
1/40

Graph Neural Networks

Fernando Gama

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

CosmoStat seminar on Machine Learning for Astrophysics
March 5th, 2021

Thanks: D. Owerko, E. Tolstaya, L. Ruiz, Q. Li, T.-K. Hu, A. Prorok, A. G. Marques, Z. Wang, E. Isufi,

G. Leus, J. Bruna, S. Sojoudi and A. Ribeiro

2/40

Graph Neural Networks
fgama@berkeley.eduMachine Learning on Graphs

I Graphs are generic models of signal structure that can help to learn in several practical problems

Authorship Attribution

a

about

all

along

and

as

bar

bu
t

by

cl
os

ede
sp

ite

do
w

n

ex
ce

pt

fo
r

fr
om

he
ap

s

he
nc

e

in

it

lik
e

m
an

y

may

more

much

neither

no

none

nor

of

on

or

our

out

round
shall

so

such than that the them
selves

then

thence

this

throughout
to

tow
ards

underneath
until

unto

upon

us

while

will

with

a

about

all

along

and

as

bar

bu
t

by

cl
os

ede
sp

ite

do
w

n

ex
ce

pt

fo
r

fr
om

he
ap

s

he
nc

e

in

it

lik
e

m
an

y
may

more

much

neither

no

none

nor

of

on

or

our

out

round
shall

so

such than that the them
selves

then

thence

this

throughout
to

tow
ards

underneath
until

unto

upon

us

while

will

with

Recommendation Systems

Gama, Ribeiro, Bruna, “Diffusion Scattering Transforms on Graphs”, ICLR 2019

Gama, Bruna, Ribeiro, “Stability of Graph Neural Networks to Relative Perturbations”, IEEE ICASSP 2020

2/40

Graph Neural Networks
fgama@berkeley.eduMachine Learning on Graphs

I Graphs are generic models of signal structure that can help to learn in several practical problems

Decentralized Control of Autonomous Systems Smart Grids

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks”, CoRL 2019

Owerko, Gama, Ribeiro, “Optimal Power Flow Using Graph Neural Networks”, IEEE ICASSP 2020

3/40

Graph Neural Networks
fgama@berkeley.eduMachine Learning on Graphs

I Successful machine learning leverages structure ⇒ Convolutional neural networks (CNNs)

We are good at learning over this Challenge is we want to learn on this

I Scales, exploits data structure, and has an efficient implementation (distributed)
I Graph Convolutions ⇒ Graph Signal Processing ⇒ Graph Filtering

4/40

Graph Neural Networks
fgama@berkeley.eduMachine Learning on Graphs

Graph Neural
Networks

I Graph signal processing ⇒ Mathematical framework
I Graph convolutions ⇒ Local, distributed
⇒ Generalize time convolutions

Equivariance and
Stability

I Permutation equivariance ⇒ Exploit structure
I Stability to changes in the underlying network
I Transferability and scalability

Distributed Collaborative
Intelligent Systems

I Team of agents ⇒ Collaborate to accomplish global task
I Autonomy of agents ⇒ Decentralized actions
I Global objective vs. Local actions

5/40

Graph Neural Networks
fgama@berkeley.eduOutline

Graph Neural Networks

Equivariance and Stability Properties

Robotics

Conclusions

6/40

Graph Neural Networks
fgama@berkeley.eduGraph Neural Networks

Graph Neural Networks

Equivariance and Stability Properties

Robotics

Conclusions

7/40

Graph Neural Networks
fgama@berkeley.eduGraph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal

x ∗S h =

K−1∑
k=0

hk S
k
x

I Notion of shift S ⇒ Matrix description of graph ⇒ Sx shifts the signal x

.

.

.
.
.
.

.

.

.
· · · 0 0 0 · · ·
· · · 1 0 0 · · ·
· · · 0 1 0 · · ·
· · · 0 0 1 · · ·

.

.

.
.
.
.

.

.

.

.

.

.
x1
x2
x3

.

.

