Data-driven detection of multi-
messenger transients

* Multi-messenger science
» Deep learning transient detection
- Example analyses:
- y-ray transients with CTA
* Neutrino point source search with lceCube & ANTARES
* Neutrino emission correlation for core-collapse SNe with lceCube & LSST
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Multi-messenger & multi-wavelength science

- Some open questions

- What are the sources of ultrahigh-energy cosmic rays
(UHECRSs)? - Does the spectrum suggest an acceleration
cutoff energy?

» What is the origin of the (TeV—PeV) cosmogenic neutrino
background; of the non-blazar diffuse y-ray background?

- What are the origins of the heavy elements?

» What are the explosion mechanisms of engine-driven SNe;
what is the connection to GRBs?
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» Wish list
* More EM associations with GW sources _
 Detection of HE neutrinos (HENs) from GW/EM detected double black hole merger (" > short aming-ray bur '
compact object mergers P
» Solid association of HENs with [...]
» Solid association of UHECR arrival directions with [...] Moszaros et al (2019) andv:1906,10212
» Better UHECR composition measurements



https://arxiv.org/abs/1906.10212

MMS transients

 Leptonic and(?) hadronic acceleration
mechanisms
- MMS = explore astrophysical phenomena
using distinct but complimentary information
« CRs are deflected by magnetic fields, but their
associated neutrinos point directly to their
sources

» Evidence for high-energy astrophysical neutrino
sources (hadronic signatures)

» Association (Fermi = MAGIC) of the flaring y-
ray AGN, TXS 0506+056, with a ~0.3 PeV
neutrino at ~30

 Association of the radio-emitting tidal
disruption event, AT2019dsg, with a ~0.2 PeV
neutrino at ~30

SA A 1

Proton Bethe—Heitler Photopion Photopion Photoplon
synchrotron pair production (IT* component) (/- component) (11° component)

N A A
7 A
.e./lx TR S

Hadronic

Leptonic

’ 3 1\“\
\’;/_\/\’\’\
Electron Inverse Compton Photon—photon Electron—positron
synchrotron scattering pair production annihilation

Elena Pian, Nature Astronomy 3 (2019) 24



https://www.nature.com/articles/s41550-018-0613-y?WT.feed_name=subjects_particle-physics

VHE emission from y-ray bursts

» Recent first time detection of GRB afterglows the at very-high energies (Cherenkov telescopes)
- GRB 180720B - H.E.S.S. (To + 10 hr)
» GRB 190114C - MAGIC (To + 57s)
- GRB 190829A - H.E.S.S. (To + 4.3 hr)

- =» Low-luminosity GRB with possible shock-breakout + jetted prompt emission

Chad et al (2020) arxiv:2001.00648
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Low luminosity GRBs

* Physical origins —
» ~1% of SN Ic, broad-line relativistic SNe «i’
» Possible connections to choked jets & shock-breakouts S
« Possible association with UHECRs & neutrinos f;
* Phenomenology
- Typically having isotropic-equivalent luminosities, 1046 < L iso < 1048-50
lerg s-1]  Low peak X-ray & Lorentz factor values * Only ~15 known
events associated with SNe
» Expected high event rates =» probe SNe & GRB physics * Targets for Zonc
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MMS transient detection

* Real-time detection of signals in multiple channels
* Near- and late-time follow-up for direct association of events
» Archival stacking/population studies

» Correlation of multiple low-significance observables, which combined may result in meaningful detections

» Uncertainties on instrument simulations (e.g., detector efficiency)
» Uncertainties on physical backgrounds (e.g., galactic foregrounds)

 Precise modelling of observing conditions (e.g., clouds, night-sky background)
» Subtraction of artefacts (e.qg., stars, satellites)

- Extremely quick follow-up with multiple MMS/MWL facilities is necessary

» Training exclusively with real data = mitigates systematics (no imperfect simulations used)

» Does not require explicit physical modelling of perspective sources (generally not well constrained)
» Facilitates data-fusion of inputs from different experiments

» Extremely fast for evaluation, enabling quick response and coordination between facilities




