
[Day 3] Galaxy-galaxy lensing measurements Galaxy – dark-matter connection II

GGL: model-independent measurement of b/r

Idea:
Combine weak lensing and galaxy clustering to determine b and r.

• Galaxy clustering h�
2
gi

• Galaxy-galaxy lensing, measures h�g�i

• Cosmic shear, measures h�
2
i

Cosmic shear is the most di�cult to measure, so first measurements only used
galaxy clustering and galaxy-galaxy lensing.

Form ratio:
h�g�i(✓)

h�g�gi(✓)
=

br

b2
=

b

r
.

Any cosmology-dependence, e.g. of clustering, drops out in the ratio.
These density correlations are projected to weak-lensing observables, and b

and r (if constant) can directly be measured.
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GGL: model-independent measurement of b and r I

Next: Combine all three
h�

2
gi, h�g�i, h�

2
i.

to measure b and r.
Di�culty: Structure along all redshifts contribute to cosmic shear, not only
mass associated with foreground galaxy sample �g.

Solutions:

• Choose background sample such that maximum lensing e�ciency
coincides with foreground redshift.

• Add correction functions with minor dependency on cosmology
(geometry).
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Redshift calibration factors870 P. Simon et al.: Galaxy bias in GaBoDS. VI.

Fig. 4. Left: the two figures show the scale-dependence of the calibration factors f1/2, for sample FORE-I only, for three di�erent fiducial cos-
mologies; SCDM (dotted): �m = 1.0, �� = 0; �CDM (solid): �m = 0.3, �� = 0.7; OCDM (dashed): �m = 0.3, �� = 0. Right: these plots were
obtained by averaging f1/2 over a range of aperture radii, 1� � �ap < 60�, assuming di�erent fiducial cosmologies. For all cosmologies, �m is the
only free parameter. The others are: �� = 1 ��m, � = �mh, �8 = 0.41��0.56

m and h = 0.7. The average values for f1/2 in this figure are divided by
f1/2(�m = 0.3), the here adopted calibration. For pf (z), we have FORE-I (solid), FORE-II (dashed) and FORE-III (dotted); pb(z) is as in BACK.

According to Hoekstra et al. (2002), the calibration factors
have to be calculated based on some theoretical Pm(k, w) by
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where �Nn(�ap)Mm
ap(�ap)�, n + m = 2, in these equations have to

be evaluated by Eqs. (18)–(20) and (26)–(28), specifically for
the redshift distributions of foreground, pf(z), and background
galaxies, pb(z), in the data and for a fiducial cosmological model
assuming that galaxies are not biased with respect to the dark
matter, i.e. b(k, w) = r(k, w) = 1.

Importantly, it turns out (van Waerbeke 1998) that the cal-
ibration factors f1 and f2 vary only slightly, mostly on scales
below �ap � 5�, for realistic aperture radii �ap within a fixed fidu-
cial cosmological model. This is strictly true if the dark matter
power spectrum can be described by a power law, or – since we
are, for a fixed aperture radius, sensitive to only a very localised
range in �-space due to the adopted aperture filter – if the power
spectrum is approximately a power law over the selected range
in Fourier space.

For examples, see Fig. 4 (upper left and bottom left)
where f1/2 are plotted for three fiducial cosmological models
assuming the redshift distribution of FORE-I and BACK. The

calibration factors show very little dependence on �ap. Hence,
a scale-dependence of the uncalibrated measurements immedi-
ately indicates a real scale-dependence in the bias parameter
without fixing the fiducial cosmology! Moreover, it means that
the calibration factors can be worked out for the linear or quasi-
linear regime which is understood much better than the non-
linear regime. Still, when calibrating our measurements we also
take into account the dependence on scale.

We calculated the calibration factors f1/2 for a range of spa-
tially flat fiducial cosmologies, �m + �� = 1, using the redshift
distribution in our data set (right column in Fig. 4), assuming
constraints on �8 � ��0.56

m from cluster abundances (White et al.
1993) and the shape parameter � = �mh for a negligible baryon
density �b � 0 (Efstathiou et al. 1992). The relation between �8
and �m is scaled such that �8 = 0.8 corresponds to �m = 0.3.
This value of �8 for the power spectrum normalisation is sug-
gested by the GaBoDS data (Hetterscheidt et al. 2006). Note that
the value of �8, like for example �8 = 0.9 instead of �8 = 0.8,
has virtually no impact on f1/2 and, therefore, on the measured
linear stochastic bias.

Predicting the power spectra, P�, P�n and Pn, requires a
model for the redshift evolution of the 3D power spectrum
Pm(k, w). We use the standard prescription of linear structure
growth and the Peacock & Dodds (1996) prescription for the
evolution in the non-linear regime. A more recent and more ac-
curate description of the non-linear power spectrum is given by
Smith et al. (2003). Although Smith et al. predict in general
more clustering on smaller scales than Peacock & Dodds, we
found in a comparison between both methods only little di�er-
ence for f1/2.

Scale-and cosmology-dependence of calibration factors. From (Simon et al. 2007), GaBoDS

(Garching-Bonn Deep Survey).
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GGL results: model-independent measurement of b/r

No. 1, 2001 HOEKSTRA, YEE, & GLADDERS L13

Fig. 1.—(a) Observed ratio of as a function of aperture radius . NoteR vap
that the points are somewhat correlated. The error bars are computed using
the scatter in the measurements of the individual fields. The dashed line in-
dicates the model predictions for an OCDM model, and the dotted line cor-
responds to an LCDM model. We find an average value of R p 0.021!

(indicated by the hatched region), where we have used the full covariance0.002
matrix in order to account for the correlation between the points. (b) Mea-
surement when the phase of the shear is increased by , which should vanishp/2
if the signal in (a) is caused by lensing. The results are indeed consistent with
no signal. The signal also vanishes when we correlate of a given fieldN(v )ap
with measured from the other pointings.M (v )ap ap

can write

r
R p Q f (Q , Q ), (13)m m Lb

where is a constant for a given cosmology. Thus, thef (Q , Q )m L

measurement of as a function of scale provides a unique wayR
to examine whether depends on scale or not. In fact, weakb/r
gravitational lensing allows one to estimate b and r separately,
when the ratio is also measured.2 2 2B p AM S/AN S ∝ (Q /b)ap m
Although this ratio is not constant with scale, does not dependB
much on the assumed power spectrum (in particular, on scales
less than 10!). Unfortunately, our data are not sufficient to obtain
a good measurement of , but with more data we will be2AM Sap
able to measure both r and b as a function of scale.

4. REDSHIFT DISTRIBUTIONS

In order to interpret the observed value of , we have toR
evaluate equations (9) and (10), and this requires knowledge
of the redshift distributions of the lens galaxies and the source
galaxies. For the sample of lens galaxies, we use the redshift
distribution found from the second Canadian Network for Ob-
servational Cosmology (CNOC2) Field Galaxy Redshift Sur-
vey (e.g., Lin et al. 1999; Yee et al. 2000; Carlberg et al. 2000).
The CNOC2 Survey provides a well-determined (spectroscop-
ically) redshift distribution for field galaxies down to R pC

, which is ideal given our limits of . The21.5 19.5 ! R ! 21C
adopted redshift distribution gives a median redshift z p

for the lens galaxies.0.35

For the source galaxies, the situation is more complicated.
These galaxies are generally too faint for spectroscopic surveys,
although recently Cohen et al. (2000) measured spectroscopic
redshifts around the Hubble Deep Field–North down to R ∼C
. Cohen et al. (2000) find that the spectroscopic redshifts agree24

well with the photometric redshifts derived frommulticolor pho-
tometry. Because of likely field-to-field variations in the redshift
distribution, we prefer to use the photometric redshift distribu-
tions derived from both Hubble Deep Fields (Fernández-Soto,
Lanzetta, & Yahil 1999; Chen et al. 1998). Photometric redshift
distributions generally work well, as has been demonstrated by
Hoekstra et al. (2000). This redshift distribution yields a median
redshift of for the source galaxies.z p 0.53
We computed the value of for a range of cosmologicalR

parameters and find that, for the adopted redshift distributions,
can be approximated with a fractional accuracy of 2% usingR

rQm 0.63 0.63 1.23R p [(5.8! 1.6Q )" (4.6! 2.6Q )Q ]. (14)m m L100b

5. MEASUREMENT OF THE BIAS PARAMETER

To measure and from the data, we use the2AM N S AN Sap
estimators for and introduced by Schneider (1998):M Nap

NfNb! Q(v )wg 1ip1 i i T, i2 ˜M̃ p pv and N p U(v ), (15)!ap ap iN ¯b! w N ip1ip1 i

where and are, respectively, the number of lens and sourceN Nf b
galaxies found in the aperture of radius . The weightsv wap i
correspond to the inverse square of the uncertainty in the shape
measurement (see Hoekstra et al. 2000 for a detailed discussion).
The observed value of as a function of aperture size isR

presented in Figure 1a. We note that the points are somewhat
correlated. A significant signal is detected at all scales. The
results are consistent with a value of that is constant withR
scale, which implies that is constant as well. This is anb/r
important result since the smallest scales that we are probing
are comparable to the sizes of galaxy halos. We obtain an
average value of , where we have used theR p 0.021! 0.002
covariance matrix to account for the correlation between the
points at different scales.
To examine possible systematic effects, we also computed

when the galaxies are rotated by 45". This signal shouldAM N Sap
vanish in the case of lensing. The results presented in Fig-
ure 1b are consistent with no signal, indicating that the cor-
rections for the systematic distortions have worked well (more
details will be provided in H. Hoekstra et al. 2001, in prepa-
ration). As another check, we correlated for each fieldN(v )ap
with of the other pointings and find that the signalM (v )ap ap
also vanishes in this case.
In Figure 2, we present the resulting value of as a functionb/r

of aperture radius for the currently favored cosmology (Q pm
, ). In this case, we find that . For"0.120.3 Q p 0.7 b/r p 1.05L !0.10

an open model ( , ), we obtainQ p 0.3 Q p 0.0 b/r pm L

. For comparison, we have also indicated the effective"0.080.73!0.07
physical scale (the approximate FWHM of the filter function)
probed by the compensated filter at the median redshift ofU(f)
the lenses .(z p 0.35)
A direct comparison with dynamical studies is difficult be-

cause different galaxy types cluster differently and because of
the different scales probed in our study. However, our results
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Fig. 2.—Value of as a function of angular scale, under the assumptionb/r
that and . Note that the points are slightly correlated. TheQ p 0.3 Q p 0.7m L

error bars (which indicate the 68% confidence limits) are computed using the
scatter in the measurements of the individual fields. The upper axis indicates
the effective physical scale probed by the compensated filter at the medianU(f)
redshift of the lenses . The results are consistent with a value of(z p 0.35)

that is independent of scale. For this cosmology, we find thatb/r b/r p
(indicated by the hatched region), whereas for an open model!0.121.05"0.10

