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P Graphs are generic models of signal structure that can help to learn in several practical problems
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Machine Learning on Graphs fzama@berkeley.edu

P Graphs are generic models of signal structure that can help to learn in several practical problems

Decentralized Control of Autonomous Systems Smart Grids
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Graph Neural Networks

Machine Learning on Graphs fzama@berkeley.edu

» Successful machine learning leverages structure = Convolutional neural networks (CNNs)

We are good at learning over this Challenge is we want to learn on this
oo 0000000000 ° % o °
© 00000000000 .....'.o 00..0.:
00000000000 .o~o... o‘.
00000000000 X o Y
X J .......
0006600000000 oo e
0006600000000 . o 4 °‘
eeoecocecoc0eoe .: o ."o".o.
00000000000 ook e o

> Scales, exploits data structure, and has an efficient implementation (distributed)

»  Graph Convolutions =- Graph Signal Processing
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Machine Learning on Graphs

Graph Neural
Networks

Equivariance and
Stability
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Graph signal processing = Mathematical framework
Graph convolutions = Local, distributed

= Generalize time convolutions

Permutation equivariance = Exploit structure
Stability to changes in the underlying network

Transferability and scalability

Team of agents =- Collaborate to accomplish global task
Autonomy of agents = Decentralized actions

Global objective vs. Local actions
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Graph Neural Networks

Graph Convolutions feama@berkeloy.edu

> convolution = Linear combination of shifted versions of the signal

K-—1
x *g h = Z hy skx
k=0

S0 0 o0 :
-1 0 o0 o1
.0 1 o - §2
» Notion of shift S = Matrix description of graph = Sx shifts the signal x o 0 1 3
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Graph Neural Networks

Graph Convolutions feama@berkeloy.edu

» Graph convolution =- Linear combination of shifted versions of the signal

K—1
X s h = Z hi, SFx = H(S)x
k=0

> Notion of shift S = Matrix description of graph

P Linear combination of neighboring signal =- Local operation

H(S)x
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Nonlinear Graph Signal Processing

> Traditional signal processing

= Best linear filter that exploits structure

e = iy e

P Linear models = Limited representation

= Nonlinear graph signal processing

v

Graph perceptron =- Nonlinear processing
= Graph filter = Pointwise nonlinearity

= Learn graph filter {hy} = {r{luri J(x1)
k

» Basic nonlinear description of models

= Increase representation power =- Repeat
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Graph Neural Networks fzama®berkeley.edu
X
!
> Cascade of L layers il
. . z1
= Graph convolutions with filters H = {hy} z; = h1xS* x X1 = U[Zl]
= Pointwise nonlinearity (activation functions) b0 T Layer 1
51
» The GNN &(x; S, #) depends on the filters # x1 l
= Learn filter taps 7/ from training data K—lv
, z
= Also depends on the graph S zy = harS* x; 2 Xo = o[zz]
k=0 It
) . T Layer 2
» Nonlinear mapping ®(x; S, ) [ %2
= Exploit underlying graph structure S *2 l
Y
= Local information K1
k 23
= Distributed implementation Z3 = Z h3S™ x2 X3 = U[z3]
=0 T Layer 3

L x3 = ®(x;S,H)
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Equivariance and Stability Properties of Graph Neural Networks " .. arercoioy edn

Equivariance and Stability Properties
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Graph Neural Networks
Graph Neural Networks: Why? o e Bhorkeloy o

» Time convolutions are intuitive. Graph convolutions not so much.

= Local information, distributed implementation

» CNNs are good at machine learning = Translation equivariant, stable

v

Permutation equivariance =- Exploit internal symmetries of the graph

v

Stability to graph perturbations =- Similar graphs yield similar outputs

> Permutation Equivariance + Stablity = Scalability and transferability
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Permutation Equivariance feama@berkeloy.edu

oo
> Consider the graph convolution operator H(S)x = Z hi S* x
k=0

> Depends on filter parameters h = {h;, } 72 | and shift operator S; applied to the input signal x

Theorem (Gama, Bruna, Ribeiro)
Graph convolutions are equivariant to permutations. For graphs with permuted shift
operators S = PTSP and permuted graph signals ¥ = P"x it holds

