (right), as functions of the
measured (S/N)w and Rgp/Rp. The fits, which are used to calibrate the shear estimates on the data, are smooth functions in both of these variables. Solid
lines show the fits vs (S/N)w at particular choices of Rgp/Rp.

function of pixel intensities affected by Gaussian noise, resulting in
noise bias in the estimated shear values. The IM3SHAPE algorithm,
being a maximum likelihood estimator, is known to suffer from this
effect.

In addition, we found a small selection bias, which is intro-
duced by using recommended IM3SHAPE flags (cf. §7.3.3) and the
selection based on galaxy size and S/N (cf. §9.1). We also expect
a small amount of model bias due to realistic galaxies not always
being well fit by our bulge-or-disc model. This model bias is ex-
pected to be small compared to the requirements (Kacprzak et al.
2014).

To account for all of these sources of error in our shape
measurements, we calculated bias corrections of the form shown
in equation 3.4. Specifically, we fit for m and ↵ as functions of
(S/N)w (defined in equation 7.3) and Rgp/Rp (the FWHM of the
PSF-convolved galaxy divided by the FWHM of the PSF) on sim-
ulated data from the GREAT-DES simulation (cf. §6.1). We ran
IM3SHAPE on the simulated data in the same way as we do on the
DES data, including the same choices of input parameters.

In principle, the two multiplicative terms, m1 and m2 should
be treated as independent biases. In practice, however, when av-
eraged over many galaxies we find virtually no difference be-
tween the two. As such, we correct both e1 and e2 by the average
m = (m1 + m2)/2.

We fit both m and ↵ as two-dimensional surfaces in the S/N

and size parameters. Due to the complicated structure of this sur-
face, we fit m with 15 terms of the form (S/N)�x

w (Rgp/Rp)�y ,
where x and y are various powers ranging from 1.5 to 4. To control
overfitting, we used a regularization term in the least-square fit and
optimized it such that the fitted surface has a reduced �

2 = 1. A
similar procedure was applied to ↵, where we used 18 parameters
in the fit. In Figure 13 we show these fits as curves in (S/N)w in
bins of Rgp/Rp. However, the actual functions are smooth in both
parameters.

We checked if our calibration is robust to the details of this
model by (1) varying the number of terms in the basis expansion
and (2) splitting the training data into halves. For both tests the
changes in the mean multiplicative and additive corrections applied
to the SV data did not vary by more than 1%.

In §7.2, we mentioned that (S/N)w is a biased measure of

S/N with respect to shear, so if it is used to select a population of
galaxies, it will induce a selection bias on the mean shear. Rgp/Rp

similarly induces such a bias. Thus, when we bin the shears by
these quantities to construct the calibration functions, there is a se-
lection bias induced in every bin. The scale of selection bias reaches
m � �0.05 for the most populous bins. This is not a problem for
the correction scheme so long as the overall selection is also made
using these same quantities. In that case, the shear calibration au-
tomatically accounts for the selection bias in addition to the noise
bias.

We tried using (S/N)r in the calibration model rather than
(S/N)w to help reduce the level of the selection bias in each bin,
but we found that it does not perform as well as using the standard
(S/N)w. Perhaps not surprisingly, the noise bias seems to be more
related to the S/N of the actual galaxy than it is to the counterfac-
tual round version of the galaxy used for (S/N)r . In future work, it
would be interesting to seek an effective shear calibration scheme
that disentangles noise and selection biases, but we have not found
one yet.

We used these fits to estimate the multiplicative and addi-
tive corrections to use for every galaxy in the IM3SHAPE cata-
logue. However, it should be stressed that this bias estimate is it-
self a noisy quantity, being based on noisy estimates of the size
and S/N . Therefore one should not directly apply the correction to
each galaxy individually. Rather, the mean shear of an ensemble of
galaxies should be corrected by the mean shear bias correction of
that same ensemble (cf. §9.2).

Note that a selection bias can appear whenever a subset of
galaxies is selected from a larger sample. In the cosmological anal-
ysis, we apply recommended IM3SHAPE flags, cut on Rgp/Rp and
(S/N)w, and then typically split the galaxies into redshift bins.
The redshift selection in particular is not used in the shear calibra-
tion process, so it is possible for there to be uncorrected selection
biases in the different redshift bins. In §8.5, we test that the shear
calibration nevertheless performs well in this scenario by applying
the same selection procedure to the GREAT-DES simulation. There
we demonstrate that all biases are removed to the required tolerance
level in all redshift bins.

MNRAS 000, 1–37 (2015)

(Jarvis et al. 2016)
Requirements
Normalisation �8 / m!
Necessary knowledge of residual biases |�m|, |�c| (after calibration):
Current surveys 1-5%.
Future large missions (Euclid, LSST, . . .) 10�4 = 0.1%!
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[Day 1] Measurement of weak lensing Shear biases and calibration

Shear measurement biases V

Complex bias dependencies
Need to account for bias as function of more than one galaxy property.
E.g. size and SNR. Also need to know bulge and disc fraction of observed
population. DES Year 1 Results: Weak Lensing Shape Catalogues 19

Figure 13. Top: Multiplicative bias estimates for Y1 IM3SHAPE, using the HOOPOE image simulations for objects fitted using bulge profiles (right) and disc
profiles (left) . The colored circles represent the grid of directly evaluated m described in the text. The underlying colour map is generated using radial basis
functions to interpolate between nodes, and is for illustrative purposes only. Bottom: Bulge fraction as a function of galaxy signal-to-noise and size. The bulge
fraction is calculated on a 16 � 16 grid and interpolated to generate the smooth map shown. The circles represent the grid cell positions, and are drawn at a
size proportional to the total IM3SHAPE lensing weight of galaxies contained.