( , ), we obtain . The error on the average has!0.08Q p 0.3 Q p 0.0 b/r p 0.73m L "0.07

been computed using the full covariance matrix, in order to account for the
correlation between the points at various scales.

are in fair agreement with the results from dynamical studies,
in the sense that we find (e.g., Berlind et al. 2001;b/r ∼ 1
Peacock et al. 2001). Therefore, from scales ranging from 0.15
out to ∼10 Mpc, i.e., from the scales of galaxy halos out"1h50
to the linear regime, the measurements are consistent with a
value of , suggesting that the light distribution tracesb/r ∼ 1
the dark matter distribution quite well.

6. PROSPECTS

For the first time, we have measured the parameter as ab/r
function of scale using weak lensing based on 16 deg2 of data
from the RCS. With the analysis of the full survey, the error
bars are expected to decrease by a factor of ∼2, thus improving
the constraints on a possible variation of with scale. Also,b/r
we will be able to probe larger scales since we have limited
the analysis to the individual pointings rather than the full
patches that are ∼ . Other cosmic shear surveys will2!.1# 2!.3
place additional constraints, eventually allowing us to measure
r and b separately as a function of scale.
The lens galaxies were selected on the basis of their apparent

magnitude, but with planned multicolor photometry, it is also
possible to measure the biasing properties as a function of
galaxy type or luminosity (using photometric redshifts). Even-
tually, using bigger surveys, it might even be possible to study
the evolution of galaxy biasing as a function of redshift.
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GGL results: model-indep. measurement of b and r I
868 P. Simon et al.: Galaxy bias in GaBoDS. VI.

Fig. 3. Redshift distribution of the foreground and background galaxies as estimated from the photometric redshifts in the COMBO-17 fields
A901, AXAF (CDFS) and S11 (dashed doted lines); the histograms are not normalised to unity. The solid lines are maximum-likelihood fits of
Eq. (42) to the histograms.

Table 2. Best-fit parameters of the template redshift distribution,
Eq. (42), to the COMBO-17 histograms. z̄ is the mean of the template
redshift distribution. The statistical errors of z̄ are derived from the field-
to-field variance in COMBO-17.

Galaxy sample z0 � � z̄
FORE-I 0.534 0.509 3.173 0.35 ± 0.03
FORE-II 0.765 0.617 5.839 0.47 ± 0.03
FORE-III 0.945 0.830 5.103 0.61 ± 0.02

BACK 1.069 0.809 7.369 0.68 ± 0.02
BACK-II 1.072 0.988 7.655 0.70 ± 0.02
BACK-III 1.073 1.611 8.560 0.77 ± 0.02

of the three fields are combined. With three ways of combin-
ing this yields overall N = 3 Jackknife samples. To estimate the
standard deviation of the mean redshift, z̄, one computes from
each Jackknife sample the mean redshift, z̄i. According to the
Jackknife method the statistical 1�-error of the mean is then
roughly:

�2(z̄) =
N � 1

N

�

i

(zi � z̄)2, (43)

where z̄ is the mean redshift obtained by combining all three
COMBO-17 redshift distributions. The results for �(z̄) are listed
in Table 2. As can be seen there the uncertainty of z̄ ranges
from �(z̄)/z̄ � 10% to �(z̄)/z̄ � 2% for FORE-I to BACK, re-
spectively. This behaviour makes sense because the number of
galaxies increases when going from the shallower to the deeper
samples.

The problem of the calibration of redshift distributions
for cosmic shear studies has recently been studied by

van Waerbeke et al. (2006). They find a statistical uncertainty of
�(z̄) = 0.03�0.04 for a 0.75 deg2 survey with mean z̄ � 1. This
value is somewhat higher than our estimate.

The Jackknife samples can also be used to assess how the
statistical uncertainty of the full p(z)’s translates into the in-
ferred galaxy bias parameters. This problem will be addressed
in Sect. 4.3.

4. Outline of the method

The approach to obtain the bias parameters from lensing adopted
here proceeds in several steps:

1. estimating the binned correlators �(�), ��t�(�) and �±(�) in
all individual survey fields;

2. numerical integration of the correlators to obtain
�Nm(�ap)Mn

ap(�ap)� for m + n= 2 (E-modes and B-modes);
3. repetition of 1. and 2. with bootstrapped data sets to obtain

statistical errors of the aperture statistics in the single fields;
4. combining the individual field measurements and evaluating

the bias parameters as a function of aperture radius from the
combined signal (includes calibration);

5. bootstrapping of the combined signal to estimate the error
in the final signal and the covariances between the di�erent
bins.

A detailed account of these steps is given in the following.

4.1. Practical estimators for the correlators

The correlators are estimated by using

� (�) =
DD
RR
� 2

DR
RR
+ 1, (44)

Redshift distributions for GaBoDS samples, estimated from COMBO-17. From (Simon

et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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GGL results: model-indep. measurement of b and r IIP. Simon et al.: Galaxy bias in GaBoDS. VI. 873

Fig. 6. The aperture number count dispersions, as measured in GaBoDS,
for FORE-I (filled boxes), FORE-II (open stars) and FORE-III (open
crosses). The 1� error bars have the size of the data points. Upper
panel: comparison to �CDM predictions assuming unbiased galaxies,
upper to lower line: FORE-I (solid), FORE-II (dashed) and FORE-III
(dotted). Lower panel: power laws give excellent descriptions of the
measurements. The dotted-dashed line denotes �N2� as measured by
Hoekstra et al. (2002) (A� = 0.115, � = 0.7).

The angular correlation of the galaxies in FORE-I – a sample
roughly comparable to the foreground sample of Hoekstra et al.
(2002) – has a slope slightly steeper than what is found in the
sample of Hoekstra et al. (there � = 0.7 and A� = 0.115) and is
smaller in amplitude for aperture radii larger than �ap � 3�. This
discrepancy in A� and � is not as drastic as it may seem if one
takes into account that the errors of A� and � are anti-correlated:
a smaller A� results in a steeper �. Another issue that may play a
role in this context is the fact that Hoekstra et al. use a di�erent
filter, Rc, which is somewhat di�erent from our R-band filter.
All in all we think that the measurement of �(�) for FORE-I is
consistent with the measurement of Hoekstra et al.

Compared to the �CDM prediction of �N2� for unbiased
galaxies, which trace the dark matter distribution, our measure-
ments are clearly di�erent, namely exceeding the dark matter
expectation on scales smaller than �ap � 5�, and falling slightly
below the prediction for the largest aperture radii. This already
suggests a scale-dependence of the bias factor.

Dark matter clustering. The clustering of the total matter con-
tent as derived from the ellipticities of the background galaxies is
expressed by the dispersion of the aperture mass, Fig. 7. We cal-
culated this quantity for a range of di�erent aperture radii from
the cosmic shear two-point correlators, �±, which are shown in
Fig. 8 (rebinned for that plot).

In all figures, the prediction for the adopted fiducial cos-
mological model and the estimated redshift distributions in our
galaxy samples is plotted. We conclude that this prediction is in
good agreement with our measurements. Therefore the fiducial
cosmology taken for the bias parameter calibration seems to be
reasonable.

Judging from the B-modes, �M2
��, in Fig. 7, which serve as

an indicator for systematics in the PSF correction, the PSF cor-
rection is ok. Over the whole range of aperture radii considered

the B-modes are consistent with zero, maybe with a minor ex-
ception at about �ap � 3�. See Hetterscheidt et al. (2006) for a
detailed discussion on this issue.

Correlation between galaxy and matter distribution. The
cross-correlation between the N-maps and the Map-maps is plot-
ted in Fig. 7. Apart from �ap � 3� in FORE-II the B-modes
of the signal are all consistent with zero. The cross-correlation
has been worked out on the basis of the mean tangential shear
about galaxies in the foreground samples. Results for the galaxy-
galaxy lensing signal are depicted in Fig. 9.

The data points (E-mode) on intermediate scales are be-
low the theoretical prediction for �NMap� based on an unbiased
galaxy population. This again indicates that either the bias fac-
tor or the correlation parameter or both di�er from unity, hinting
towards a population of galaxies that does not perfectly trace the
(dark) matter distribution.

5.2. Galaxy bias parameters

The final result of our work is displayed in Fig. 10. The bias pa-
rameters calculated from the aperture statistics, Eqs. (50), have
been calibrated, and the aperture radii have been converted into
a typical physical scale, R, based on the mean redshift of the
range over which the parameters are averaged. As this redshift
range stretches over about 40%�50% (1�) of the mean red-
shift (see Fig. 5), there is a relative uncertainty attached to the
physical range, R, which is of the same order; for instance for
R = 6 h�1 Mpc we have as resolution for the e�ective scale
�R = 3 h�1 Mpc (see Sect. 4.5).

