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Outline
● Classifying astronomical sources is important for science results

– AGN and SFGs are fundamentally different classes of objects

– Different source types influence evolution and constitution of the 
Universe in different ways

● Surveys are detecting higher quality sources 

– Machine learning, citizen science
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Outline
● We addressed these problems using deep learning (DL) 

– Classifying radio sources by numbers of components

– Comparing two approaches in classifying between radio 
galaxy classes

– Investigating whether a ConvNet can be used to find radio 
sources
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Background

● The radio galaxy morphology reveals important properties

– The surrounding environment of the radio galaxy

– Almost everything we know about jets relates to their 
morphology and luminosity

– Location of brightest parts of the emission, how the source type 
influences the immediate environment    

                       

FRI FRII



  

Machine learning in astronomical 
images

● Citizen scientists asked to describe optical galaxy morphologies

● Determine the probability that a galaxy belongs in a particular class 
(regression problem)

● Winning solution used convolutional neural networks



  

Neural network basics
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Convolutional neural networks

Pooling
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Aniyan & Thorat (2017)

Alhassan, Taylor & Vaccari (2018)

Wu…, Lukic…, 

et al. (2018)
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Radio Galaxy Zoo (RGZ) 
Compact and Extended source classification  

  ● Lukic et al. 2018 (published in MNRAS)

● Image data of >200,000 galaxies, no labels

● Single channel, 132x132 pixels

● Images contain different numbers of components

● Used the Python Blob Detector and Source Finder 
(PyBDSF) to help organise the data

● Generated more images using translation, rotation and 
flipping
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Four-class problem
● Applied a 3 Conv + 2 dense layer CNN set-up to the 

four-class problem, classification accuracy > 93% 

Compact

1 component 
extended

2 component 
extended

>=3 component 
extended
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Cross-check with DR1 of RGZ

● DR1 – citizen scientists which components belonged 
to which sources

– Labels: ‘Number of components’ and ‘Number of 
peaks’ 

● Test classification accuracy > 94 %

– Influenced by high numbers of compact/single-
component extended sources

– Higher # components → worsened performance



  

Drawback of CNNs

● Relative location of features within image is not 
preserved, due to pooling operation

● Lack of rotational invariance



  

Capsule networks
● Designed to preserve hierarchical relationships in images 

(Sabour, Frosst, Hinton (2017))

● A capsule consists of a group of neurons that attempt to 
extract possible variations of the subject in the image (e.g. 

Thickness and deformation) 



  

Capsule versus CNNs

● Morphological classification of radio galaxies: Capsule 
networks versus Convolutional Neural Networks (V. Lukic, 
M. Brüggen, B.Mingo, J.H. Croston, G. Kasieczka, P.N. 
Best). Published in MNRAS  

● Sources from the LOFAR LoTSS HetDex field



  

Cross-ID
● Cross-identification of radio sources with optical 

source

– Sources < 15 arcsec : Maximum likelihood 
technique

– Sources > 15 arcsec : Inspected by expert  
astronomers
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Details of images

● 2901 images with classifications:
– Fits file cutouts and 4rms sigma-clipped numpy arrays

– Unresolved, FRI, FRII

Unres.

Unres.

FRI

FRII

FRI

FRII
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Details of images

● Labels generated using automated technique on 4rms 
images, FRIs and FRIIs visually cross-checked 

FRI: d1/Maxd1 < 0.5 and d2/Maxd2 < 0.5

FRII: d1/Maxd1 > 0.5 and d2/Maxd2 > 0.5 
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Datasets and architectures used

● Original (+ augmented) fits images and 4rms numpy 
arrays

● 79% training and 21% for validation and testing

● 4- and 8- layer convolutional network, capsule network 

variations 

ConvNet-4  

ConvNet-8  



  21

Capsule networks

– Default
– Increase size of filters and stride 
– Increase decoder complexity and loss weight
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4th conv layer features CapsNet reconstructions



  

Results

● ConvNet-4 and ConvNet-8 achieve 93.3% and 94.3% 
average precision respectively. CapsNet attains 
89.7%. Transfer learning achieves 94.4% 

● Best results across all models are obtained using 4rms 
masked numpy arrays 

● The ConvNet architectures always outperform 
CapsNet 
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Possible reasons for performance

● Capsule network does not cope as successfully, 
perhaps due to preserving all features

● Pooling operation in convolutional networks 
appears to be advantageous 

– Pooling may help remove undesirable features, 
allows more degrees of freedom for morphology

● Capsule network might need more original 
training images to work better
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Application to source-finding in the SKA