Recurrent neural networks for transient detection

- Two methodologies for source detection
» Anomaly detection
 Train an RNN to predict a time-series of the expected background
« Compare the predictions to the true time series =» identify a transient event as an anomalous flare
- Classification
 Train an RNN to classify a time series as background or signal, using labels
» Training requires both background data and signal data (= introduces some model dependence)

- Calibration pipeline
* The results are calibrated statistically = significance / p-value estimates for discovery
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y-ray transients

- Example for the Cherenkov telescope array (CTA)
» Methodology
 Train an RNN to predict a time-series of y-ray event counts (binned in time & energy bins)
- Add “auxiliary” input data, which affect the y-ray rates (e.g., zenith of observation)
- Compare the predictions to the true y-ray rates, and identify a transient event as an anomalous flare

» Training strategy
» Anomaly detection: training exclusively on background data =» no-source in the region of interest; data
potentially scrambled in time
- Classification: also use simulations of GRBs =» simple spectral and temporal templates
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Significance calibration for anomaly detection
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* In this example, the outputs of the RNN are y-ray event counts in 6 energy bins
- Calibration procedure
 Calculate a test statistic (TS) for each metric (based on the normalised difference
between the RNN predictions and the ground truth)
Map TS =» p-values from TS distribution
* Derive combined TS from the logarithms of individual p-values
* Map combined TS = combined p-value from distribution
- The combined TS distribution is compared to the expected background hypothesis
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Significance calibration for classification

* In this example, the output of the RNN is a classification estimator, Cgec
* Cdec IS evaluate for the background and signal samples individually

* The TS is derived from the ratio of the distributions as a function of Cgec
» TS =» p-value mapping is based on Wilks’ theorem
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Serendipitous y-ray transient detection

» Methodology
» Shown here for a sample with expected properties for LL-GRBs, assuming either simple power-law (PL) or
exponentially cutoff spectral PL models.
* The reference detection rate (ctools) indicates a likelihood-based method, implemented as part of the ctools
software package for CTA simulations
- Main takeaways

« When simple PL models are fit the the data, both RNN methods perform better than the likelihood approach
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Neutrino point source search

- Anomaly detection search for point sources in lceCube & ANTARES public datasets
» Methodology
» Data from the two observatories are combined into a single RNN
- Data are binned in 1-day intervals
- Reference background dataset derived from same dataset, scrambled in arrival time and R.A.
* RNN inputs are defined as neutrino event densities
« TS =» p-value mapping includes trials correction (spacial and temporal)
» Results
* No source found (best post-trials significance =» 1.60)
* No correlation found between IceCube & ANTARES
- Main takeaways
* No need to explicitly define the atmospheric
neutrino background rates
* No need to explicitly model the relative response
between the two experiments
- Trial factors are automatically taken into account
as part of TS calibration

12



Neutrino / SNe correlation study

- Anomaly detection search for neutrino emission (lceCube) correlated with core-collapse SNe (LSST)

» Methodology
« Simulate observations for different LSST
survey profiles
- Detect SNe from the optical sims
« Correlate with neutrino densities in spatio-
temporal coincidence with the expected
explosion time of the SNe
- Main takeaways

- Alternative to direct association (no need for

individual VHE neutrino trigger)

- Trial factors are automatically taken into
account as part of TS calibration

* No need for explicit combined likelihood
formulation of the optical ® neutrino signals

* RNN Is also used to derive limits in case of
non-detection
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Closing remarks

» Anomaly detection enables minimally-biased detection of transients =» most of the usual simulations &
modelling for such analyses are not explicitly needed

» Simple neural network architectures are sufficient in many cases =» no need to parameter tuning
» Searches may be conducted on different time scales, and are robust to missing data

» The outputs of the network are consistently mapped to p-values for source detection =» no need for explicit
likelihood formulations of individual / combined experiments

» It is relatively simple to combine multiple signals of different types into a single network, which internally models
the join probability of the background-only hypothesis - In case of complicated signals (e.g., GW waveforms),
standalone networks may be combined < Similarity for SN classifiers, etc. ...

» The same network may also be used to derive limits on none-detection

» The quick response of the network facilitates efficient follow-up alert generation
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