Over the range of (comoving) physical scales investigated,
below about R � 10 h�1 Mpc, the bias factor stays more or less
constant, rising towards smaller and possibly also larger scales
with a valley on intermediate scales, where b becomes slightly
inconsistent with b = 1 at a 68% confidence level; this im-
plies a scale-dependence of the bias factor. As absolute mini-
mum we obtain bmin = 0.78 ± 0.10, 0.74 ± 0.10, 0.78 ± 0.10 at
roughly �ap � 10�. The position of the minimum is not well de-
fined, however, due its width. In order to get an average value
for the bias factor, we make a maximum likelihood fit assum-
ing a constant bias over the range 2� � �ap � 19� while tak-
ing into account the covariance between the errors, as estimated
from the bootstrap samples, shown in Fig. 11. This fit yields:
b̄ = 0.81 ± 0.11, 0.79 ± 0.10, 0.81 ± 0.11 for FORE-I, FORE-II
and FORE-III, respectively. Therefore, over the selected range of
scales, galaxies are anti-biased, i.e. less clustered than the dark
matter.

The correlation factor, r, has a larger relative uncertainty
than the bias factor, b, since it is based on two lensing
quantities, �NMap� and �M2

ap�, which are generally noisier
than �N2�. Broadly speaking, the correlation of the galaxies
to the (dark) matter distribution is relatively high. A scale-
dependence of the correlation factor is hard to determine
due to the large uncertainties and the high correlation of
neighbouring bins; it may be present in the sample FORE-I.
Averaging the correlation factor over 2� � �ap � 19� yields
r̄ = 0.61 ± 0.16, 0.64± 0.16, 0.58± 0.19 (FORE-I to FORE-III)
which reflects both the high correlation and the unfortunately
still large error bars. Obviously, a much larger survey area is re-
quired to obtain better constraints. We are going to discuss our
results in the following section.

Filled boxes, open stars, open crosses = FORE-I, FORE-II, FORE-III.

Galaxy clustering: Bias on small scales is not constant, but scale-dependent.
Stronger galaxy clustering than from constant bias. (Simon et al. 2007),
GaBoDS (Garching-Bonn Deep Survey).
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Fig. 7. Top row panels and lower left panel: cross-correlation between aperture mass and aperture number count for the three di�erent foreground
samples FORE-I (solid boxes), FORE-II (open stars) and FORE-III (open crosses). The panels are subdivided; the lower panel shows the B-mode,
upper panel is the E-mode of �NMap�. The curves are �CDM predictions assuming unbiased galaxies. Lower right: aperture mass dispersion,
lower and upper panel are B-mode and E-mode, respectively. The solid line is a �CDM prediction. The solid lines in the B-mode panel are the
E-mode prediction with positive and negative sign, which have been inserted for comparison.

6. Discussion and conclusions

Observationally, the galaxy-dark matter bias can be probed by
means of various methods (see introduction). Gravitational lens-
ing provides a promising new method in this respect. It is spe-
cial because it allows for the first time to map the total matter
content (mainly dark matter) with a minimum of assumptions
and independent of the galaxy distribution. Such a map can be
compared to the distribution of galaxies, or particular types of
galaxies, in order to investigate the galaxy bias. In particular,
correlations between galaxy and dark matter density become di-
rectly visible. For working out the galaxy-dark matter bias, older
methods rely on assumptions regarding the growth of dark mat-
ter density perturbations, the peculiar velocities of galaxies and
their correlation to the dark matter density. Moreover, they of-
ten only allow one to measure the bias on large (linear) scales,
�8 h�1 Mpc, whereas the non-linear regime is also accessible
with lensing. However, gravitational lensing has the disadvan-
tage that it is not equally sensitive at all redshifts. The cosmic
shear signal is most sensitive to matter fluctuations roughly half-
way between z = 0 and the mean redshift of the background.
This defines a natural best-suited regime for the method at a
redshift of about z � 0.5, often even slightly lower, consider-
ing the depth of current galaxy surveys. It is expected that the
most sensitive regime will be shifted towards higher redshifts
by future space-based lensing surveys. Furthermore, lensing

observables are quite noisy so that large survey areas are re-
quired for a good signal-to-noise. Impressively large surveys
with instruments such as the CFHT (CFHT-Legacy-Survey,
CFHTLS), the VST (Kilo-Square-Degree-Survey, KIDS), Pan-
STARRS, or SNAP are either ongoing or about to start within
the next years, providing us with plenty of high signal-to-noise
information on dark matter and galaxy clustering.

In this paper, we employed aperture statistics to quantify
the relation between the dark matter and galaxy density. We
tested the evaluation software against Monte Carlo simulated
WFI fields, assuming an unbiased galaxy population, and found
that the software is working to at least a few percent accuracy
(Simon 2005). The data used is the GaBoDS with restriction
to galaxies brighter than 24 mag in the R-band; this allowed us
to estimate the redshift distribution of the galaxies on the ba-
sis of three COMBO-17 fields (A901, AXAF/CDFS and S11)
for which photometric redshifts in 0 � z � 1.4 are available. For
all the other fields, only R-band magnitudes can be used to se-
lect galaxies. For this selection, we defined foreground galaxy
samples by choosing galaxies from three R-band magnitude bins
that have increasingly fainter median magnitudes. The sample
FORE-I is comparable to the foreground selection in Hoekstra
et al. (2002) who applied the same technique as we are using
here. By means of the photometric redshifts of the COMBO-17
fields we can translate a GaBoDS R-band magnitude interval

GGL and cosmic shear. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Fig. 10. The linear stochastic bias parameters of galaxies in the samples FORE-I, FORE-II and FORE-III (left to right column); the bias factor,
b, is upper, the correlation parameter, r, is in the lower row. The parameters have been calibrated assuming �m = 0.3 and �� = 0.7 (see Fig. 4).
The e�ective comoving scale is based on the aperture radius and the mean redshift of the weight functions h1/3, Fig. 5. The bias parameters for a
particular aperture radius are averages over di�erent physical scales and redshifts (Sect. 4.5). The shaded area denotes the average bias factor or
correlation factor over all aperture radii between �ap = 2� . . . 19�; the maximum-likelihood of this average and its statistical uncertainty are shown
in numbers inside the panels.

foreground sample which was not possible in our case, because
we did not allow background galaxies fainter than 24 mag.

Going back to the observed scale-dependence of the bias fac-
tor, galaxies become anti-biased on intermediate scales; they are
less strongly clustered than the matter. In our data, the minimum
value of the bias factor is determined to be bmin � 0.76. This
kind of scale-dependence has also been detected by Pen et al.
(2003) (VIRMOS-DESCART survey) and Hoekstra et al. (2002)
(VIRMOS-DESCART and RCS) which both rely on weak gravi-
tational lensing to probe galaxy bias. While Pen et al. use I-band
luminosities to select galaxies, which results in a larger value
for the minimum bias factor but at a similar scale of about
R � 3 h�1 Mpc (k = 2�/R � 2 hMpc�1), the data and sample
selection of Hoekstra et al. is relatively similar to our sample
FORE-I; their value of bmin = 0.71+0.06

�0.04 is in agreement (1�) with
our measurement, but the quoted scale of R � 1 h�1 Mpc is dif-
ferent. However, as emphasised before, the position of the min-
imum is not well defined in our data. Considering the statistical
errors one has to admit that the position of the bias minimum is
not well determined also in the Pen et al. analysis (their Fig. 19).
Hence, there is no contradiction between our data and that of the
other authors.

An anti-bias on the scales considered here and a charac-
teristic “dip” in the functional form of the bias factor is in

concordance with recent numerical simulations of dark matter
structure formation (Springel et al. 2005; Weinberg et al. 2004;
Guzik & Seljak 2001; Pearce et al. 2001; Yoshikawa et al. 2001;
Somerville et al. 2001; Jenkins et al. 1998). The scale-
dependence is due to the fact that the galaxy clustering is a
power-law over a wide range of scales, reflected by �N2� in
Fig. 6, while the dark matter clustering has di�erent shape in
CDM simulations and in the observations suggested by, for in-
stance, �M2

ap� in Fig. 7.
For the linear correlation parameter, we observe as Hoekstra

et al. (2002) and Pen et al. (2003) a high correlation between
galaxy and matter distribution. Averaging the measurement of
Hoekstra et al. over the range 2� � �ap � 19� yields roughly
r � 0.8 which is consistent with our average (1�). Our observed
correlations between fluctuations in the galaxy number and mass
density appear to be a bit lower, though (Hoekstra, private com-
munication). This could hint to an hitherto undiscovered system-
atic e�ect in our data. However, it should be kept in mind that the
statistical errors in r are highly correlated and quite large so that
this slightly lower value of r may be just a statistical fluke. The
clear scale-dependence of the correlation parameter observed by
Hoekstra et al. is not visible in our data, because this feature
probably gets lost within the statistical uncertainties.

The figures for the correlation parameter – r is smaller than
unity with 68% confidence – show that the galaxies are either

Bias and correlation coe�cient. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

P
ro

je
ct

ed
 e

xc
es

s 
m

as
s

6 CFHTLenS

��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in

The Astrophysical Journal, 744:159 (28pp), 2012 January 10 Leauthaud et al.

Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

P
ro

je
ct

ed
 e

xc
es

s 
m

as
s

6 CFHTLenS

��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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than the satellite 1-halo term. The signal breakdown shown in Fig-
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This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
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ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
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errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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a larger dark matter halo, consistent with previous findings (see
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];
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70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2
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errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
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and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
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elements are generally present due to cosmic variance and shape
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range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
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bins have therefore been removed from the analysis of blue lenses.
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h
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70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
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The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
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to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
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Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
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lens–source pair, we demand that zsource − zlens > σ68%(zsource)
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signal is most sensitive to redshift errors when zsource is only
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that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
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probability distribution function (i.e., the parameter zp2 is non
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the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
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Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
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our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
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small. Hence we do not expect that the off-diagonal elements in
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2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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• Red galaxies have larger associated mass than blue galaxies.
• Exceess mass increases with luminosity. Light traces mass.
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• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
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mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
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70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
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[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
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errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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a larger dark matter halo, consistent with previous findings (see
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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luminosities, the satellite fraction is ∼ 25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ��, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h

�1
70 kpc and 2 h

�1
70 Mpc with

our halo model using a �
2 analysis. Only the halo mass M200 and

the satellite fraction ↵ are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to �1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the �

2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
� 1 h

�1
70 Mpc. This is due to the satellite 1-halo term becoming

important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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��cal(r)� =
��(r)�

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from� 0.5% to� 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i

0
AB < 22.0 in the fields that respectively

pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1�↵) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h�1

70 M�, a stellar mass of M� =

5 � 1010 h�2
70 M� and a satellite fraction of � = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context ↵ is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term��1h) and the contribution from neighbouring haloes
(the 2-halo term ��2h). The two components simply add to give
the lensing signal due to central galaxies:

��cent = ��1h
cent + ��2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form �N� = M

�.
Following Mandelbaum et al. (2005b), we set � = 1 for masses
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tion 4.1 and Appendix B. Note that the number of blue lenses in the
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constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.
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nosity for both red and blue samples indicating an increased halo
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important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
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where the 1-halo term transitions into the 2-halo term is not ac-
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and inaccuracies in the non-linear matter power spectrum (see Sec-
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however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than�2h�1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z� and Z2 = 0.02 Z�) and nine exponentially
decreasing star formation rates � e

�t/� , where t is time and �

takes the values � = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is�0.24 dex, �0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <

4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 � zlens � 0.4, the total dispersion compared to WIRDS is then
� 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i

0
AB � 18, both the dispersion and the bias increase due to

biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i0AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i
0
AB � 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of � 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 � zlens � 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 � 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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(Velander et al. 2014)
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.
• Exceess mass increases with luminosity. Light traces mass.
• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.

Red satellite galaxies.
• Bump at slightly larger scale for blue galaxies. 2-halo term, from

clustered nearby galaxies.
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in about 50 per cent of the subhalo dark matter being stripped, and
we acquire a satellite term which supplies a signal on small scales.
Thus, satellite galaxies add three further components to the total
lensing signal: the contribution from the stripped subhalo (!"strip),
the satellite 1-halo term which is off-centre since the satellite galaxy
is not at the centre of the main halo and the 2-halo term from nearby
haloes. Just as for the central galaxies, the three terms add to give
the satellite lensing signal:

!"sat = !"
strip
sat + !"1h

sat + !"2h
sat . (7)

There is an additional contribution to the lensing signal, not yet
considered in the above equations. This is the signal induced by
the lens baryons (!"bar). This last term is a refinement of the halo
model presented in VU11, necessary since weak lensing measures
the total mass of a system and not just the dark matter mass. Fol-
lowing Leauthaud et al. (2011) we model the baryonic component
as a point source with a mass equal to the mean stellar mass of the
lenses in the sample:

!"bar = ⟨M∗⟩
�r2

. (8)

This term is fixed by the stellar mass of the lens, and we do not
fit it. Note that we choose not to include the baryonic term for
neighbouring haloes, but its contribution is negligible.

Finally, to obtain the total lensing signal of a galaxy sample of
which a fraction α are satellites, we combine the baryon, central
and satellite galaxy signals, applying the appropriate proportions:

!" = !"bar + (1 − α)!"cent + α!"sat . (9)

All components of our halo model are illustrated in Fig. 3. In this ex-
ample, the dark matter halo mass is M200 = 1012 h− 1

70 M⊙, the stellar
mass is M∗ = 5 × 1010 h− 2

70 M⊙, the satellite fraction is α = 0.2,
the lens redshift is zlens = 0.5 and Dls/Ds = 0.5. On small scales the
1-halo components are prominent, while on large scales the 2-halo
components dominate.

Figure 3. Illustration of the halo model used in this paper. Here we
have used a halo mass of M200 = 1012 h− 1

70 M⊙, a stellar mass of M∗ =
5 × 1010 h− 2

70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is
zlens = 0.5. The dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while the light green lines correspond
to satellite quantities. The dark purple dash–dotted line shows the baryonic
component, the light green dash–dotted line shows the stripped satellite halo,
the dashed lines denote the 1-halo components induced by the main dark
matter halo and the dotted lines represent the 2-halo components originating
from nearby haloes.

We note here that the halo model is necessarily based on a number
of assumptions. Some of these assumptions may be overly stringent
or inaccurate, and some may differ from assumptions made in other
implementations of the galaxy–galaxy halo model. To be able to
make useful comparisons with other studies (such as the compar-
ison done in this paper, see Section 6), particularly considering
the statistical power and accuracy afforded by the CFHTLenS, we
attempt to provide a quantitative impression of how large a role
the assumptions actually play in determining the halo mass and
satellite fractions. The full evaluation is recounted in Appendix A
where we study the effect of the following modelling choices: the
inclusion of a baryonic component, the NFW mass–concentration
relation as applied to the central halo profile, the truncation radius
of the stripped satellite component, the distribution of satellites
within a given halo, the HOD and the bias prescription. Our general
finding is that, given reasonable spans in the parameters affect-
ing these choices, the best-fitting halo mass can change by up to
∼15–20 per cent for each individual assumption tested. The magni-
tude of the effect depends on the luminosity or stellar mass, and bins
with a greater satellite fraction will often be more strongly affected.
In essentially all cases the effect is subdominant to observational
errors and we therefore do not take them into account in what fol-
lows, though we do acknowledge that several effects may conspire
to cause a non-negligible change to our results.

4 LU M I N O S I T Y TR E N D

The luminosity of a galaxy is an easily obtainable indicator of
its baryonic content. To investigate the relation between the dark
matter halo mass and galaxy mass, we therefore split the lenses
into eight bins according to MegaCam absolute r′-band magnitudes
as detailed in Table 1 and illustrated in Fig. 4. The lens property
averages quoted in this and forthcoming tables are pure averages
and do not include the lensing weights, unless explicitly specified.
The choice of bin limits follows the lens selection in VU11. This
choice will allow us to directly compare our results to the results
shown in VU11 since the RCS2 data have been obtained using the
same filters and telescope. We also split each luminosity bin into
red and blue subsamples as described in Section 2.1 and proceed
to measure the galaxy–galaxy lensing signal for each sample, with
errors obtained via bootstrapping 104 times over the full CFHTLenS
area, where the number of bootstraps ensure convergence of the
mean. We then fit the signal between 50 h− 1

70 kpc and 2 h− 1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and the
satellite fraction α are left as free parameters while we keep all other
variables fixed. When fitting, we assume that the covariance matrix
of the lensing measurements is diagonal. Off-diagonal elements
are generally present due to cosmic variance and shape noise, but

Table 1. Details of the luminosity bins. (1) Absolute
magnitude range; (2) number of lenses; (3) mean redshift;
(4) fraction of lenses that are blue.

Sample Mr ′ (1) nlens
(2) ⟨z⟩(3) fblue

(4)

L1 [− 21.0, − 20.0] 91 224 0.32 0.70
L2 [− 21.5, − 21.0] 33 633 0.32 0.45
L3 [− 22.0, − 21.5] 23 075 0.32 0.32
L4 [− 22.5, − 22.0] 12 603 0.32 0.20
L5 [− 23.0, − 22.5] 5344 0.32 0.11
L6 [− 23.5, − 23.0] 1704 0.31 0.05
L7 [− 24.0, − 23.5] 344 0.30 0.03
L8 [− 24.5, − 24.0] 76 0.30 0.09

2134 M. Velander et al.

Figure D1. Galaxy–galaxy lensing signal around red lenses which have been split into luminosity bins according to Table 1, and modelled using the halo
model described in Section 3.2. The black dots denote the measured differential surface density, !", and the black line shows the best-fitting halo model with
the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model
fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the
negative points. The grey squares represent distance bins containing no objects.

Figure D2. Galaxy–galaxy lensing signal around blue lenses which have been split into luminosity bins according to Table 1, and modelled using the halo
model described in Section 3.2. The black dots denote the measured differential surface density, !", and the black line shows the best-fitting halo model with
the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model
fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the
negative points. The grey squares represent distance bins containing no objects.

HOD model, (Velander et al. 2014).
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h�2
70 L�]; (2) Mean stellar mass for red lenses

[1010 h�2
70 M�]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h�1

70 M�]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h�2

70 L�]; (6) Mean stellar mass for blue lenses [1010 h�2
70 M�]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h�1

70 M�];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1� errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.

Sample �Lred
r �(1) �M red

� �(2) M red
h

(3) �red(4) �Lblue
r �(5) �Mblue

� �(6) Mblue
h

(7) �blue(8)

L1 0.91 1.83 5.64+1.62
�1.36 0.25+0.03

�0.03 1.08 0.50 1.73+0.55
�0.39 0.00+0.01

�0.00

L2 1.74 3.74 13.6+2.02
�2.29 0.14+0.02

�0.02 2.23 1.10 1.50+1.05
�0.86 0.00+0.01

�0.00

L3 2.73 5.97 19.4+3.39
�2.88 0.11+0.02

�0.02 3.52 1.83 8.33+2.40
�2.44 0.00+0.01

�0.00

L4 4.28 9.35 39.3+6.88
�5.08 0.05+0.03

�0.03 5.51 3.00 9.68+4.97
�3.85 0.00+0.02

�0.00

L5 6.69 14.9 60.4+8.96
�9.01 0.08+0.04

�0.04 8.44 4.63 12.7+10.9
�8.18 0.00+0.05

�0.00

L6 10.4 23.9 109+22.1
�18.4 0.13+0.07

�0.07 13.7 7.88 21.2+33.2
�18.9 0.00+0.09

�0.00

L7 16.4 35.6 309+54.6
�75.1 0.02+0.14

�0.02 — — — —
L8 25.4 20.3 690+294

�183 0.20+0.00
�0.20 — — — —

Figure 6. Satellite fraction � and bias-corrected halo massM200 as a func-
tion of r0-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the � prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

✓
L

Lfid

◆�L

(10)
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h�2
70 L�]; (2) Mean stellar mass for red lenses