● Lukic, de Gasperin, Bruggen (2019), Galaxies

● Square kilometer array (SKA) is the worlds largest radio 
telescope

– >1 square kilometer of collecting area

– Will discover up to 500 million sources

– Science data challenge (SDC1)
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Simulated SKA data

8 h 100 h 1000 h

560 MHz

1400 MHz

9200 MHz

● Sources classified as steep- and flat- spectrum AGN, SFGs
● 4000x4000 pixel training area
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Source-finding and challenges

● A source is defined as a collection of pixels above 
some value

– Correlated noise in radio 

● At lower SNRs there is more difficulty in grouping the 
pixels belonging to a particular source

● Fitting Gaussians to sources is a common method – 
we used PyBDSF



  28

ConvoSource
● We developed ConvoSource

– CNN, real maps → solution maps

● Image augmentation feature may boost performance

● In Lukic et al. (2019), we created 50x50 pixel maps, 
spaced 50 pixels apart
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ConvoSource architecture 
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Results

● Source-finders compared using the F1 score

– Summary of precision and recall

● Lower SNRs: ConvoSource better in recovery of 
SFGs, PyBDSF better in recovery of SS and FS 
sources  

● The opposite effect is seen at higher SNR

– The SNR, frequency and exposure time 
determines whether PyBDSF or ConvoSource 
will perform better
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SNR=2 example

Real image      Source locations          ConvoSource                  PyBDSF

Eg. 1

Eg. 2
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ConvoSource summary

● ConvoSource 

– outputs pixel values with range 0 to 1

– sometimes outputs sources spread over 
several pixels

– detects more true positives but also more 
false positives
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Conclusions

● Machine learning techniques are of increasing importance 
in astronomical applications

● We have shown it is possible to classify sources according 
to

– Number of components 

– Fanaroff-Riley class 

● We have shown that a deep learning method can be a 
competitive source-finder

– Convolutional neural network

● ConvNets outperform CapsNets given the dataset type and 
size  
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Supplementary material
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Compact and extended radio 
sources

● Focus on classifying between types of radio-loud AGN

● Compact, point-like sources

– Unresolved by the telescope

– Generally simple morphologies

– Some extended sources can be compact

● Extended sources

– Resolved by the telescope

– Broader range of morphologies
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FRII possible morphologies



  

Machine learning in astronomical 
images

● Citizen scientists asked to describe optical galaxy morphologies

● Determine the probability that a galaxy belongs in a particular class 
(regression problem)

● Winning solution used convolutional neural networks
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Two-class problem

● First manually tuned a CNN to distinguish 
between two morphological extremes

Compact

>=3 component 
extended
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Results for two classes

● 3 conv + 2 dense architecture optimal

● Trained with original and augmented images

● Classification accuracy > 97 %
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Lasagne network parameters

● Tuned neural network parameters manually to find 
optimal setup

– Batch size 8

– Learning rate set to 0.001 at start, reduced by factor of 10 
at four points during training

● Categorical cross-entropy cost function

● Train for 1000 epochs

● Mini-batch Stochastic Gradient Descent (SGD) with 
Nesterov momentum 0.9 and weight decay of 0
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Convolutional neural networks

● ConvNet-4 and ConvNet-8 

● Keras library

● Learning rate 0.001, cross-entropy cost function

● Train for 50 epochs, batch size of 100

● Adam optimizer
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Source-finding based on deep 
learning

● CosmoDeep (Gheller et al. 2018) detects extended 
extragalactic radio sources (cluster of galaxies,filaments)

● ClaRAN (Wu et al. 2018 ) detects individual radio sources 
in an image and classify according to the number of peaks 
and components

● DeepSource (Sadr et al. 2019) presents a deep learning 
algorithm to find point sources in simulated images

● ConvoSource (Lukic et al. 2019) – the first application of a 
CNN to source-finding, across point and extended sources
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AutoSource parameters

● Keras library

● 5120 (80%) original training images, 1280 (20%) for testing

● Early stopping with patience of 5 epochs

● 16, 32 and 64 filters, with a filter size of 7, 5 and 3 in the first, 
second and third convolutional layers 

● A dropout layer with dropout fraction of 0.25 

● Stride of 1 pixel 

● Batch size of 128 

● We use the Adadelta optimiser with a default learning rate of 1.0, 
decay of 0 and a rho of 0.99.
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SNR=1
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SNR=1 randomised
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SNR=2
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SNR=5
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SNR=1 example

Real image      Source locations               AutoSource                  PyBDSF
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