Figure 14. Multiplicative bias for IM3SHAPE measured from the full Y1 simulations, as a function of galaxy signal-to-noise and size. The blue circles in both
panels are the measured biases prior to calibration. The other points, labelled grid, RBF and polynomial are the result of correction using the three methods
described in the text. The shaded band marks the ±1� Gaussian width of the recommended m prior for the Y1 IM3SHAPE catalogue.

MNRAS 000, 1–36 (2015)

(Zuntz et al. 2018)
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[Day 1] Measurement of weak lensing Shear biases and calibration

Metacalibration I
Going back to the definition of multipliative and additive shear bias:

⌦
"
obs
i

↵
= �

obs
i = (1 + mi)�

true
i + ci; i = 1, 2.

This ensemble estimator was derived from the equation for a single galaxy:

"
obs
i = "

s
i + �

obs
i = "

s
i + (1 + mi)�

true
i + ci; i = 1, 2.

Interpreting the l.h.s. as a function of the shear, we can write the
multiplicative bias as first derivative of that function:

@"
obs
i

@�
true
i

= 1 + mi.

Since both ellipticity and shear are two-component quantities, we can
generalise this expression and write it as matrix equation. This introduces the
shear response matrix R.

@"
obs
i

@�j
= Rij .
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[Day 1] Measurement of weak lensing Shear biases and calibration

Metacalibration II

On the diagonal we find the original scalars 1 + mi. On the o↵-diagonal there
are cross-terms of multiplicative bias,

R =

✓
1 + m1 R12

R21 1 + m2

◆

We have to go back to an ensemble of galaxies, to estimate shear in a sensible
way. For that we compute the ensemble average of the shear response, hRi as
the average shear bias of the sample, and get

⌦
"obs

↵
= �obs = hRi �true + c.

To calibrate the ensemble, we subtract the additive bias c and multiply with
the inverse response matrix hRi

�1.
Therefore, to calibrate, we can do this for each individual galaxy. The
calibrated shape of a galaxy is then

"cal = hRi
�1 �

"obs
� c

�
,
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[Day 1] Measurement of weak lensing Shear biases and calibration

Metacalibration III

and we see, by forming the ensemble average, that this is indeed unbiased:

⌦
"cal

↵
= �.

Note: Calibrating each galaxy by its own R is generally a bad idea, since:

• The estimate of a single R is extremely noisy (see TDs!), the matrix
might not be invertible.

• Correlations between R and � might be amplified.

In practise, the derivative R is computed with finite di↵erences. For that, we
add some small shear ±��1,2 ⇡ 0.02 to each observed galaxy image, and
re-measure the ellipticity "±. Then

Rij ⇡
"
+
i � "

�
i

2��j
.

Main di�culty: Need to deconvolve with the PSF first.
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[Day 1] Measurement of weak lensing Shear biases and calibration

Metacalibration IV

Guinot Axel

Metacalibration

Deconvolution of the PSF

Application of an artificial shear

Re-convolution with 

the PSF

(Ref : Huff E., Mandelbaum R. 2017, arXiv:1702.02600)

Presentation of ShapePipe, First results on CFIS/UNIONS

(Sheldon & Hu↵ 2017, Hu↵ & Mandelbaum 2017) — (Slide from A. Guinot.)
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[Day 1] Measurement of weak lensing PSF correction & diagnostics

PSF correction
DES Year 1 Results: Weak Lensing Shape Catalogues 7

Figure 4. An example size-magnitude diagram for a single CCD image,
used to identify stars.

so the PSF must be interpolated from the locations of stars, where
it is observed, to the locations of galaxies, where it is needed.

The process for PSF estimation in Y1 is largely unchanged
from the procedure used in J16. We briefly recap the procedure
described therein, emphasizing the changes we have made since
SV.

3.1 Selection of PSF Stars

We use the same method for identifying and selecting PSF stars as
J16. The initial identification of candidate PSF stars involved using
a size–magnitude diagram of all the objects detected on the im-
age. For the magnitude, we used the SEXTRACTOR measurement
MAG_AUTO. For the size, we use the scale size, �, of the best-fitting
elliptical Gaussian profile using the adaptive moments algorithm
HSM (Mandelbaum et al. 2005).

The stars are easily identified at bright magnitudes as a locus
of points with size nearly independent of magnitude. The galaxies
have a range of sizes, all larger than the PSF size. The candidate
PSF stars are taken to be this locus of objects from about m � 15,

where the objects begin to saturate, down to m � 22, where the
stellar locus merges with the locus of faint, small galaxies.

From this list of candidate stars, we remove objects that are
not suitable to use as models of the PSF. Most importantly, we re-
move all objects within 3 magnitudes of the faintest saturated star in
the same CCD exposure in order to avoid stars whose profiles are
affected by the so-called “brighter-fatter effect” (Antilogus et al.
2014; Guyonnet et al. 2015; Gruen et al. 2015) - see §3.2. This
magnitude cutoff varies between 18 and 19.5.