H(S)x = PTH(S)x

oo o0 oo
Proof = H(S)x =) hpS"%=) hp(P'SP)FPTx=P" ( > he S“x) =PTH(S)x
k=0 k=0 k=0
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GNNs Inherit Permutation Equivariance from Graph Filters e meGnorkeloy o

fgama@berkeley.edu
x
|
¥
_ k —
» GNN is a cascade of layers = Z h1x8" x 251 5 ”[zl]
k=0
. . . L. I,
= Graph filters and pointwise nonlinearities I ayer 1
) =
> Pointwise operation = No mixing of node values ! l
12
= Independent of the graph - ”
k 2
Zo = g hokS” x1 XZ:(T[Z2:|
» GNN retains permutation equivariance k=0 : Layer 2
l X2
X2 l
¥
oo 23
k
z3 = E h3rS™ x2 X3—U[Z3]
k=0
Layer 3

Lo

x3 = ®(x;S,H)
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Graph Neural Networks

Permutation Equivariance of Graph Neural Networks EemmaGberkeloy.odu

Theorem (Gama, Ribeiro, Bruna)
GNNs are equivariant to permutations. For graphs with permuted shift operators S=PTSP and
permuted graph signals % = P "x it holds

d(%;8, 1) = PTd(x;S,H)

where ®(%:S,7) is the output of processing % on S with GNN A and ®(x; S, H) is the output of
processing x on S with the same GNN .

» Signal Processing with Graph Neural Networks is independent of labeling
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Graph Neural Networks

Equivariance to Permutations is More Valuable than Apparent EemmaGberkeloy.odu

> Invariance to node relabelings allows GNNs to exploit internal symmetries of graph signals

> Although different, signals on (a) and (b) are permutations of one other

= Permutation equivariance means that the GNN can learn to process (b) from secing (a)

)

©)
©)

® ©—Q@ W—®

(o)
@ ® ®

(a) (b)

©
S8R0,

©)

» Permutation Equivariance is not a good idea in all problems = Edge-Variant GNNs
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Graph Neural Networks

Equivariance to Permutations is a Property of Graph Filters Fenma@berkeloy adn

» Permutation equivariance is a property of graph convolutions inherited to GNNs

= Exploits data structure

» Why choose GNNs over graph convolutions?
= Q1: What is good about pointwise nonlinearities?

= Q2: What is wrong with linear graph convolutions?

> A2: They can be unstable to perturbations of the graph if we push their discriminative power
> A1l: They make GNNs stable to perturbations while retaining discriminability

> These questions can be answered with an analysis in the spectral domain

16/40
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Graph Neural Networks

Graph Convolutions in the Frequency Domain Fenma@berkeloy adn

oo
» Graph convolution is a polynomial on the shift operator = y = Z hiS*x
k=0

» Decompose operator as S = VAVH to write the spectral representation of the graph convolution

o0
vy = Ziu' AVHE = ¥y = > hAFx
k=0 k=0

where we have used the graph Fourier transform (GFT) definitions ¥ = VHx and § = VHy

» Graph convolution is a pointwise operation in the spectral domain = g; = ﬁ()\i)iz

oC
= Determined by the (graph) frequency response =- Z /I]CA? = ﬁ()\l)
k=0
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Graph Frequency Response feama@berkeloy.edu

oo
> We can reinterpret the frequency response as a polynomial on continuous A = ﬁ()\) = g hi\F
k=0

0

Nz

A A A X AN AN

» Frequency response is the same no matter the graph = It’s instantiated on its particular spectrum
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Restricting the Class of Allowable Filters e

> Let h(\) be the frequency response of filter H. We say H is integral Lipschitz if [\h'(\)| < C

A1 =0 Ap A3 A4

> Integral Lipschitz filters have to be wide for large A; but they can be thin for low A
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Stability of Graph Neural Networks with Integral Lipschitz Filter$ . for, oo

> Relative distance between S and S = Smallest matrix E that maps S into a permutation of S

S:{E: S§p =s+ ETS+SE} = d(S,8) = min|B|

Theorem

Consider a GNN with L layers having integral Lipschitz filter H, with constant C. Graphs S and S satisfy
d(S,S) < £/2. The matrix E that achieves minimum distance satisfies |E/||E|| — I|| < e. It holds that for
all signals x

oS, 1) — P od(x;S,H)|| < CL e

> GNNs can be made stable to graph perturbations if filters are integral Lipschitz
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Insights: Edge Dilations O e Gborkeloy cdu

> Obtain valuable inisights = Consider particular case of edge dilation = § = (1+¢)S

> An edge dilation just produces a spectrum dilation = A; = (1+¢)X\;

T

. 4

VBV XA, AN AN

P> Small deformations may result in large filter variations for large A if filter is not integral Lipschitz
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Insights: Edge Dilations O e Gborkeloy cdu

> Obtain valuable inisights = Consider particular case of edge dilation = § = (1+¢)S

> An edge dilation just produces a spectrum dilation = A; = (1+¢)X\;

A1 Xq AN AN AN

> Integral Lipschitz is always stable =- Figenvalue does not move or filter does not move
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Discriminative Graph Filter Banks are Unstable EemmaGberkeloy.odu

> Q2: What is wrong with linear graph convolutions?

P> Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

AN-1 AN

» Limits their value in machine learning problems where features at large eigenvalues are important
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Graph Neural Networks

Discriminative Graph Filter Banks are Unstable EemmaGberkeloy.odu

> Q2: What is wrong with linear graph convolutions?

P> Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

Y o— oo oo o—oo"e - >
AN-1Ay_1 AN AN

» Limits their value in machine learning problems where features at large eigenvalues are important
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Graph Neural Networks

Nonlinearities Create Low Frequency Components Fenma@berkeloy adn

> Q1: What is good about pointwise nonlinearities?
P> Preserve permutation equivariance while generating low graph frequency components

= Which we can discriminate with stable filters

Spectrum of rectified
graph signal

Xrelu = max(x, 0)

T oo o0 29077

A1 X Xi A AN A

» The nonlinearity demodulates. It creates low frequency content that is stable
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Nonlinearities Create Low Frequency Components

> Q1: What is good about pointwise nonlinearities?

P> Preserve permutation equivariance while generating low graph frequency components
= Which we can discriminate with stable filters

Graph Neural Networks
fgama@berkeley.edu

GNNs are stable and selective information processing architectures

» The nonlinearity demodulates. It creates low frequency content that is stable
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Distributed Control: Robotics e

Robotics
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Graph Neural Networks

Distributed Coordination of a Robot Swarm EemmaGberkeloy.odu

> We want the team to coordinate on their individual velocities without colliding with each other

N

> This is a very casy problem to solve if we allow for centralized coordination = u; = > ;" v;

> But it is very difficult to solve if we do do not allow for centralized coordination = u; = ...
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Graph Neural Networks

Information Structure on Distributed Systems EemmaGberkeloy.odu

> The challenge in designing behaviors for distributed systems is the partial information structure

. A
y 2
. ;’? %:\
.f%' * &
x; (1) x;(t—1) for j € N} x;(t —2) for j € N? x;(t —3) for j € NP

» Node 7 has access to its own local information at time ¢ = x; (1)
> And the information of its 1-hop neighbors at time t — 1 = x;(t — 1) for all j € N}
> And the information of its 2-hop neighbors at time ¢t —2 = x;(t — 2) for all j € N 2

» And the information of its 3-hop neighbors at time t —3 = x;(t — 3) for all j € NP
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Learning Distributed Actions feama@berkeloy.edu

> Optimal centralized actions act directly on all states m*(x(t))

K—-1
> Distributed actions can only depend on information history = X;(t) = U {X_/' (t—k):j5€ ,\’ZA}
k=0

= Optimal distributed actions u(t) = ®*(X;(t); G) are famously difficult to find

= When optimal solutions are out of reach we resort to heuristics = data driven heuristics
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Graph Neural Networks
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Imitation Learning of Distributed Actions

> Parametrize ®(X;(1); G) with a graph neural network ®(x(¢); S(t), H)

= Adopt learning architecture that naturally processes distributed partial information X;(t)

v

Train ®(x(1); S(t), ) by using imitation learning

v

Optimal centralized policy 7*(x(¢)) can be computed during training time
Find the parameters H that make ®(x(¢); S(t), H) closer to 7" (x(t))

v

H' = argminErs [J (d>(x(l): S(/).’H).?r*(x(l,)))]

v

Centralized policy required at train time but not at test time
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arxiv.org/abs/2012.14906

GNN Properties Play a Key Role D o kel i

> GNN controllers u(t) = ®(x(t); S(¢), H) respect the partial information structure A;(t)

v

Permutation equivariance
= If two agents observe the same input
> Their k-hop neighbors observe the same inputs
= And the local neighborhood structures of the graph are the same
» Then the output of the control policy is the same at both nodes

P> Stability = If graphs are similar, GNN outputs will be similar

> These properties are a necessity for offline training
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Offline Training vs Online Execution e o

fgama@berkeley.edu
> If we want to train offline and execute online we can’t assume the graph is the same

» Train offline on a graph like this > And execute online on a graph like this

° % o ° . .

o.: -..0 ° s "’.‘.: . ® :}3 8

oo~ % o o8 Be.® e ..‘..O’Qk.\
oY Jo et ® A LN Z1B ¢ ®
P (3w O0.0.0 0:. oo.“~ .o
i Vs, = ok, we®
LR G St .o ! h S

> Graph convolutions = Learn parameters H = Run on any S: H(S) = 25;01 hy, SF
P> Permutation equivariance =- Exploit symmetries, reuse data