[1010 h�2
70 M�]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h�1

70 M�]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h�2

70 L�]; (6) Mean stellar mass for blue lenses [1010 h�2
70 M�]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h�1

70 M�];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1� errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.

Sample �Lred
r �(1) �M red

� �(2) M red
h

(3) �red(4) �Lblue
r �(5) �Mblue

� �(6) Mblue
h

(7) �blue(8)

L1 0.91 1.83 5.64+1.62
�1.36 0.25+0.03

�0.03 1.08 0.50 1.73+0.55
�0.39 0.00+0.01

�0.00
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�0.00
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�183 0.20+0.00
�0.20 — — — —

Figure 6. Satellite fraction � and bias-corrected halo massM200 as a func-
tion of r0-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the � prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L
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Figure 13. Comparison between four different datasets, showing the ra-
tio of measured halo mass to stellar mass as a function of stellar mass.
The top (bottom) panels show the results for red/early-type (blue/late-type)
galaxies. The datasets used are all based on galaxy-galaxy lensing analy-
ses with solid dots showing the CFHTLenS results from this paper. Also
shown are halo masses measured using the RCS2 (open stars; VU11), the
SDSS (open squares Mandelbaum et al. 2006) and COSMOS (solid band;
Leauthaud et al. 2012). In the case of COSMOS we use the results from
their lowest redshift bin. Also note that no distinction between red and blue
lenses was made in the COSMOS analysis, so the same results are shown
in both panels.

type, while VU11 use the brightness distribution profiles to sepa-
rate their lenses in a bulge-dominated and a disk-dominated sample.
Even though the resulting samples are expected to be fairly similar,
they are not identical. As the mass-to-luminosity ratio of galax-
ies strongly depends on their colour, even small colour differences
between the samples could result in different masses. This may ex-
plain why our halo mass estimates of the red lenses at the high lu-
minosity end are lower than those of VU11 and Mandelbaum et al.
(2006), who both use identical galaxy type separation criteria and
whose masses agree in this regime. The difference is smaller for the
stellar mass results, providing further support for this hypothesis.
Furthermore, in our halo model we account for the baryonic mass
of each lens, something that was not done in VU11. As shown in
Appendix A, however, the slope and amplitude of our power laws
do not change significantly when the baryonic component is re-
moved. Hence this does not explain why VU11 find a steeper slope
than we do.

Another factor to take into account is the fact that we limit
our lens samples to redshifts of 0.2 � zlens � 0.4 keeping
our mean lens redshift fairly stable at �zlens� � 0.3. This is not
done in VU11, and as a result the median redshift of our lower
luminosity or stellar mass bins is higher than for the same bins
in VU11, with the opposite being true for the higher bins. Re-
cent numerical simulations indicate that the relation between stel-
lar mass and halo mass will evolve with redshift (see for example

Conroy & Wechsler 2009; Moster et al. 2010). Lower-mass host
galaxies (M� < 1011

M�) increase in stellar mass faster than their
halo mass increases, i.e. for higher redshifts the halo mass is lower
for the same stellar mass. The opposite trend holds for higher-
mass host galaxies (M� > 1011

M�). As a result, the relation
between halo mass and stellar mass (or an indicator thereof, such
as luminosity) steepens with increasing redshift. This means that
for the lower-luminosity bins, where our redshifts are higher, we
may measure a steeper slope than VU11 and vice-versa for higher-
luminosity bins. The effect is likely small, however, because of the
relatively small redshift ranges involved.

Finally we note that the lenses in the sample studied by VU11
are rather massive and luminous as only galaxies with spectroscopy
are used. Our lens sample includes many more low luminosity and
low stellar mass objects, however. Hence the difference in slope
may be partly due to the fact that we probe different regimes, and
that the relation between baryonic observable and halo mass is not
simply a power law but turns upward at high luminosities/stellar
masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn
our attention to the comparison with the Mandelbaum et al. (2006)
analysis of 3.5 � 105 lenses in the SDSS DR4, shown as open
squares in Figures 12 and 13. Their lens sample is, similarly to
the VU11 sample, also divided into early- and late-type galaxies
based on their brightness profiles. To allow for a comparison be-
tween our results and theirs we first have to consider the differ-
ences in the luminosity definition. Mandelbaum et al. (2006) use
absolute magnitudes which are based on a K correction to a red-
shift of z = 0.1 and a distance modulus calculated using h = 1.0.
Furthermore, their luminosities are corrected for passive evolution
by applying a factor 1.6(z �0.1). However, VU11 convert their lu-
minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and find that for low-luminosity low-redshift sam-
ples the difference between the two definitions is negligible. The
more luminous lenses reside at higher redshifts and for them the
correction is found to be greater, most likely due to the differ-
ence in the passive evolution corrections. Since our lenses are con-
fined to relatively low redshifts, and since the main difference be-
tween luminosity definitions is the passive evolution factor, we can
compare our results to Mandelbaum et al. (2006) without correct-
ing the luminosities. Our halo mass definition is also different to
that used by Mandelbaum et al. (2006) though. Mandelbaum et al.
(2006) define the mass within the radius where the density is 180
times the mean background density while we set it to be 200 times
the critical density. The correction factor stemming from the dif-
ferent definitions amounts to � 30%. Having corrected for this,
our results are then very similar to those from Mandelbaum et al.
(2006), but the same concerns of object selection and baryonic
contribution discussed above apply here as well. The relation that
Mandelbaum et al. (2006) find between halo mass and luminosity
for red lenses is shallower than the one found by VU11, as dis-
cussed therein, and are therefore more in agreement with our re-
sults. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their highest
stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h�2
70 L�]; (2) Mean stellar mass for red lenses

[1010 h�2
70 M�]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h�1

70 M�]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h�2

70 L�]; (6) Mean stellar mass for blue lenses [1010 h�2
70 M�]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h�1

70 M�];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1� errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.

Sample �Lred
r �(1) �M red

� �(2) M red
h

(3) �red(4) �Lblue
r �(5) �Mblue

� �(6) Mblue
h

(7) �blue(8)

L1 0.91 1.83 5.64+1.62
�1.36 0.25+0.03

�0.03 1.08 0.50 1.73+0.55
�0.39 0.00+0.01

�0.00

L2 1.74 3.74 13.6+2.02
�2.29 0.14+0.02

�0.02 2.23 1.10 1.50+1.05
�0.86 0.00+0.01

�0.00

L3 2.73 5.97 19.4+3.39
�2.88 0.11+0.02

�0.02 3.52 1.83 8.33+2.40
�2.44 0.00+0.01

�0.00

L4 4.28 9.35 39.3+6.88
�5.08 0.05+0.03

�0.03 5.51 3.00 9.68+4.97
�3.85 0.00+0.02

�0.00

L5 6.69 14.9 60.4+8.96
�9.01 0.08+0.04

�0.04 8.44 4.63 12.7+10.9
�8.18 0.00+0.05

�0.00

L6 10.4 23.9 109+22.1
�18.4 0.13+0.07

�0.07 13.7 7.88 21.2+33.2
�18.9 0.00+0.09

�0.00

L7 16.4 35.6 309+54.6
�75.1 0.02+0.14

�0.02 — — — —
L8 25.4 20.3 690+294

�183 0.20+0.00
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Figure 6. Satellite fraction � and bias-corrected halo massM200 as a func-
tion of r0-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the � prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L
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70 M�]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h�1
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(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1� errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.
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Figure 6. Satellite fraction � and bias-corrected halo massM200 as a func-
tion of r0-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the � prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L
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Figure 13. Comparison between four different datasets, showing the ra-
tio of measured halo mass to stellar mass as a function of stellar mass.
The top (bottom) panels show the results for red/early-type (blue/late-type)
galaxies. The datasets used are all based on galaxy-galaxy lensing analy-
ses with solid dots showing the CFHTLenS results from this paper. Also
shown are halo masses measured using the RCS2 (open stars; VU11), the
SDSS (open squares Mandelbaum et al. 2006) and COSMOS (solid band;
Leauthaud et al. 2012). In the case of COSMOS we use the results from
their lowest redshift bin. Also note that no distinction between red and blue
lenses was made in the COSMOS analysis, so the same results are shown
in both panels.

type, while VU11 use the brightness distribution profiles to sepa-
rate their lenses in a bulge-dominated and a disk-dominated sample.
Even though the resulting samples are expected to be fairly similar,
they are not identical. As the mass-to-luminosity ratio of galax-
ies strongly depends on their colour, even small colour differences
between the samples could result in different masses. This may ex-
plain why our halo mass estimates of the red lenses at the high lu-
minosity end are lower than those of VU11 and Mandelbaum et al.
(2006), who both use identical galaxy type separation criteria and
whose masses agree in this regime. The difference is smaller for the
stellar mass results, providing further support for this hypothesis.
Furthermore, in our halo model we account for the baryonic mass
of each lens, something that was not done in VU11. As shown in
Appendix A, however, the slope and amplitude of our power laws
do not change significantly when the baryonic component is re-
moved. Hence this does not explain why VU11 find a steeper slope
than we do.

Another factor to take into account is the fact that we limit
our lens samples to redshifts of 0.2 � zlens � 0.4 keeping
our mean lens redshift fairly stable at �zlens� � 0.3. This is not
done in VU11, and as a result the median redshift of our lower
luminosity or stellar mass bins is higher than for the same bins
in VU11, with the opposite being true for the higher bins. Re-
cent numerical simulations indicate that the relation between stel-
lar mass and halo mass will evolve with redshift (see for example

Conroy & Wechsler 2009; Moster et al. 2010). Lower-mass host
galaxies (M� < 1011

M�) increase in stellar mass faster than their
halo mass increases, i.e. for higher redshifts the halo mass is lower
for the same stellar mass. The opposite trend holds for higher-
mass host galaxies (M� > 1011

M�). As a result, the relation
between halo mass and stellar mass (or an indicator thereof, such
as luminosity) steepens with increasing redshift. This means that
for the lower-luminosity bins, where our redshifts are higher, we
may measure a steeper slope than VU11 and vice-versa for higher-
luminosity bins. The effect is likely small, however, because of the
relatively small redshift ranges involved.