In addition, we remove stars that overlap the “tape bumps”.
The CCDs on DECam each have six spots where 2 mm � 2 mm
�100 µm-thick spacers were placed behind the CCDs when they
were glued to their carriers (see Flaugher et al. 2015). This alters
the electric field and hence the PSF is distorted near each spacer.
Figure 4 shows such a size-magnitude diagram for a representative
CCD image. The stellar locus is easily identified by eye, and the
stellar sample identified by our algorithm is marked in pink and
green. The pink points are stars that are removed by our various
selection cuts, while the green points are the stars that survive these
cuts.

Figure 5. The distribution of the numbers of stars used to constrain the PSF
model per CCD image.

Figure 6. The distribution of the median seeing FWHM of the stars used to
model the PSF in the riz-bands. The median seeing of these distributions
is 1.0003 in the r-band, 0.0095 in the i-band, 0.0089 in the z-band, and 0.0096 in
the three bands overall.

We find a median of 115 useful stars per CCD image, which
we use to constrain the PSF model. The distribution of PSF stars
per CCD exposure is shown in Figure 5. In Figure 6, we show
the distribution of the median measured full-width half-maximum
(FWHM) for the PSF stars used in our study, restricted to the ex-
posures used for shear measurements. The overall median seeing is
0.
0096, which is significantly better than we obtained in the SV ob-

servations (1.
0008), but still somewhat larger than the original target

of 0.
0090.
Occasionally, this process for selecting stars fails, in which

case we add the CCD’s image to a “blacklist” of those not used
for shear estimation. For instance, if fewer than 20 stars are identi-
fied as PSF stars (e.g. because there is a very bright star or galaxy
dominating a large fraction of the CCD area), then we blacklist the
CCD image. Sometimes the star-finding algorithm finds the wrong

MNRAS 000, 1–36 (2015)

(Zuntz et al. 2018) (Guinot et al. 2021)

(Jarvis et al. 2016)

(Gentile et al. 2013)

• Select clean sample of stars

• Measure star shapes

• Create PSF model and interpolate (pixel values, ellipticity, PCA coe�cients,
. . .) to galaxy positions. Space-based observations: global PSF model from
many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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[Day 1] Measurement of weak lensing PSF correction & diagnostics

PSF correction

(Zuntz et al. 2018) (Guinot et al. 2021)

12 M. Jarvis, E. Sheldon, J. Zuntz, T. Kacprzak, S. Bridle, et al.

Figure 9. Whisker plots of the mean PSF pattern (left) and of the mean residual after subtracting off the model PSF (right) as a function of position in the
focal plane. The length of each whisker is proportional to the measured ellipticity, and the orientation is aligned with the direction of the ellipticity. There is
still some apparent structure in the plot of the residuals, but the level is below the requirements for SV science. Reference whiskers of 1% and 3% are shown
at the bottom of each plot, and we have exaggerated the scale on the right plot by a factor of 10 to make the residual structure more apparent.

Figure 10. The � statistics for the PSF shape residuals. Negative values are shown in absolute value as dotted lines. The shaded regions are the requirements
for SV data.

MNRAS 000, 1–37 (2015)

(Jarvis et al. 2016)

(Gentile et al. 2013)

• Select clean sample of stars

• Measure star shapes

• Create PSF model and interpolate (pixel values, ellipticity, PCA coe�cients,
. . .) to galaxy positions. Space-based observations: global PSF model from
many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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[Day 1] Measurement of weak lensing PSF correction & diagnostics

PSF correction

(Zuntz et al. 2018) (Guinot et al. 2021)

(Jarvis et al. 2016)

A&A 549, A1 (2013)

True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 8.26 � 10�4 3.60 � 10�5 4.59 � 10�3 1.45 � 10�4

IDW 1.28 � 10�3 5.67 � 10�5 9.37 � 10�3 2.95 � 10�4

Kriging 7.06 � 10�4 3.16 � 10�5 3.57 � 10�3 1.13 � 10�4

Polyfit 8.37 � 10�4 3.73 � 10�5 5.23 � 10�3 1.64 � 10�4

B-splines 6.28 � 10�4 2.80 � 10�5 6.53 � 10�3 2.06 � 10�4

of FWHM, masking and telescope e�ects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more e�ec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 4.36 � 10�2 1.81 � 10�3 4.57 � 10�3 1.44 � 10�4

IDW 4.42 � 10�2 1.79 � 10�3 9.05 � 10�3 2.85 � 10�4

Kriging 4.61 � 10�2 1.79 � 10�3 1.11 � 10�2 3.49 � 10�4

Polyfit 5.82 � 10�2 1.89 � 10�3 5.04 � 10�3 1.58 � 10�4

B-splines 5.97 � 10�2 1.88 � 10�3 6.31 � 10�3 1.99 � 10�4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM

A1, page 16 of 20

(Gentile et al. 2013)• Select clean sample of stars

• Measure star shapes

• Create PSF model and interpolate (pixel values, ellipticity, PCA coe�cients,
. . .) to galaxy positions. Space-based observations: global PSF model from
many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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PSF correction

(Zuntz et al. 2018) (Guinot et al. 2021)

(Jarvis et al. 2016)

A&A 549, A1 (2013)

True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 8.26 � 10�4 3.60 � 10�5 4.59 � 10�3 1.45 � 10�4