.

x

S

x1

x2

x3 x4

0 1 2 3

x0
x1

x2

x3

0 1 2 3

x−1

x0
x1

x2

0 1 2 3

x−2 x−1

x0
x1

0 1 2 3

S S S

+ + + +

x Sx S2x S3x

h0 h1 h2 h3

H(S)x

Gama, Isufi, Leus, Ribeiro, “Graphs, Convolutions and Neural Networks: From Graph Filters to Graph Neural Networks”, IEEE SPM, 2020

7/40

Graph Neural Networks
fgama@berkeley.eduGraph Convolutions

I Graph convolution ⇒ Linear combination of shifted versions of the signal

x ∗S h =

K−1∑
k=0

hk S
k
x = H(S)x

I Notion of shift S ⇒ Matrix description of graph (adjacency, Laplacian)
I Linear combination of neighboring signal ⇒ Local operation

0 1 0 0 0 1 0 0 0 0 0
1 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 1 1
0 1 0 0 0 0 1 1 0 0 0
0 1 0 0 1 0 0 1 0 1 0
1 1 1 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 1 0 0
0 0 0 1 1 0 1 0 1 1 0
0 0 0 0 0 0 1 1 0 1 1
0 0 0 0 1 0 0 1 1 0 1
0 0 1 0 0 0 0 0 1 1 0

(x;S) 1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

1

4

2

6

3

5

8

10

7

9

11

S S S

+ + + +

x Sx S2x S3x

h0 h1 h2 h3

H(S)x

Gama, Isufi, Leus, Ribeiro, “Graphs, Convolutions and Neural Networks: From Graph Filters to Graph Neural Networks”, IEEE SPM, 2020

8/40

Graph Neural Networks
fgama@berkeley.eduNonlinear Graph Signal Processing

I Traditional signal processing
⇒ Best linear filter that exploits structure

min
{hk}

J(z1) = min
{hk}

J(H(S)x)

I Linear models ⇒ Limited representation
⇒ Nonlinear graph signal processing

I Graph perceptron ⇒ Nonlinear processing
⇒ Graph filter ⇒ Pointwise nonlinearity
⇒ Learn graph filter {hk} ⇒ min

{hk}
J(x1)

I Basic nonlinear description of models
⇒ Increase representation power ⇒ Repeat

x

z1 =

K−1∑
k=0

h kS
k
x x1 = σ

[
z1

]z1

x1

Gama, Isufi, Leus, Ribeiro, “Graphs, Convolutions and Neural Networks: From Graph Filters to Graph Neural Networks”, IEEE SPM, 2020

9/40

Graph Neural Networks
fgama@berkeley.eduGraph Neural Networks

I Cascade of L layers
⇒ Graph convolutions with filters H = {h`}
⇒ Pointwise nonlinearity (activation functions)

I The GNN Φ(x;S,H) depends on the filters H
⇒ Learn filter taps H from training data
⇒ Also depends on the graph S

I Nonlinear mapping Φ(x;S,H)

⇒ Exploit underlying graph structure S

⇒ Local information
⇒ Distributed implementation

Layer 1

Layer 2

Layer 3

x

z1 =

K−1∑
k=0

h1kS
k
x x1 = σ

[
z1

]z1

z2 =

K−1∑
k=0

h2kS
k
x1 x2 = σ

[
z2

]z2

z3 =

K−1∑
k=0

h3kS
k
x2 x3 = σ

[
z3

]z3

x1
x1

x2
x2

x3 = Φ(x;S,H)

Gama, Marques, Leus, Ribeiro, “Convolutional Neural Network Architectures for Signals Supported on Graphs”, IEEE TSP, 2019

10/40

Graph Neural Networks
fgama@berkeley.eduEquivariance and Stability Properties of Graph Neural Networks

Graph Neural Networks

Equivariance and Stability Properties

Robotics

Conclusions

11/40

Graph Neural Networks
fgama@berkeley.eduGraph Neural Networks: Why?