P Stability =- Similar graphs yield similar outputs
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Graph Neural Networks

Team Dynamics

fgama@berkeley.edu

> Team of N agents with positions r;(t), velocities v;(t) and acceleration u;(t)

P> System dynamics = Constant acceleration during each interval T

ri(t+1) =w()T2/2 + vi(t)Ts + ri(t)
Vi(t + 1) = ui(t)Ts + Vi(t)

> Control acceleration u,(t) = Design sequence of acceleration values {u;(t)}

> Proof of concept =- More realistic scenarios are available

UNIVERSITY OF CALIFORNIA
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Graph Neural Networks

Problem Statement fgamaGberkeley.edu

» Coordinate the velocities v;(t) of all agents to be the same while avoiding collisions

> Measure the cost by computing the velocity variation across the team for the entire trajectory
N
J[{vi)}] = > lvi) = w5011
1=1

> Control accelerations u;(t) such that ~ min >OJ[{Vi(t)}] = Velocity v;(t + 1) = u;(t)Ts + v, (1)

u;(t) ,
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Communication Network

Graph Neural Networks
fgama@berkeley.edu

> Decentralized setting = Agents can only communicate if ||r;(t) —r;(¢)[| < R

» Communication graph S(t) = Edge [S(t)];; if agents can communicate

P> Use GNNs that respect the communicaton graph =- Local and distributed operations

K-—1
U (1), H) = 9(X(0; S(0), H) , HX() = 3 b S(8) - S(t — (k — 1)x(t — k)
k=0

Mo >
\\\\.\\\\\ 3
\ Ty
\ \;‘\ \,‘\\\\

\
\\. \\ \\\ \\

\

Vot

t=1s
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Graph Neural Networks

Imitation Learning fzama@berkeley.edu

> Train GNN &(X(t); S(t), H) by using imitation learning = Find # that make ® closer to U* ()

#* = argminEus [[#(X(); S(0), 1) = U (1)]]

» The optimal centralized solution U*(¢) that avoids collisions is given by

> The state x;(t) for each agent is set to V. ) P(ri(t),r;(t)) = Local to each agent

> Centralized controller U* is required at train time but not at testing time
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Flocking: Transferring

Time ¢ = 0.0000s

0.0

10.09  Cost: 5.8877

100 =75 5.0 25 00 25 5.0

Offline optimal trajectory
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Time ¢ = 0.0000s

=

0.0 \ \ \ P/‘/
=k

10.0 Cost: 6.1761

125 10.0 7.5 5.0 2.5 0.0 2.5 5.0

Online learned trajectory
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Graph Neural Networks
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Flocking: Scalability

Time £ = 0.0000s

Time t = 0.0000s Time ¢ = 0.0000s
; 10
10
0
— ii\ 1 \,‘l“\.
. FAAY ] /
25 I e )
~R RS s STy
o0 e LSBT A N ey S W
I SN 7 SR 0 Pt A\{ s food
. v . LU ARL A A o Vi
5 ‘ P A ST L
! T B8y oAz
-50 e < /4 e
- /"/ 1
—100 0
Cost: 5.9130 107 Cost: 5.7698 Cost: 5.9808
5 30 35 00 25 0 0o TR ; ; T o S ) P

50 agents. 75 agents. 100 agents.
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Graph Neural Networks

Flocking: Transferring at Scale feama@berkeloy.edu

> Train on 50 agents. Test on 100 agents.
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h Neural Networks
gama@berkeley.edu

Flocking: Takeaways Gr:

» GNNs learn controllers to drive a team to fly at the same velocity while avoiding collisions

= Control actions taken by each agent based only on outdated neighboring information

> Transfer = The communication network changes from time to time = GNNs work
> Scale = Learn to control teams of increasing number of agents = GNNs work
>

Transfer at scale = Train on a small team, test on a big team = GNNs work
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Graph Neural Networks

Conclusions fgamaGberkeley.edu

Conclusions
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Machine Learning on Graphs fzama@berkeley.edu

P Successful learning on graphs = Scalability, exploit data structure, distributed implementation
» Graph neural networks (GNNs) =- Graph convolutions followed by pointwise nonlinearities

» GNNs are permutation equivariant and stable to changes in the graph = Scale, transfer
> Graph convolutions are either stable or selective, but cannot be both

» Nonlinearities = GNNs are both stable and selective information processing architectures

> Learning decentralized controllers =- Distributed systems =- Partial information structure
= Parametrize controller with GNN = Naturally adapts to partial information structure

> Flocking = Coordinate a team of robots to fly at the same velocities = Transfers at scale

Thank you!
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