IDW 1.28 � 10�3 5.67 � 10�5 9.37 � 10�3 2.95 � 10�4

Kriging 7.06 � 10�4 3.16 � 10�5 3.57 � 10�3 1.13 � 10�4

Polyfit 8.37 � 10�4 3.73 � 10�5 5.23 � 10�3 1.64 � 10�4

B-splines 6.28 � 10�4 2.80 � 10�5 6.53 � 10�3 2.06 � 10�4

of FWHM, masking and telescope e�ects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more e�ec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 4.36 � 10�2 1.81 � 10�3 4.57 � 10�3 1.44 � 10�4

IDW 4.42 � 10�2 1.79 � 10�3 9.05 � 10�3 2.85 � 10�4

Kriging 4.61 � 10�2 1.79 � 10�3 1.11 � 10�2 3.49 � 10�4

Polyfit 5.82 � 10�2 1.89 � 10�3 5.04 � 10�3 1.58 � 10�4

B-splines 5.97 � 10�2 1.88 � 10�3 6.31 � 10�3 1.99 � 10�4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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(Gentile et al. 2013)• Select clean sample of stars

• Measure star shapes

• Create PSF model and interpolate (pixel values, ellipticity, PCA coe�cients,
. . .) to galaxy positions. Space-based observations: global PSF model from
many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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Galaxy selection
Galaxy = extended objects, larger than the PSF. The spread model uses the
PSF model, to account for spatially varying PSF.
Compare image to extended source, and PSF.

Axel Guinot et al.: ShapePipe: a new shape measurement pipeline and weak-lensing application to UNIONS/CFIS data

Parameter Value
BASIS_TYPE PIXEL
PSF_SAMPLING 1
CENTER_KEYS XWIN_IMAGE,

YWIN_IMAGE
PSFVAR_KEYS XWIN_IMAGE,

YWIN_IMAGE
PSFVAR_DEGREES 2

Table 1. PSFEx parametrisation. All other parameters are kept to their
default values.

Parameter Value
THRESH_TYPE RELATIVE
DETECT_THRESH 1.5
DETECT_MINAREA 10
FILTER Y
FILTER_NAME kernel_3x3.conv (default)
DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.001

Table 2. SExtractor parametrisation. All other parameters are kept to
their default values.

of the ngmix software package5 (Sheldon & Hu� 2017). We also
show our measurement of the PSF leakage and additive shear
bias.

5.1. Source extraction

The first step is the extraction of the sources of interest, which
we perform on stacked images. Stacked images provide a bet-
ter signal-to-noise ratio, and temporal artifacts have a reduced
amplitude with respect to single exposures. For the source ex-
traction we make use of SExtractor, with the parametrization
presented in Table 2. The detection is performed on a filtered
image, for which we used the default 3x3 convolution kernel.
As was done for the stars, we do not include sources that are
too small (DETECT_MINAREA = 10, see Sect. 4.1). This choice
could lead to a detection bias, but overall we are more confident
in the purity of our sample.

5.2. Galaxy selection

Among the several techniques available to select galaxies we
use the spread model introduced in Mohr et al. (2012) and De-
sai et al. (2012). This method provides a classification between
point-source-like objects and extended sources. Here we en-
counter the same di�culty as for the star selection, in that we do
not have access to colour information which would help to more
accurately select our galaxy sample. However, as we demon-
strate below, a conservative spread-model classification based on
a single band is su�ciently accurate to yield a pure galaxy sam-
ple. Another di�culty at this stage is the handling of the PSF
model. Indeed, as discussed in section 4.2, PSF models extracted
from stacked images proved to be unreliable. Instead, we extrap-
olate the PSF information from the measurement on the single
exposures to the stacked images. Here we present the equations
of the spread model, s, and the spread model error, �s:

s =
GT W I
PT W I

� GT W P
IT W P

; (1)

5 https://github.com/esheldon/ngmix

Fig. 4. Spread model classification. The orange area corresponds to the
objects that have been selected for the galaxy sample. (The yellow con-
tours represent a density 8 times larger than red).

�s =
1

(PT W I)2

�
(GTCov G)(PT W I)2(PT W I)2

+ (PT Cov P)(GT W I)2

�2(GT Cov P)(GT W I)(PT W I)
�1/2
, (2)

with

– P: PSF represented by an isotropic Gaussian with sigma
equal to the mean sigma of the PSF model of the single epoch
images interpolated to the position of the object detected on
the stack.

– G: Extended sources represented by an exponential profile
with a scale radius of 1/16 PSFFWHM convolved by the PSF
P.

– I: The image postage stamp of the object.
– W: The weight image postage stamp.
– Cov: The covariance matrix of the noise, assumed to be di-

agonal, Covi j = �i jW�1
ii

This implementation has been tested on a set of simulated im-
ages of stars and galaxies (which will be described in more detail
in a future paper). The results show a contamination of 0.7% of
stars misclassified as galaxies.

We then used the spread model to make the selection pre-
sented below:

– s + 2 �s > 0.0003
– s > 0
– 20 < MAG_AUTO < 26,

where s is given by (1), and �s by (2). The cuts are illustrated in
Fig. 4.