I Time convolutions are intuitive. Graph convolutions not so much.
⇒ Local information, distributed implementation

I CNNs are good at machine learning ⇒ Translation equivariant, stable [Mallat ’12]

I Permutation equivariance ⇒ Exploit internal symmetries of the graph
I Stability to graph perturbations ⇒ Similar graphs yield similar outputs

I Permutation Equivariance + Stablity ⇒ Scalability and transferability

Gama, Ribeiro, Bruna, “Diffusion Scattering Transforms on Graphs”, ICLR 2019

Gama, Bruna, Ribeiro, “Stability of Graph Scattering Transforms”, NeurIPS 2019

12/40

Graph Neural Networks
fgama@berkeley.eduPermutation Equivariance

I Consider the graph convolution operator H(S)x =
∞∑
k=0

hk Sk x

I Depends on filter parameters h = {hk}∞k=0 and shift operator S; applied to the input signal x

Theorem (Gama, Bruna, Ribeiro)
Graph convolutions are equivariant to permutations. For graphs with permuted shift
operators Ŝ = PTSP and permuted graph signals x̂ = PTx it holds

H(Ŝ)x̂ = PTH(S)x

Proof ⇒ H(Ŝ)x̂ =
∞∑
k=0

hk Ŝkx̂ =
∞∑
k=0

hk (P
TSP)kPTx = PT

(∞∑
k=0

hk Skx

)
= PTH(S)x

Gama, Bruna, Ribeiro, “Stability of Graph Scattering Transforms”, NeurIPS 2019

13/40

Graph Neural Networks
fgama@berkeley.eduGNNs Inherit Permutation Equivariance from Graph Filters

I GNN is a cascade of layers
⇒ Graph filters and pointwise nonlinearities

I Pointwise operation ⇒ No mixing of node values
⇒ Independent of the graph

I GNN retains permutation equivariance

Layer 1

Layer 2

Layer 3

x

z1 =
∞∑

k=0

h1kS
k
x x1 = σ

[
z1

]z1

z2 =

∞∑
k=0

h2kS
k
x1 x2 = σ

[
z2

]z2

z3 =

∞∑
k=0

h3kS
k
x2 x3 = σ

[
z3

]z3

x1
x1

x2
x2

x3 = Φ(x;S,H)

14/40

Graph Neural Networks
fgama@berkeley.eduPermutation Equivariance of Graph Neural Networks

Theorem (Gama, Ribeiro, Bruna)
GNNs are equivariant to permutations. For graphs with permuted shift operators Ŝ = PTSP and
permuted graph signals x̂ = PTx it holds

Φ(x̂; Ŝ,H) = PTΦ(x;S,H)

where Φ(x̂; Ŝ,H) is the output of processing x̂ on Ŝ with GNN H and Φ(x;S,H) is the output of
processing x on S with the same GNN H.

I Signal Processing with Graph Neural Networks is independent of labeling

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, TSP, 2020

15/40

Graph Neural Networks
fgama@berkeley.eduEquivariance to Permutations is More Valuable than Apparent

I Invariance to node relabelings allows GNNs to exploit internal symmetries of graph signals

I Although different, signals on (a) and (b) are permutations of one other
⇒ Permutation equivariance means that the GNN can learn to process (b) from seeing (a)

1 2

3

45

6 7 10

8 9

12 11

(a)

1 2

3

45

6 7 10

8 9

12 11

(b)

I Permutation Equivariance is not a good idea in all problems ⇒ Edge-Variant GNNs

Isufi, Gama, Ribeiro, “EdgeNets: Edge Varying Graph Neural Networks”, arXiv:2001.07620, 2020

16/40

Graph Neural Networks
fgama@berkeley.eduEquivariance to Permutations is a Property of Graph Filters

I Permutation equivariance is a property of graph convolutions inherited to GNNs
⇒ Exploits data structure (internal symmetries of the graph)

I Why choose GNNs over graph convolutions?
⇒ Q1: What is good about pointwise nonlinearities?
⇒ Q2: What is wrong with linear graph convolutions?

I A2: They can be unstable to perturbations of the graph if we push their discriminative power

I A1: They make GNNs stable to perturbations while retaining discriminability

I These questions can be answered with an analysis in the spectral domain

17/40

Graph Neural Networks
fgama@berkeley.eduGraph Convolutions in the Frequency Domain

I Graph convolution is a polynomial on the shift operator ⇒ y =
∞∑
k=0

hkS
kx

I Decompose operator as S = VΛVH to write the spectral representation of the graph convolution

VHy = VH
∞∑
k=0

hk(VΛVH)k x ⇒ ỹ =
∞∑
k=0

hkΛ
k x̃

where we have used the graph Fourier transform (GFT) definitions x̃ = VHx and ỹ = VHy