Finally we note that the lenses in the sample studied by VU11
are rather massive and luminous as only galaxies with spectroscopy
are used. Our lens sample includes many more low luminosity and
low stellar mass objects, however. Hence the difference in slope
may be partly due to the fact that we probe different regimes, and
that the relation between baryonic observable and halo mass is not
simply a power law but turns upward at high luminosities/stellar
masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn
our attention to the comparison with the Mandelbaum et al. (2006)
analysis of 3.5 � 105 lenses in the SDSS DR4, shown as open
squares in Figures 12 and 13. Their lens sample is, similarly to
the VU11 sample, also divided into early- and late-type galaxies
based on their brightness profiles. To allow for a comparison be-
tween our results and theirs we first have to consider the differ-
ences in the luminosity definition. Mandelbaum et al. (2006) use
absolute magnitudes which are based on a K correction to a red-
shift of z = 0.1 and a distance modulus calculated using h = 1.0.
Furthermore, their luminosities are corrected for passive evolution
by applying a factor 1.6(z �0.1). However, VU11 convert their lu-
minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and find that for low-luminosity low-redshift sam-
ples the difference between the two definitions is negligible. The
more luminous lenses reside at higher redshifts and for them the
correction is found to be greater, most likely due to the differ-
ence in the passive evolution corrections. Since our lenses are con-
fined to relatively low redshifts, and since the main difference be-
tween luminosity definitions is the passive evolution factor, we can
compare our results to Mandelbaum et al. (2006) without correct-
ing the luminosities. Our halo mass definition is also different to
that used by Mandelbaum et al. (2006) though. Mandelbaum et al.
(2006) define the mass within the radius where the density is 180
times the mean background density while we set it to be 200 times
the critical density. The correction factor stemming from the dif-
ferent definitions amounts to � 30%. Having corrected for this,
our results are then very similar to those from Mandelbaum et al.
(2006), but the same concerns of object selection and baryonic
contribution discussed above apply here as well. The relation that
Mandelbaum et al. (2006) find between halo mass and luminosity
for red lenses is shallower than the one found by VU11, as dis-
cussed therein, and are therefore more in agreement with our re-
sults. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their highest
stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
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[Day 3] Galaxy-galaxy lensing measurements Testing GR

Modified gravity

General, perturbed Friedmann-Lemâıtre Robertson Walker (FLRW) metric:

ds
2 =

✓
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Valid for weak fields, (Bardeen) potentials  ,� ⌧ c
2.

• In GR, and absence of anisotropic stress:  = �.

• In most modified gravity models:  6= �! Very generic signature for MoG.

Some characteristics

•  is Newtonian potential. Time-like. Quantifies time dilation.

•  is gravitational action on non-relativistic objects (e.g. galaxies).

• � is space-like. Describes spatial curvature.

•  + � is gravitational action on relativistic objects (e.g. photons;
lensing!). [Photons travel equal parts of space and time. This is the origin
for the factor two in GR equations compared to Newtonian mechanics!]
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[Day 3] Galaxy-galaxy lensing measurements Testing GR

Testing GR I
Idea of a null test
Measure di↵erence in potentials to test GR: Galaxy clustering for  , weak
lensing for  + �.

Modified Poisson equation
Potentials are related to density contrast � via Poisson equation. Generalise to
account for MoG, and write in Fourier space:

k
2 ̃(k, a) = 4⇡Ga

2 [1 + µ(k, a)] ⇢ �̃(k, a);

k
2
h
 ̃(k, a) + �̃(k, a)

i
= 8⇡Ga

2 [1 + ⌃(k, a)] ⇢ �̃(k, a).

With free parameters/functions µ,⌃. GR: µ = ⌃ = 0.
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Testing GR II

Probes of Bardeen potentials
Assuming linear, deterministic bias (b =const, r = 1).

• Galaxy clustering measures  and b; h�
2
gi / b

2
P .

• GGL measures  + � and b; h�g�i / bP +�.

! form ratio to get rid of cosmology dependence!
However, bias still remains, need another observable.

• RSD anisotropy parameter; � = 1
b

d ln D+(a)
d ln a .

Can be measured from redshift space galaxy clustering along
(µ = cos ✓ = 1) and perpendicular (µ = 0) to line of sight. Linear power
spectrum:

P (k, µ) = P (k)
�
1 + �µ

2
�2

.

EG parameter

EG '
1

�

h�g�i

h�2gi
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[Day 3] Galaxy-galaxy lensing measurements Testing GR

Parenthesis: Anisotropic clustering
4 Samushia et al.

Figure 2. The two-dimensional correlation function of DR11 sample measured in bins of 1h�1 � 1h�1 Mpc2. We use first two Legendre multipoles of the
correlation function in our study rather than the two-dimensional correlation function displayed here.

the total weight is a product of three wtot = wFKPwsys(wcp +wzf � 1).
The weight of the pair is the product of individual weights for two
galaxies. Since the stellar and close-pair effects are absent in the
random catalogue we apply only the FKP weight to them.

The observed correlation function is a function of two vari-
ables: we use r, the distance between galaxies, and µ, the cosine of
the angle between their connecting vector and the LOS. The opti-
mal choice of binning for the correlation function measurements
depends on two competing effects. Using small bin size retains
more information, but since we estimate covariance matrices by
computing a scatter of finite number of mock catalogues (see sec-
tion 4), using more bins deteriorates the precision at which the ele-
ments of the covariance matrices can be estimated. Empirical tests
performed on the mock catalogues suggest that the RSD signal is
more or less insensitive to the binning choice, while the BAO mea-
surements are optimal at � 8h�1 Mpc (for details see Percival et
al. 2014). We bin r in 16 bins of 8h�1 Mpc in size in the range of
24h�1 Mpc < r < 152h�1 Mpc and µ in 200 bins in 0 < µ < 1,
and estimate the correlation function on this two-dimensional grid.
The information in the correlation function below 24Mpc h�1 is
strongly contaminated by non-linear effects, and the scales above
152Mpc h�1 have low signal-to-noise ratio and contribute little in-
formation.

We compress the information in the two-dimensional correla-
tion function by computing the Legendre multipoles with respect
to µ by approximating the integral with a discrete sum:

�̂�(ri) =
2� + 1

2

� 1

�1
dµ �̂(ri, µ)L�(µ) (7)

� 2� + 1
2

�

k

�µk �̂(ri, µk)L�(µk), (8)

where L�(µ) is the Legendre polynomial of the order of �.
In the subsequent analysis we only use the monopole (� = 0)

and the quadrupole (� = 2) moments. The higher order mo-
ments contain significantly less information and are more difficult
to model. (For the contribution of the higher order moments see
e.g. Taruya, Saito & Nishimichi 2011; Kazin, Sanchez & Blanton
2012).

The RSD signal in the measured correlation function varies
within the sample due to redshift evolution [via the redshift depen-
dence of f (z)�8(z) and b(z)�8(z)]. If we keep track of the redshift
of individual galaxy pairs in equation (6), we effectively measure

�̂ =

�
�(zi)w2

i�
w2

i

, (9)

c� 0000 RAS, MNRAS 000, 1–16

BOSS, from (Samushia et al. 2014).
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[Day 3] Galaxy-galaxy lensing measurements Testing GR

Testing GR: results I

(Reyes et al. 2010)SDSS

3 

linearly related by the galaxy bias14, but the value of the bias itself is poorly constrained. 

Moreover, galaxy-galaxy lensing and galaxy clustering depend on the amplitude of the 

matter perturbations A, which we also do not know a priori. However, the combination 

of these quantities inEG is such that both nuisance parameters cancel out. Thus, unlike 

in previous analyses15, we do not require additional observations and assumptions to 

estimate the galaxy bias, and are able to obtain more robust results.  

We use a sample of 70,205 luminous red galaxies16 (LRGs) from the Sloan Digital 

Sky Survey (SDSS)17, a homogeneous dataset ideal for the study of large-scale 

structure. The galaxies have been selected according to the same criteria as in Eisenstein 

et al.18 They cover an area of 5215 sq. degrees and a range of redshifts z = 0.16 − 0.47. 

The redshift z = λmeas/λemis - 1 of the radiation emitted by a distant galaxy is a measure 

of the time of emission. The redshift of our galaxy sample, z = 0.32, corresponds to a 

lookback time of 3.5 billion years, when the universe was about 77 per cent of its 

current size, and is already well into the accelerated phase of the cosmic expansion. The 

sample also spans a large comoving volume, 1.02h-3 Gpc3, where the Hubble constant 

H0 = 100h km s-1 Mpc-1, and 1 Gpc (giga-parsec) = 1000 Mpc (mega-parsec) = 3.086 × 

1025 m. 

Tegmark et al.19 measured the anisotropy in the power spectra of an equally 

selected sample of LRGs to determine the redshift distortion parameter β ≡ f(z)/b, where 

f (z) is the logarithmic linear growth rate of structure at redshift z. Their analysis found 

β = 0.309 ± 0.035 on large scales and at z = 0.32. In this work, we use this result forβ , 

together with new measurements of the galaxy-galaxy lensing and galaxy clustering 

signals of the full LRG sample, to determine EG at mega-parsec scales and effective 

redshift of z = 0.32. 

from SDSS galaxy clustering  
(redshift-space distortions)  
Tegmark et al. (2006)

11 

 

Figure 1 | Probes of large-scale structure measured from ~70,000 

luminous red galaxies (LRGs).  Observed radial profiles for two 

complementary probes, galaxy-galaxy lensing (a) and galaxy clustering (b) are 

shown for scales R = 1.5 – 47h-1 Mpc (open circles). The 1σ error bars (s.d.) are 

estimated from jackknife resampling of 34 equal-area regions in the sky. 

Profiles measured from mock galaxy catalogues are also shown (solid curves). 

11 

 

Figure 1 | Probes of large-scale structure measured from ~70,000 

luminous red galaxies (LRGs).  Observed radial profiles for two 

complementary probes, galaxy-galaxy lensing (a) and galaxy clustering (b) are 

shown for scales R = 1.5 – 47h-1 Mpc (open circles). The 1σ error bars (s.d.) are 

estimated from jackknife resampling of 34 equal-area regions in the sky. 