5.3. Metacalibration

Metacalibration is a method introduced by Hu� & Mandelbaum
(2017) and was used in the DES collaboration (Zuntz et al.
2018). This method allows one to calibrate shear measurements
without the need to create a large number of time-consuming
image simulations. It consists in measuring the response, R, of a
shape measurement algorithm to a shear artificially applied to an
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P PSF

G model of extended source ⇤ P

I observed image

W weight
Axel Guinot et al.: ShapePipe: a new shape measurement pipeline and weak-lensing application to UNIONS/CFIS data
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Table 1. PSFEx parametrisation. All other parameters are kept to their
default values.
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THRESH_TYPE RELATIVE
DETECT_THRESH 1.5
DETECT_MINAREA 10
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FILTER_NAME kernel_3x3.conv (default)
DEBLEND_NTHRESH 32
DEBLEND_MINCONT 0.001

Table 2. SExtractor parametrisation. All other parameters are kept to
their default values.

of the ngmix software package5 (Sheldon & Hu� 2017). We also
show our measurement of the PSF leakage and additive shear
bias.

5.1. Source extraction

The first step is the extraction of the sources of interest, which
we perform on stacked images. Stacked images provide a bet-
ter signal-to-noise ratio, and temporal artifacts have a reduced
amplitude with respect to single exposures. For the source ex-
traction we make use of SExtractor, with the parametrization
presented in Table 2. The detection is performed on a filtered
image, for which we used the default 3x3 convolution kernel.
As was done for the stars, we do not include sources that are
too small (DETECT_MINAREA = 10, see Sect. 4.1). This choice
could lead to a detection bias, but overall we are more confident
in the purity of our sample.

5.2. Galaxy selection

Among the several techniques available to select galaxies we
use the spread model introduced in Mohr et al. (2012) and De-
sai et al. (2012). This method provides a classification between
point-source-like objects and extended sources. Here we en-
counter the same di�culty as for the star selection, in that we do
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a single band is su�ciently accurate to yield a pure galaxy sam-
ple. Another di�culty at this stage is the handling of the PSF
model. Indeed, as discussed in section 4.2, PSF models extracted
from stacked images proved to be unreliable. Instead, we extrap-
olate the PSF information from the measurement on the single
exposures to the stacked images. Here we present the equations
of the spread model, s, and the spread model error, �s:

s =
GT W I
PT W I

� GT W P
IT W P

; (1)

5 https://github.com/esheldon/ngmix

Fig. 4. Spread model classification. The orange area corresponds to the
objects that have been selected for the galaxy sample. (The yellow con-
tours represent a density 8 times larger than red).

�s =
1

(PT W I)2

�
(GTCov G)(PT W I)2(PT W I)2

+ (PT Cov P)(GT W I)2

�2(GT Cov P)(GT W I)(PT W I)
�1/2
, (2)

with

– P: PSF represented by an isotropic Gaussian with sigma
equal to the mean sigma of the PSF model of the single epoch
images interpolated to the position of the object detected on
the stack.

– G: Extended sources represented by an exponential profile
with a scale radius of 1/16 PSFFWHM convolved by the PSF
P.

– I: The image postage stamp of the object.
– W: The weight image postage stamp.
– Cov: The covariance matrix of the noise, assumed to be di-

agonal, Covi j = �i jW�1
ii

This implementation has been tested on a set of simulated im-
ages of stars and galaxies (which will be described in more detail
in a future paper). The results show a contamination of 0.7% of
stars misclassified as galaxies.

We then used the spread model to make the selection pre-
sented below:

– s + 2 �s > 0.0003
– s > 0
– 20 < MAG_AUTO < 26,

where s is given by (1), and �s by (2). The cuts are illustrated in
Fig. 4.

5.3. Metacalibration

Metacalibration is a method introduced by Hu� & Mandelbaum
(2017) and was used in the DES collaboration (Zuntz et al.
2018). This method allows one to calibrate shear measurements
without the need to create a large number of time-consuming
image simulations. It consists in measuring the response, R, of a
shape measurement algorithm to a shear artificially applied to an
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[Day 1] Measurement of weak lensing PSF systematics

Quantifying PSF systematics: leakage I

PSF leakage
Define PSF leakage via additional term with amplitude ↵,

�
obs
i = (1 + mi)�

true
i + ci + ↵ "

PSF
i ; i = 1, 2.

There are two methods to determine ↵.

1. Via linear regression. Fit "obs (remember: h"
obs

i = �) as function of "PSF.
E.g. in bins of PSF ellipticity.
We can also look at galaxy ellipticity as function of PSF size, as cross
check.
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[Day 1] Measurement of weak lensing PSF systematics

Quantifying PSF systematics: leakage IIPSF leakage: ellipticity

MCCD psfex

PSF leakage: size
psfex

PSF leakage: scale-dependence

MCCD

MCCD psfex

Weighted average alpha = 0.0449

Weighted average alpha = 0.0366

CFIS W3 field.
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[Day 1] Measurement of weak lensing PSF systematics

Quantifying PSF systematics: leakage III

2. Via correlation functions.

↵(✓) =
⇠
gp
+ (✓) � hegali

⇤
hePSFi

⇠
pp
+ (✓) � |hePSFi|2

,

This results in a scale-dependent estimate.

CFIS, (Guinot et al. 2021).
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[Day 1] Measurement of weak lensing PSF systematics

Quantifying PSF systematics: Cross-correlation
function. I

Null test: ⇠sys correlation between star and galaxy shapes expected to vanish,
unless PSF correction (using stars to correct galaxy shapes) is not perfect.