I Graph convolution is a pointwise operation in the spectral domain ⇒ ỹi = h̃(λi)x̃i

⇒ Determined by the (graph) frequency response ⇒
∞∑
k=0

hkλ
k
i = h̃(λi)

18/40

Graph Neural Networks
fgama@berkeley.eduGraph Frequency Response

I We can reinterpret the frequency response as a polynomial on continuous λ ⇒ h̃(λ) =
∞∑
k=0

hkλ
k

λ1 λ̂1 λi λ̂i λN λ̂N

I Frequency response is the same no matter the graph ⇒ It’s instantiated on its particular spectrum

19/40

Graph Neural Networks
fgama@berkeley.eduRestricting the Class of Allowable Filters

I Let h(λ) be the frequency response of filter H. We say H is integral Lipschitz if |λh′(λ)| ≤ C

λ1 = 0 λ2 λ3 λ4

I Integral Lipschitz filters have to be wide for large λ; but they can be thin for low λ

20/40

Graph Neural Networks
fgama@berkeley.eduStability of Graph Neural Networks with Integral Lipschitz Filters

I Relative distance between S and Ŝ ⇒ Smallest matrix E that maps S into a permutation of Ŝ

E =
{
E : P

T
ŜP = S + E

T
S + SE

}
⇒ d(S, Ŝ) = min

E∈E
‖E‖ ≈

‖Ŝ− S‖
‖S‖

Theorem
Consider a GNN with L layers having integral Lipschitz filter H` with constant C. Graphs S and Ŝ satisfy
d(S, Ŝ) ≤ ε/2. The matrix E that achieves minimum distance satisfies ‖E/‖E‖ − I‖ ≤ ε. It holds that for
all signals x

min
P∈P
‖Φ(x; Ŝ,H)−PTΦ(x;S,H)‖ ≤ CL ε + O(ε2)

I GNNs can be made stable to graph perturbations if filters are integral Lipschitz

Gama, Bruna, Ribeiro, “Stability Properties of Graph Neural Networks”, TSP, 2020

21/40

Graph Neural Networks
fgama@berkeley.eduInsights: Edge Dilations

I Obtain valuable inisights ⇒ Consider particular case of edge dilation ⇒ Ŝ = (1 + ε)S

I An edge dilation just produces a spectrum dilation ⇒ λ̂i = (1 + ε)λi, E = (ε/2)I

λ̂1
λ1 λ̂i

λi λ̂N
λN

I Small deformations may result in large filter variations for large λ if filter is not integral Lipschitz

21/40

Graph Neural Networks
fgama@berkeley.eduInsights: Edge Dilations

I Obtain valuable inisights ⇒ Consider particular case of edge dilation ⇒ Ŝ = (1 + ε)S

I An edge dilation just produces a spectrum dilation ⇒ λ̂i = (1 + ε)λi, E = (ε/2)I

λ̂1
λ1 λ̂i

λi λ̂N
λN

I Integral Lipschitz is always stable ⇒ Eigenvalue does not move or filter does not move

22/40

Graph Neural Networks
fgama@berkeley.eduDiscriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?
I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λN−1 λN

I Limits their value in machine learning problems where features at large eigenvalues are important

22/40

Graph Neural Networks
fgama@berkeley.eduDiscriminative Graph Filter Banks are Unstable

I Q2: What is wrong with linear graph convolutions?
I Cannot be simultaneously stable to deformations and discriminate features at large eigenvalues

λ̂N−1
λN−1 λ̂N

λN

I Limits their value in machine learning problems where features at large eigenvalues are important

23/40

Graph Neural Networks
fgama@berkeley.eduNonlinearities Create Low Frequency Components

I Q1: What is good about pointwise nonlinearities?
I Preserve permutation equivariance while generating low graph frequency components
⇒ Which we can discriminate with stable filters

λ̂1
λ1 λ̂i

λi λ̂N
λN

Spectrum of rectified
graph signal
xrelu = max(x, 0)

I The nonlinearity demodulates. It creates low frequency content that is stable

23/40

Graph Neural Networks
fgama@berkeley.eduNonlinearities Create Low Frequency Components