Profiles measured from mock galaxy catalogues are also shown (solid curves). 

bg shear - fg 
clustering

<δgδm>

fg clustering
<δgδg>

Testing General Relativity on cosmological scales
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[Day 3] Galaxy-galaxy lensing measurements Testing GR

Testing GR: results II

Introducing new observable to exclude small scales:

⌥gm(R) =�⌃gm(R) �

✓
R0

R

◆2

�⌃gm(R0)

=
2

R2

Z R

R0

dR
0
R

0 ⌃|rmgm(R0) � ⌃gm(R0) +

✓
R0

R

◆2

⌃gm(R0),

(Baldauf et al. 2010).

Define in analogy ⌃gg.

Then modified EG probe of gravity:

EG(R) =
1

�

⌃gm(R)

⌃gg(R)
.
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[Day 3] Galaxy-galaxy lensing measurements Testing GR

Testing GR: results III

Modifying general relativity

Galaxy-galaxy lensing: 
measures ! + " and b#

Galaxy clustering:  
measures "

13 

 

Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1σ error bars (s.d.) including the statistical error on the measurement19 of β 

(filled circles). The grey shaded region indicates the 1σ  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+ΛCDM model, EG = Ωm,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+ΛCDM 

(EG = 0.408 ± 0.029(1σ ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001− 0.1 

(EG = 0.328 − 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

Friedmann-Lemaître-Robertson-Walker metric with perturbations:

(Reyes et al. 2010)

Parameterisation

Gravitational potential as experienced by galaxies:

Gravitational potential as experienced by photons:

 ds
2 = −(1+ 2ϕ )dt 2 + (1− 2φ)a2drx 2

∇2ϕ = 4πGa2ρδ

∇2 (ϕ + φ) = 8πGa2ρδ 1+ Σ[ ]

1+ µ[ ] µ(a)∝ΩΛ (a)

Σ(a)∝ΩΛ (a)

time dilation spatial curvature

From (Reyes et al. 2010).

RCSLenS: gravitational physics through cross-correlation 17

Figure 14. The annular di�erential surface density statistic for the galaxy-mass cross-correlation, �gm(R, R0), measured for the di�erent
combinations of lens-source datasets assuming R0 = 1.5 h�1 Mpc. We also plot the best-fitting model for each cross-correlation using
both the wp(R) and ��(R) measurements. The errors are based on measurements for a set of 374 mock catalogues. The horizontal
dotted line marks �gm = 0.

Figure 15. EG(R) measurements in two independent redshift bins 0.15 < z < 0.43 and 0.43 < z < 0.7, after combining the results
from the di�erent cross-correlations. In the former case, the measurements of Reyes et al. (2010) are plotted as the open circles for
comparison. The horizontal solid lines are the prediction of standard gravity, EG = �m/f , for our fiducial model �m = 0.27. The
horizontal dotted lines indicate the 1-� variation that would result given ��m = 0.02, which is indicative of both the WMAP and
Planck error in determining this parameter. We note that the data points are correlated, with a covariance matrix displayed in Figure
16.

RCSLenS producing the most and least accurate determi-
nations, respectively.

As a cross-check of the methodology we performed the
same fits to the ��(R) measurements from the mock cat-
alogues for all the combinations of source-lens datasets, us-
ing the full-survey realizations including masks. The aver-
age parameter measurement across the realizations is �8 =

0.80 ± 0.03 with average value of �
2
/dof = 50.5/47, com-

pared to the input parameter value �8 = 0.826. The slight
o↵set of the fit to lower values than the input is due to the
artificial reduction in the clustering amplitude of high-bias
mocks constructed via Equation 36, as discussed in Section
5. For b = 1 mocks we recover the input cosmology within
the statistical error in the mean.

c� 0000 RAS, MNRAS 000, 000–000

From (Blake et al. 2016).
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[Day 3]: More lensing theory

E- and B-modes: recap I

E mode

B mode

mass
trough

mass
peak

E mode

B mode

mass
trough

mass
peak

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

• Higher-order terms beyond Born appproximation (perturbed light rays,
non-lin lens-lens coupling); other (e.g. some ellipticity estimators)

• Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

• Intrinsic alignment (although magnitude not well-known!)

• Varying seeing and other observational e↵ects

• Non-standard cosmologies (non-isotropic, TeVeS, . . .)
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[Day 3]: More lensing theory

E- and B-modes: recap II

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain E and B from �, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear �t is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering  with a function U that is related to Q.
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[Day 3]: More lensing theory

E- and B-modes: recap III

"t

"⇥

θ

The resulting quantity is called aperture mass Map(✓), which is a function of
the filter size, or smoothing scale, ✓. It is only sensitive to the E-mode.

If one uses the cross-component shear �⇥ instead, the filtered quantity, M⇥
captures the B-mode contribution only.

End of recap from part I.
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[Day 3]: More lensing theory E-/B-mode estimators

Convergence as potential field
Again convergence  and shear �:

@�i

@✓j
⌘Aij = �ij � @i@j ;

A =

✓
1 � � �1 ��2

��2 1 � + �1

◆
.

From this, write  and � as second derivatives of the potential.

 =
1

2
(@1@1 + @2@2) =

1

2
r

2
 ; �1 =

1

2
(@1@1 � @2@2) ; �2 = @1@2 .

We can now define a vector field u for which the convergence is the
“potential”, with

u = r.

Express u in terms of the shear.

u =

✓
@1

@2

◆
=

✓
1
2 (@1@1@1 + @1@2@2) 
1
2 (@1@1@2 + @2@2@2) 

◆
=

✓
@1�1 + @2�2

�@2�1 + @1�2

◆
.
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[Day 3]: More lensing theory E-/B-mode estimators

E- and B-mode potential, convergence, and shear I

Thus, from a shear field �, to linear order, the corresponding convergence is
derived from a gradient field u, and is curl-free, r ⇥ u = @1u2 � @2u1 = 0, as
can easily be seen.
This is the E-mode, in analogy to the electric field.

However, in reality, from an observed shear field, one might measure a
non-zero curl component.
This is called the B-mode, in analogy to the magnetic field.

Definition:

r
2


E :=r · u;

r
2


B :=r ⇥ u,

and potentials
r

2
 

E,B = 2E,B
.

Note that  B and B do not correspond to physical mass over-densities.
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[Day 3]: More lensing theory E-/B-mode estimators

Aperture mass

Earlier we have mentioned the aperture-mass. This is formally defined as
convolution of the shear field with a filter Q,

Map(✓, #) =

Z
d2
#

0
Q✓(|# � #0

|) �t(#
0)

It can be shown that this is equivlaent of convolving the convergence with
another filter U ,

Map(✓, #) =

Z
d2
#

0
U✓(|# � #0

|)E(#0), (2)

(Kaiser et al. 1994, Schneider 1996).
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[Day 3]: More lensing theory E-/B-mode estimators

E-/B-mode separation with Map I

"t

"⇥

θ

It is clear that Map (M⇥) is sensitive to the E-mode (B-mode) of the shear
field �.

When chosing Q such that its support is finite, with Q(✓) = 0 for ✓ > ✓max,
the E-/B-mode separation is achieved on a finite interval.

To get this separation at the second-order level, let’s take the variance of the
aperture-mass: Square Map(✓, #) and average over circle centres # (Schneider
et al. 1998).
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[Day 3]: More lensing theory E-/B-mode estimators

E-/B-mode separation with Map II
Square Map(✓, #) and average over circle centres #:

hM
2
api(✓) =

Z
d2
#

0
U✓(|# � #0

|)

Z
d2
#

00
U✓(|# � #00

|)hE(#0)E(#00)i

=

Z
d2
#

0
U✓(#

0)

Z
d2
#

00
U✓(#

00)hE


E
i(|#0

� #00
|)

=

Z
d2
#U✓(#)

Z
d2
#

0
U✓(#

0)

⇥

Z
d2
`

(2⇡)2
e�i`#

Z
d2
`
0

(2⇡)2
e�i`#0

(2⇡)2�D(` � `0)PE
 (`)

=

Z
d2
`

(2⇡)2

✓Z
d2
# e2i`#

U✓(#)

◆2

P
E
 (`)

=
1

2⇡

Z
d` ` Û

2(✓`)PE
 (`).

Note: Typically, the filter function U depends on the scale # normalized to the
radius ✓, U✓(#) = U(#/✓). In Fourier space this then becomes Û(✓`).
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[Day 3]: More lensing theory E-/B-mode estimators

E-/B-mode separation with Map III
For popular choices of U , Û

2 is a narrow pass-band filter function.

polynomial Gaussian

U✓(#)

(
9

⇡✓2

⇣
1 � #2
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0 else
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[Day 3]: More lensing theory E-/B-mode estimators

Aperture-mass dispersion measurements

CFHTLS 2007 versus CFHTlenS 2013.

L. Fu et al.: Very weak lensing in the CFHTLS wide 15
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Fig. 4. Two-point statistics from the combined 57 pointings. The error
bars of the E-mode include statistical noise added in quadrature to the
non-Gaussian cosmic variance. Only statistical uncertainty contributes
to the error budget for the B-mode. Red filled points show the E-mode,
black open points the B-mode. The enlargements in each panel show
the signal in the angular range 35��230�.

theoretical (statistical) and not estimated from the data, which
would include systematics (for example error contributions may
arise from the incomplete PSF correction). Moreover, the signal-
to-noise with the present CFHTLS Wide data is so high, even
for B-modes, that subtle e�ects may dominate the very small
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Fig. 5. The top-hat E-mode shear signals of W1 up to 200� , of W2 up to
120� and of W3 up to 230� are shown. The error bars includes statistical
noise and cosmic variance for each individual field.

Poissonian error, particularly on large scales where there are a
significant number of galaxy pairs.