⇠sys = h"
⇤
"i

This measures residual PSF pattern leakage onto galaxy field.
Caveat: LSS can show chance alignments with PSF pattern. Sample or cosmic

variance has to be accunted for ! N -body simulations!

CFHTLenS 9

Figure 1. The star-galaxy cross correlation function �sg(✓) for the eight
individual exposures in example field W1m0m0 as a function of angular
separation (triangles, where each panel is a different exposure). The mea-
sured angular correlation function in each exposure can be compared to
the predicted angular star-galaxy correlation (equation 8, shown as a curve)
calculated using only the zero separation measure �sg(0) (shown offset,
circle). The correlation between the exposures and angular scales is shown
in the covariance matrix of the data points in the upper right panel. Each
block shows one of the eight exposures and contains a 6 � 6 matrix show-
ing the correlation between the angular scales. The greyscale bar shows the
amplitude of the values in the matrix.

is a reasonable model for the measured star-galaxy correlation. We
also repeated the analysis for our sample fields using the measured
stellar object ellipticities in contrast to the model PSF ellipticity.
Whilst our measurement errors increased, our findings were un-
changed such that for the remainder of our systematics analysis we
conclude that we can safely consider only the zero-lag star-galaxy
cross correlation function �sg(0) as calculated using the model PSF
ellipticity.

3.3 Estimating the level of PSF anisotropy contamination

Assuming the linear shear measurement model of equation 3 is a
good description of the systematics within the data, the systematic
error contribution �⇠ to the cosmological measure of the two-point
shear correlation function ⇠ = ��obs

�
obs� is given by

�⇠sys = AT
sysCAsys , (9)

which can be estimated from the data via8

�⇠obs = �T
sgC�1�sg . (10)

When calculating �⇠obs from a very large area of data, such that
the PSF is fully uncorrelated with the intrinsic ellipticity, measure-
ment noise and cosmological shear, the first three terms in the right

8 Note that for a single exposure image, equations 9 and 10 reduce to the
more familiar results of Bacon et al. (2003) with ��sys = A2�e�e�� and
��obs = ��obse��2/�e�e��.

hand side of equation 6 are zero and �⇠obs = �⇠sys. In this case
the PSF correction is deemed successful when �⇠obs is found to
be consistent with zero. This method for data verification has been
applied to many previous weak lensing surveys (see for example
Bacon et al. 2003) but only in an ensemble average across the full
survey area and for single stacked images. By taking an ensemble
average of �⇠obs across the survey, one explicitly assumes that the
true level of PSF contamination that we wish to estimate is indepen-
dent of the variations in the quality of the data. For ground-based
observations where the data quality varies considerably we might
expect our ability to remove the PSF to be reduced in some particu-
lar instances, for example poorer seeing or low signal-to-noise data.
By determining �⇠obs averaged across the survey we could easily
miss a small fraction of the data which exhibit a strong PSF resid-
ual. In the worst case scenario, as the CFHTLS PSF exhibits strong
variation in direction and amplitude between exposures, PSF resid-
ual effects could easily cancel out in an ensemble average (see Sec-
tion 5.2 for further discussion on this point). We therefore choose to
apply this methodology to individual one square degree MegaCam
fields (hereafter referred to as a field), in order to identify fields
with exposures that exhibit a strong PSF residual.

For the individual analysis of a one square degree field, we
can no longer assume that �⇠obs = �⇠sys as the three noise terms
in the right hand side of equation 6 can be significant simply from
a chance alignment of cosmological shear, random measurement
noise or intrinsic ellipticities with the PSF. Using one square de-
gree patches of the CFHTLenS ‘clone’ (see Section 3.1) we find
�⇠obs > �⇠sys even when Asys = 0. To illustrate this point we
multiply each component in equation 6 by the inverse PSF covari-
ance C�1 to define Aobs,

Aobs = C�1�sg = Anoise + A� + Asys , (11)

such that Aobs would be equal to Asys, the scale of the true residual
PSF signal in each exposure, if the noise terms Anoise and A�

could be ignored, where

Anoise = C�1�(�int + ⌘) e�� , (12)

A� = C�1�� e�� . (13)

For each CFHTLenS field we first calculate C�1 from the measured
PSF model in each exposure. We then calculate the distribution of
values we measure for Anoise and A� for each field, keeping C
fixed, but varying �

int + ⌘ and � using all 184 independent simula-
tions from the ‘clone’. Figure 2 compares the distribution of values
measured for each component of Anoise (dashed) and A� (dotted)
for all simulated realizations of the fields, normalized to the total
number of exposures in the survey. This can be compared to the
total discrete number of exposures with Aobs as measured from the
complete CFHTLenS data set (circles). Note that we use a scalar
symbol here as we show the distribution of measurements over all
exposures in the survey rather than the vector which contains the
measurement across all exposures in a particular field. This figure
shows that the combined distribution of Anoise and A� (solid) as
measured from the simulated data is generally consistent with the
observed distribution of Aobs over all CFHTLenS MegaCam imag-
ing. We do, however, observe some outliers from the expected dis-
tribution and indications of an increased width of the observed dis-
tribution from the simulated distribution. This comparison reveals
the presence of a systematic PSF residual signal in a small fraction
of our data.

