Data-driven detection of multimessenger transients

- Multi-messenger science
- Deep learning transient detection
- Example analyses:
 - γ-ray transients with CTA
 - Neutrino point source search with IceCube & ANTARES
 - Neutrino emission correlation for core-collapse SNe with IceCube & LSST

I. Sadeh (DESY)

March 2021

iftach.sadeh@desy.de

ube & ANTARES collapse SNe with IceCube & LSST

Sadeh (2020) arxiv:2005.06406

Multi-messenger & multi-wavelength science

Some open questions

- What are the sources of ultrahigh-energy cosmic rays (UHECRs)? • Does the spectrum suggest an acceleration cutoff energy?
- What is the origin of the (TeV—PeV) cosmogenic neutrino background; of the non-blazar diffuse γ -ray background?
- What are the origins of the heavy elements?
- What are the explosion mechanisms of engine-driven SNe; what is the connection to GRBs?

• Wish list

- More EM associations with GW sources
- Detection of HE neutrinos (HENs) from GW/EM detected compact object mergers
- Solid association of HENs with […]
- Solid association of UHECR arrival directions with [...]
- Better UHECR composition measurements

•

Meszaros et al (2019) <u>arxiv:1906.10212</u>

MMS transients

- Leptonic and(?) hadronic acceleration mechanisms
 - using distinct but complimentary information
 - CRs are deflected by magnetic fields, but their associated neutrinos point directly to their sources
- Evidence for high-energy astrophysical neutrino sources (hadronic signatures)
 - Association (Fermi \rightarrow MAGIC) of the flaring γ ray AGN, TXS 0506+056, with a ~0.3 PeV neutrino at $\sim 3\sigma$
 - Association of the radio-emitting tidal disruption event, AT2019dsg, with a ~0.2 PeV neutrino at $\sim 3\sigma$

VHE emission from y-ray bursts

- Recent first time detection of GRB afterglows the at very-high energies (Cherenkov telescopes)
 - GRB 180720B H.E.S.S. (T₀ + 10 hr)
 - GRB 190114C MAGIC (T₀ + 57s)
 - GRB 190829A H.E.S.S. (T₀ + 4.3 hr)
 - Low-luminosity GRB with possible shock-breakout + jetted prompt emission

Prompt stage $L_{iso} \sim 10^{48} - 10^{49}$ [erg s⁻¹]

Low luminosity GRBs

Physical origins

- ~1% of SN Ic, broad-line relativistic SNe

- Phenomenology
 - events associated with SNe
 - serendipitous γ -ray detection

MMS transient detection

MMS observations

- Strategies
 - Real-time detection of signals in multiple channels
 - Near- and late-time follow-up for direct association of events
 - Archival stacking/population studies
 - Correlation of multiple low-significance observables, which combined may result in meaningful detections
- Challenges
 - Uncertainties on instrument simulations (e.g., detector efficiency)
 - Uncertainties on physical backgrounds (e.g., galactic foregrounds)
 - Precise modelling of observing conditions (e.g., clouds, night-sky background)
 - Subtraction of artefacts (e.g., stars, satellites)
 - Extremely quick follow-up with multiple MMS/MWL facilities is necessary
- Machine learning anomaly detection approach
 - Training exclusively with real data \rightarrow mitigates systematics (no imperfect simulations used)

 - Does not require explicit physical modelling of perspective sources (generally not well constrained) • Facilitates data-fusion of inputs from different experiments
 - Extremely fast for evaluation, enabling quick response and coordination between facilities

Recurrent neural networks for transient detection

Two methodologies for source detection

- Anomaly detection
 - Train an RNN to predict a time-series of the expected background
 - Compare the predictions to the true time series

 identify a transient event as an anomalous flare
- Classification
 - Train an RNN to classify a time series as background or signal, using labels
 - Training requires both background data and signal data (-> introduces some model dependence)

Calibration pipeline

The results are calibrated statistically
 → significance / p-value estimates for discovery

y-ray transients

- Example for the Cherenkov telescope array (CTA)
 - Methodology

 - Train an RNN to predict a time-series of γ -ray event counts (binned in time & energy bins) • Add "auxiliary" input data, which affect the γ -ray rates (e.g., zenith of observation) • Compare the predictions to the true γ -ray rates, and identify a transient event as an anomalous flare
 - Training strategy
 - Anomaly detection: training exclusively on background data -> no-source in the region of interest; data potentially scrambled in time
 - Classification: also use simulations of GRBs

 simple spectral and temporal templates

Significance calibration for anomaly detection

- Calibration procedure
 - between the RNN predictions and the ground truth)
 - Map TS

 p-values from TS distribution

Significance calibration for classification

- In this example, the output of the RNN is a classification estimator, ζ_{dec}
- ζ_{dec} is evaluate for the background and signal samples individually
- The TS is derived from the ratio of the distributions as a function of ζ_{dec}
- TS → p-value mapping is based on Wilks' theorem

tion estimator, ζ_{dec} as individually s a function of ζ_{dec}

Serendipitous y-ray transient detection

Methodology

- exponentially cutoff spectral PL models.
- software package for CTA simulations
- Main takeaways

• Shown here for a sample with expected properties for LL-GRBs, assuming either simple power-law (PL) or

• The reference detection rate (ctools) indicates a likelihood-based method, implemented as part of the ctools

• When simple PL models are fit the the data, both RNN methods perform better than the likelihood approach

Neutrino point source search

- Anomaly detection search for point sources in IceCube & ANTARES public datasets
 - Methodology
 - Data from the two observatories are combined into a single RNN
 - Data are binned in 1-day intervals
 - Reference background dataset derived from same dataset, scrambled in arrival time and R.A. • RNN inputs are defined as neutrino event densities

 - TS \rightarrow p-value mapping includes trials correction (spacial and temporal)
 - Results
 - No source found (best post-trials significance \rightarrow 1.6 σ)
 - No correlation found between IceCube & ANTARES
 - Main takeaways
 - No need to explicitly define the atmospheric neutrino background rates
 - No need to explicitly model the relative response between the two experiments
 - Trial factors are automatically taken into account as part of TS calibration

Neutrino / SNe correlation study

- Anomaly detection search for neutrino emission (IceCube) correlated with core-collapse SNe (LSST)
 - Methodology
 - Simulate observations for different LSST survey profiles
 - Detect SNe from the optical sims
 - Correlate with neutrino densities in spatiotemporal coincidence with the expected explosion time of the SNe

Main takeaways

- Alternative to direct association (no need for individual VHE neutrino trigger) SN log₁₀ p_{v-}
- Trial factors are automatically taken into account as part of TS calibration
- No need for explicit combined likelihood formulation of the optical

 neutrino signals
- RNN is also used to derive limits in case of non-detection

Closing remarks

- Anomaly detection enables minimally-biased detection of transients
 most of the usual simulations & modelling for such analyses are not explicitly needed
- Simple neural network architectures are sufficient in many cases -> no need to parameter tuning
- Searches may be conducted on different time scales, and are robust to missing data
- likelihood formulations of individual / combined experiments
- standalone networks may be combined Similarity for SN classifiers, etc. ...
- The same network may also be used to derive limits on none-detection
- The quick response of the network facilitates efficient follow-up alert generation

• The outputs of the network are consistently mapped to p-values for source detection -> no need for explicit

• It is relatively simple to combine multiple signals of different types into a single network, which internally models the join probability of the background-only hypothesis • In case of complicated signals (e.g., GW waveforms),