I Q1: What is good about pointwise nonlinearities?
I Preserve permutation equivariance while generating low graph frequency components
⇒ Which we can discriminate with stable filters

GNNs are stable and selective information processing architectures

I The nonlinearity demodulates. It creates low frequency content that is stable

24/40

Graph Neural Networks
fgama@berkeley.eduDistributed Control: Robotics

Graph Neural Networks

Equivariance and Stability Properties

Robotics

Conclusions

25/40

Graph Neural Networks
fgama@berkeley.eduDistributed Coordination of a Robot Swarm

I We want the team to coordinate on their individual velocities without colliding with each other

I This is a very easy problem to solve if we allow for centralized coordination ⇒ ui =
∑N
i=1 vi

I But it is very difficult to solve if we do do not allow for centralized coordination ⇒ ui = . . .

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks”, CoRL 2019

26/40

Graph Neural Networks
fgama@berkeley.eduInformation Structure on Distributed Systems

I The challenge in designing behaviors for distributed systems is the partial information structure

xi(t) xj(t− 1) for j ∈ N 1
i xj(t− 2) for j ∈ N 2

i xj(t− 3) for j ∈ N 3
i

I Node i has access to its own local information at time t ⇒ xi(t)

I And the information of its 1-hop neighbors at time t− 1 ⇒ xj(t− 1) for all j ∈ N 1
i

I And the information of its 2-hop neighbors at time t− 2 ⇒ xj(t− 2) for all j ∈ N 2
i

I And the information of its 3-hop neighbors at time t− 3 ⇒ xj(t− 3) for all j ∈ N 3
i

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks”, CoRL 2019

27/40

Graph Neural Networks
fgama@berkeley.eduLearning Distributed Actions

I Optimal centralized actions act directly on all states π?(x(t)) and can be readily computed

I Distributed actions can only depend on information history ⇒ Xi(t) =
K−1⋃
k=0

{
xj(t− k) : j ∈ N ki

}
⇒ Optimal distributed actions u(t) = Φ?(Xi(t);G) are famously difficult to find [Witsenhausen ’68]

⇒ When optimal solutions are out of reach we resort to heuristics ⇒ data driven heuristics

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

28/40

Graph Neural Networks
fgama@berkeley.eduImitation Learning of Distributed Actions

I Parametrize Φ(Xi(t);G) with a graph neural network Φ(x(t);S(t),H)

⇒ Adopt learning architecture that naturally processes distributed partial information Xi(t)

I Train Φ(x(t);S(t),H) by using imitation learning

I Optimal centralized policy π?(x(t)) can be computed during training time
I Find the parameters H that make Φ(x(t);S(t),H) closer to π?(x(t))

H? = argmin
H

Eπ?

[
J
(

Φ
(
x(t);S(t),H

)
,π?(x(t))

)]
I Centralized policy required at train time but not at test time

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

29/40

Graph Neural Networks
fgama@berkeley.eduGNN Properties Play a Key Role

I GNN controllers u(t) = Φ(x(t);S(t),H) respect the partial information structure Xi(t)

⇒ Graph filters H(Xi(t)) =
∑K−1
k=0 hk S(t) · · ·S(t− (k − 1))x(t− k)

I Permutation equivariance
⇒ If two agents observe the same input
⇒ Their k-hop neighbors observe the same inputs
⇒ And the local neighborhood structures of the graph are the same

I Then the output of the control policy is the same at both nodes

I Stability ⇒ If graphs are similar, GNN outputs will be similar

I These properties are a necessity for offline training

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

30/40

Graph Neural Networks
fgama@berkeley.eduOffline Training vs Online Execution

I If we want to train offline and execute online we can’t assume the graph is the same

I Train offline on a graph like this I And execute online on a graph like this

I Graph convolutions ⇒ Learn parameters H ⇒ Run on any S: H(S) =
∑K−1
k=0 hk Sk

I Permutation equivariance ⇒ Exploit symmetries, reuse data
I Stability ⇒ Similar graphs yield similar outputs

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

31/40

Graph Neural Networks
fgama@berkeley.eduTeam Dynamics

I Team of N agents with positions ri(t), velocities vi(t) and acceleration ui(t)

I System dynamics ⇒ Constant acceleration during each interval Ts{
ri(t+ 1) = ui(t)T

2
s /2 + vi(t)Ts + ri(t)

vi(t+ 1) = ui(t)Ts + vi(t)

I Control acceleration ui(t) ⇒ Design sequence of acceleration values {ui(t)}
I Proof of concept ⇒ More realistic scenarios are available [Tolstaya et al ’19, Li et al ’20, Hu et al ’21]

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with GNNs”, CoRL 2019.