Before we further develop our method to identify problem-
atic data in Section 3.4, we should pause to note a general cause

c� 0000 RAS, MNRAS 000, 000–000

(Heymans et al. 2012)
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[Day 1] Measurement of weak lensing PSF systematics

Quantifying PSF systematics: Cross-correlation
function. II

158 C. Heymans et al.

4.2 Field selection

For each field we calculate the systematics test parameter U (equa-
tion 14) applying the calibration corrections described in Sec-
tion 4.1. We then calculate the probability that !ξ obs is consistent
with zero systematics [p(U = 0) as detailed in Section 3.4] and
set an acceptance threshold on this probability using a method that
we demonstrate in Fig. 4. Here, in the upper panel, we show the
measured systematic error observable #(!ξ obs) where the sum is
taken over all fields (hatched area includes the 1σ bootstrap error
on the measure). This can be compared with the distribution of val-
ues obtained from all the different realizations of the CFHTLenS
‘clone’ (solid line). The ‘clone’ distribution shows the probability of
measuring #(!ξ obs) from the full survey area if there were no PSF
residuals in the data. Note that by definition !ξ obs at zero-lag is a
positive quantity (see equation 10) so even for the simulated ‘clone’
catalogues which have zero systematics, by definition, #(!ξ obs) is
non-zero. For comparison we also show the distribution of #(!ξ obs)
that would be measured simply from a random correlation between

Figure 4. Comparison of the measured #(!ξobs) (hatched) where the sum
is taken over all fields (upper panel) or over the fields with a measured
probability of zero systematics p(U = 0) > 0.11 (lower panel). These
measures can be compared with the probability distribution of measuring
#(!ξobs) from the same number of fields realized in the systematics-free
CFHTLenS ‘clone’ (solid line). For the full data set (upper panel), we find
that the measured #(!ξobs) far exceeds what is expected from the simula-
tions. Once a conservative cut is applied to the data (lower panel) removing
25 per cent of the data, we find the measured #(!ξobs) is fully consistent
with the expected distribution for the same number of simulated fields. For
comparison, we also show the probability distribution of #(!ξobs) as mea-
sured from a random correlation between the pure cosmic shear γ and the
range of CFHTLenS PSFs (dashed line).

the pure cosmic shear γ and the range of CFHTLenS PSFs (dashed
line). The significance of this signal reiterates the points made in
Section 3.3 of how important it is to take into account both the
random intrinsic ellipticity noise and underlying cosmic shear in
this type of systematics analysis.

The conclusion we can draw from the upper panel of Fig. 4 is
that when we consider the full data set, the sum of the measured
star–galaxy cross-correlation is very significant compared to the
expectation from the simulated ‘clone’ catalogues. We therefore set
a criterion that selects only those fields above a tunable threshold
probability that !ξ obs is consistent with zero systematics [p(U =
0)]. By increasing the cut on p(U = 0) the measured systematic
error observable #(!ξ obs) decreases rapidly as using p(U = 0)
for our selection criteria preferentially rejects the fields with the
strongest systematic residual errors. As the number of fields in the
analysis decreases, the #(!ξ obs) expected from the ‘clone’ also
decreases. This is because it is summed only over the number of
fields remaining in the analysis and there are fewer positive numbers
to sum. We continue this rejection process until the 1σ confidence
region on our measured systematic error observable #(!ξ obs) is
in agreement with the peak of the probability distribution expected
for this quantity from the same number of fields in the ‘clone’
simulations (lower panel). It is interesting to note that the variance of
the simulated distributions also becomes consistent with the 1σ error
on the measured #(!ξ obs) when the threshold selection is optimized
in this way. This process sets a threshold of p(U = 0) > 0.11 below
which we label the field as ‘failed’. This leaves us with 75 per cent of
CFHTLenS fields which pass the systematics test. We investigate the
impact of this cut for two-point cosmic shear statistics in Section 5.

For a complete and detailed account of the analysis, we should
clarify at this point that the field selection and empirical c2 additive
calibration correction described here and in Section 4.1 are actually
calculated using a two-step iteration. We first select fields apply-
ing only the multiplicative m calibration correction (equation 18) as
calculated from our simulated image analysis in Miller et al. (2012).
This first-pass field selection safeguards that the empirical c2 cali-
bration correction we calculate from the selected data is unrelated to
the PSF. The additive correction that is empirically calculated from
these selected fields is then applied to the full survey. We then rerun
our systematics analysis on the full survey to reselect fields which
pass the systematics tests when both the multiplicative and first-pass
additive calibration corrections are included. This safeguards that
in the first-pass iteration, the additive error term, now corrected by
the c2 calibration, did not mask the presence of PSF residuals, or
appear as a PSF residual in exposures where the PSF is predomi-
nantly in the e⋆

2 direction. At this second-pass iteration, we lose two
fields and gain seven fields into our selected clean data sample. Fi-
nally, we empirically recalculate the additive calibration correction
c2 for this final set of selected fields to improve the accuracy of the
correction on the final field sample. This recalculation introduces a
small per cent level adjustment to the first-pass measure and is the
c2 calibration that is presented in equation (19).