The field-to-field variation of the B-modes is a possible way
to assess these e�ects on the error buget. We tried to measure this
by splitting the 3 Wide fields into 11 blocks of 2 � 2 deg2 each,
which allows to calculate the B-modes on scales up to 60 arcmin
in each block. We obtained B-modes with amplitude very simi-
lar to Fig. 4 but the field-to-field scatter is larger than the plotted
error bars and reaches a factor of 2 at 60�. This is an interest-
ing indication that we are likely underestimating the error on
B-modes, even though it is not a precise measurement due to the
small number of independant fields. A thorough analysis of this
noise contribution needs many more field and is left to a future
analysis of the CFHTLS four year data.

4.4. Cross-check and control of systematics

We cross-checked the shear measurement by using an indepen-
dent analysis on the same data sets. This analysis was done
with another version of KSB+ that has been tested with the
STEP1+2 simulations (“HH” in Heymans et al. 2006a; Massey
et al. 2007b). Hereafter, we refer to our analysis as “Pipeline I”
and to the “HH” results as “Pipeline II”.

The left panel of Fig. 6 shows the shear estimated for each
galaxy by each of the pipelines. The results are in good agree-
ment for ellipticity values per component between �0.6 and 0.6.
For ellipticities outside this range the dispersion between the
pipelines is larger and a trend for an underestimation of the shear
from Pipeline I with respect to Pipeline II can be seen. Note
however that the pipelines are not optimised for large elliptic-
ities, since the STEP simulation galaxies have ellipticities that
are smaller than 0.1.

We then compare the two-point functions using the aperture-
mass variance. We choose this statistic because angular scales
are less correlated than for the top-hat dispersion. Moreover,
it does not have any ambiguity related to a non-local E/B de-
composition. The values of Map are calculated from the two
pipelines using only objects detected by both pipelines. Because
the pipelines have di�erent selection criteria the common ob-
jects are only two-thirds of the whole sample. Each object
is assigned a weight which is the product of its weights in
each of the two pipelines. The largest radius explored in the

From (Fu et al. 2008).
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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[Day 3]: More lensing theory E-/B-mode estimators

Ring statistic I

The problem of the unaccessible zero lag shear correlation for an E- and
B-mode decomposition remains. How can we construct a E-/B-mode
second-order correlation with a minimum galaxy separation #min > 0?

Solution: Correlate shear on two con-
centric rings (Schneider & Kilbinger
2007).
What are the minimum and maximum
distances in this configuration?

T. Eifler, P. Schneider and E. Krause: Measuring cosmic shear with the ring statistics 3

Fig. 1. This figure illustrates the basic idea of the ring statis-
tics and how it can be obtained from the 2PCF of cosmic shear.
We measure the 2PCF of each galaxy in the inner ring with
all galaxies in the outer ring. For a given argument of the ring
statistics �, the angular separation of the required 2PCFs ex-
tends over �� � � � �. The meaning of � and its possible val-
ues are further explained in the text. The ring statistics is then
calculated as an integral over the 2PCF with the filter functions
Z±(�, �).

position of the ring statistics can be obtained from the 2PCF
as

�RRE� (�) =
� �

��

d�
2�
�
�+(�) Z+(�, �) + ��(�) Z�(�, �)

�
, (7)

�RRB� (�) =
� �

��

d�
2�
�
�+(�) Z+(�, �) � ��(�) Z�(�, �)

�
. (8)

The functions Z± are defined in SK07; we plot them in Fig. 2
for four di�erent �, i.e. �min/� = 0.00151, 0.1, 0.4, 0.7.
Similar to the case of the aperture mass dispersion, �RRE� can
be related to the E-mode power spectrum. Inserting Eq. (3),
into Eq. (7) gives

�RRE� (�) =
� �

0

d� �
2�

PE(�)WE(��, �) (9)

with

WE(��, �) =
� �

��

d�
2�
�
J0(��) Z+(�, �) + J4(��) Z�(�, �)

�
. (10)

When calculating �RRE� for di�erent arguments �, we distin-
guish two cases for �. It can be fixed to a specific value or it
can vary according to �, in particular � = �min/�. We will
refer to the latter case as a scale-dependent �. Here, the lower
limit in the integrals of Eqs. (7) and (8) is equal to �min which
implies that all 2PCFs in the interval [�min;�] are included in

the calculation. The choice of � = �min/� should give a higher
S/N ratio compared to a fixed � for the reason that more galaxy
pairs are included which reduces the statistical noise. In SK07
the authors hold � fixed; in order to obtain a high signal this
implies that � must be chosen as small as possible.
Choosing a fixed � has a second disadvantage. The lower limit
in the integrals Eqs. (7) and (8) cannot be smaller than �min, i.e.
�� � �min. Vice versa, this implies that � � �min/�. Fixing �
to a small value (in order to increase the S/N ratio) implies that
� is restricted to larger scales. This trade-o� between S/N ratio
and small-scale sensitivity can be overcome when relaxing the
condition of a fixed �.

4. General E/B-mode decomposition on a finite
interval

The ring statistics described in the last section is the special
case of a general E/B-mode decomposition.According to SK07
this general EB-statistics can be defined as

E =
1
2

� �

0
d��

�
�+(�)T+(�) + ��(�)T�(�)

�
, (11)

B =
1
2

� �

0
d��

�
�+(�)T+(�) � ��(�)T�(�)

�
. (12)

To provide a clean separation of E- and B-modes using a 2PCF
measured over a finite interval, the following conditions must
be fulfilled (see SK07 for the exact derivation). Starting from
an arbitrary function T+(�), which is zero outside the interval
[�min;�max], the constraints
� �max

�min

d��T+(�) = 0 =
� �max

�min

d��3T�(�) (13)

must hold. For a so constructed filter function T+(�) a corre-
sponding filter function T�(�) can be calculated as

T�(�) = T+(�) + 4
� �

�min

d�
�

�2
T+(�)

�
1 � 3

� �
�

�2�
. (14)

Conversely, one can construct T+ for a given T�.
The expressions for T+ and T� used in this paper are given in
the Appendix. We calculate the EB-statistics according to Eq.
(11) and compare the results to the ring statistics. Note that this
EB-statistics can be optimized, e.g., with respect to its S/N ratio
or its ability to constrain cosmology. For more details on this
topic the reader is referred to Fu & Kilbinger (2009).
In this paper, the EB-statistics is calculated as a function of �.
Similar to the ring statistics, � denotes the maximum angular
scale of 2PCFs which enter in the calculation of E(�).

5. Covariance and signal-to-noise ratio
For our further analysis we have to derive a formula to calcu-
late the covariance of ring statistics and EB-statistics. A corre-
sponding expression for �M2

ap� reads (see e.g. Schneider et al.
2002b).

CM(�k, �l)) =
1
4

I�

i=1

J�

j=1

��i�� j

�2k�
2
l
�i� j

Figure from (Eifler et al. 2010).
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[Day 3]: More lensing theory E-/B-mode estimators

Ring statistic measurements

CFHTLS 2007 versus CFHTLenS 2013.8 T. Eifler, P. Schneider and E. Krause: Measuring cosmic shear with the ring statistics
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Fig. 6. The ring statistics signal measured from the CFHTLS for the case of � = �min/� (upper row). The red data points (circles)
correspond to the E-mode signal, the black data points (triangles) to the B-mode signal. The three panels correspond to small
(left), intermediate (middle), and large (right) scales. The lower row shows a similar analysis but for � = 0.1.

The CFHTLS 2PCF was measured in 72000 bins over an an-
gular range of 0.�05 � � � 466�; we calculate �RRE� (Eq.
7) and �RRB� (Eq. 8) in 60 logarithmic bins over a range
0.�5 � � � 460.�0. The error for the i-th E/B-mode data point is
calculated as

�
CRE/B (�i,�i), where CRE/B (�i,�i) is calculated

from a Gaussian 2PCF covariance. This Gaussian covariance
was calculated from a theoretical model using the same cos-
mology and survey parameters as in the FSH08 analysis. We
do not employ the non-Gaussian correction of Semboloni et al.
(2007) as this corrects the C++-term in the 2PCF covariance,
but not the C��- and C+�-terms. Here, we use the full 2PCF
covariance in the analysis. Similar to FSH08 we do not con-
sider systematic errors in our analysis which might lead to an
underestimation of the error bars.
The results of our analysis are illustrated in Fig. 6. The three
panels in the upper row show the ring statistics’ E- and B-
modes on (from left to right) small, intermediate and large
scales of � for the case of � = �min/�. The three panels in
the lower row show the same analysis but for � = 0.1. The
circled (red) data points correspond to the E-mode signal, the
triangled (black) data points correspond to the B-mode signal.
We measure a robust E-mode shear signal, however we also
find a significant B-mode contribution on small (around 2�), in-
termediate (16�-22�), and large scales (right panel). On small

scales E-and B-mode are of similar order. It should be stressed
that such an analysis of small-scale contaminations is not feasi-
ble with the aperture mass dispersion, which, to avoid the E/B-
mode mixing on small scales, involves a theoretical (therefore
B-mode free) 2PCF in its calculation. This theoretical data ex-
tension, combined with the fact that the aperture mass disper-
sion data points are stronger correlated (Sect. 5) can hide pos-
sible small-scale contaminations in the data.
The B-mode contamination on large scales is also observed in
the FSH08 analysis. In addition, we find a small B-mode on
intermediate scales (between 16� and 22�), otherwise these in-
termediate scales are mostly free of B-modes and give a ro-
bust E-mode signal. The small correlation of the individual data
points leads to the oscillations in the amplitude of the shear sig-
nal. A similar analysis with the aperture mass dispersion shows
a much smoother behavior.

8. Conclusions

Decomposing the shear field into E- and B-modes is an impor-
tant check for systematics in a cosmic shear analysis. The most
commonly used methods for E- and B-mode decomposition,
namely the aperture mass dispersion and the E/B-mode shear
correlation function, require the 2PCF to be known down to

From (Eifler et al. 2010).
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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From (Kilbinger et al. 2013), optimised ring

statisc following (Fu & Kilbinger 2010).
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