Finally, we discuss duplicate fields, originally imaged with an
i′.MP9701 filter, and reimaged, after this initial filter was damaged
in 2007 October, with the replacement i′.MP9702 filter. In general,
we do not distinguish between these two periods of i′ imaging,
although the different filter response curves are of course accounted
for in our photometric redshift analysis (Hildebrandt et al. 2012).
For the purposes of this discussion, however, we will refer to these
two filters as i ′

1 and i ′
2. Duplicate fields were reimaged in order to

calibrate and assess the impact of the change of filter mid-survey,
in addition to some cases where preliminary concerns about the

C⃝ 2012 The Authors, MNRAS 427, 146–166
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

[Heymans et al. 2012, CFHTLenS]

Histogram of probability p that
⌃⇠obs ⇠ ⌃|⇠sys| is not zero (sum over
all pointings), from simulations.

Shaded region = data.

Magenta: simulations without LSS.
KiDS: Cosmological Parameters 41

Figure D8. The large-scale two-point correlation function with
✓ > 2 deg before (open symbols) and after (closed symbols) cor-
recting each tomographic slice for the additive bias shown in
Fig. D6. Each tomographic slice (increasing in redshift from left
to right) and KiDS-450 patch (labelled from top to bottom) is
shown. The hashed region shows the amplitude of the correction
and associated error. The cosmological signal (shown solid) is ex-
pected to be consistent with zero on these scales.

additive systematic biases in the measurement. We seek a
similar method for cosmic shear to validate our additive cal-
ibration strategy. There is no null signal, as such, but the
cosmic shear signal on very large scales is expected to be
consistent with zero within the statistical noise of KiDS-
450. Fig. D8 shows the measured ⇠+ on angular scales ✓ >

2 deg, before (open symbols) and after (closed symbols) cor-
recting each tomographic slice for the additive bias shown
in Fig. D6. The hashed region shows the amplitude of that
correction and associated error. After correction the large-
scale signal is consistent with zero, and with the best-fit
cosmological signal. This verifies the calibration correction.
It also sets an upper limit on the angular scales that can be
safely analysed for ⇠+. We set this limit at 1 deg, where the
measured amplitude of ⇠+ is more than an order of mag-
nitude larger than the large-scale cosmic-shear signal that
would be subtracted in error with this empirical calibration
strategy. On smaller scales of ✓ � 5 arcmin, where the cos-
mic shear signal-to-noise peaks (see Fig. 3), this large-scale
cosmic-shear subtraction is completely negligible. Note that
there is no equivalent upper ✓ limit for ⇠�. Additive terms
do not typically contribute to the ⇠� statistic as for square
geometries �ctct� = �c�c��.

D5 Star-galaxy cross correlation

We measure the correlation between star and galaxy ellip-
ticities to determine if any tiles exist in our sample with a
significant residual contamination resulting from an imper-

Figure D9. Amplitude of the star-galaxy shear cross-correlation
statistic ��obs summed over all KiDS-450 data tiles (hashed) and
mock tiles (solid). The contribution from cosmic shear to this
statistic is shown by the dashed histogram. In KiDS-450 we do
not reject any tiles based on this test since the value of ���obs

is fully consistent with the expectation from simulations which
model chance alignments between galaxies and the PSF due to
cosmic shear, shape noise and shot noise.

fect correction for the PSF. We use the method described in
Heymans et al. (2012) to assess the significance of galaxy-
PSF shape correlations in order to identify problematic tiles.
Previous surveys have used this strategy to flag and remove
significant fractions of the data: 25 per cent (CFHTLenS;
Heymans et al. 2012), 9 per cent (RCSLenS; Hildebrandt
et al. 2016) and 4 per cent (KiDS-DR1/2; Kuijken et al.
2015).

Briefly, the method uses the fact that most galaxies in a
tile have been observed in five di↵erent sub-exposures, with
di↵erent PSFs. It assumes that intrinsic galaxy ellipticities
average to zero, and uses the degree of shape correlation
between the corrected galaxies and the PSF models in the
di↵erent sub-exposures to estimate the amount of PSF print-
through in the tile’s measured shear field. This PSF contam-
ination is then cast in the form of a non-negative contam-
ination, �⇠obs, to the 2-point galaxy ellipticity correlation
function in that tile (see eq. 10 in Heymans et al. 2012).
Mock shear maps with realistic noise properties are used
to generate distributions of this statistic in the absence of
systematic errors, in order to assess the significance of the
measured values.

The hashed bar in Fig. D9 shows the value of the �⇠obs

statistic, measured in each 1 deg2 tile, and then summed over
the full KiDS-450 sample. For comparison, the histogram
in Fig. D9 shows the distribution of ��⇠obs measured for
184 systematic-free mock realisations of the KiDS-450 sur-
vey. We find that the star-galaxy cross correlation measured
in the data agrees well with the signal measured from our
systematic-free mocks.

This agreement is further explored in Fig. D10. For
each tile we determine the probability p(U = 0) that deter-
mines how likely it is that its measured �⇠obs is consistent
with zero systematics (see Heymans et al. 2012 for details).
Fig. D10 shows how the measured cumulative probability
distribution for the KiDS-450 tiles agrees well with a uniform
distribution. As such even the small handful of tiles with low

MNRAS 000, 1–48 (2016)

[Hildebrandt et al. 2016, KiDS-450]
Martin Kilbinger (CEA) WL Part cycle 2 32 / 139



[Day 1] Measurement of weak lensing PSF systematics

Quantifying PSF systematics: Cross-correlation
function. III

CFIS, (Guinot et al. 2021).
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