Li, Gama, Ribeiro, Prorok, “Graph Neural Networks for Decentralized Multi-Robot Path Planning”, IRoS 2020.

Hu, Gama, Wang, Ribeiro, Sadler “VGAI: A Vision-Based Decentralized Controller Learning Framework for Robot Swarms”, ICASSP 2021

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

32/40

Graph Neural Networks
fgama@berkeley.eduProblem Statement

I Coordinate the velocities vi(t) of all agents to be the same while avoiding collisions
I Measure the cost by computing the velocity variation across the team for the entire trajectory

J
[
{vi(t)}

]
=

1

N

∑
t

N∑
i=1

‖vi(t) − v̄j(t)‖2 , v̄j =
1

N

N∑
j=1

vj(t)

I Control accelerations ui(t) such that min
ui(t) , t≥0

J
[
{vi(t)}

]
⇒ Velocity vi(t+ 1) = ui(t)Ts + vi(t)

t = 0s t = 1s t = 2s

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

33/40

Graph Neural Networks
fgama@berkeley.eduCommunication Network

I Decentralized setting ⇒ Agents can only communicate if ‖ri(t)− rj(t)‖ ≤ R
I Communication graph S(t) ⇒ Edge [S(t)]ij if agents can communicate
I Use GNNs that respect the communicaton graph ⇒ Local and distributed operations

U(Xi(t),H) = Φ(X(t);S(t),H) , H(Xi(t)) =
K−1∑
k=0

hk S(t) · · ·S(t− (k − 1))x(t− k)

t = 0s t = 1s t = 2s

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

34/40

Graph Neural Networks
fgama@berkeley.eduImitation Learning

I Train GNN Φ(X(t);S(t),H) by using imitation learning ⇒ Find H that make Φ closer to U?(t)

H? = argmin
H

EU?

[
‖Φ(X(t);S(t),H)−U?(t)‖

]

I The optimal centralized solution U?(t) that avoids collisions is given by

u?i (t) = −
N∑
j=1

(
vi(t)− vj(t)

)
−

N∑
j=1

∇ri(t)
P (ri(t), rj(t))︸ ︷︷ ︸

collision avoidance

I The state xi(t) for each agent is set to ∇ri(t)
P (ri(t), rj(t)) ⇒ Local to each agent

I Centralized controller U? is required at train time but not at testing time

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

35/40

Graph Neural Networks
fgama@berkeley.eduFlocking: Transferring

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Cost: 5.8877

Time t = 0.0000s

Offline optimal trajectory

−12.5 −10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Cost: 6.1761

Time t = 0.0000s

Online learned trajectory

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

36/40

Graph Neural Networks
fgama@berkeley.eduFlocking: Scalability

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

Cost: 5.9130

Time t = 0.0000s

50 agents.

−10 −5 0 5 10

−10

−5

0

5

10

Cost: 5.7698

Time t = 0.0000s

75 agents.

−10 −5 0 5 10

−10

−5

0

5

10

Cost: 5.9898

Time t = 0.0000s

100 agents.

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

37/40

Graph Neural Networks
fgama@berkeley.eduFlocking: Transferring at Scale

I Train on 50 agents. Test on 100 agents.

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

38/40

Graph Neural Networks
fgama@berkeley.eduFlocking: Takeaways

I GNNs learn controllers to drive a team to fly at the same velocity while avoiding collisions
⇒ Control actions taken by each agent based only on outdated neighboring information

I Transfer ⇒ The communication network changes from time to time ⇒ GNNs work
I Scale ⇒ Learn to control teams of increasing number of agents ⇒ GNNs work
I Transfer at scale ⇒ Train on a small team, test on a big team ⇒ GNNs work

Tolstaya, Gama, Paulos, Pappas, Kumar, Ribeiro, “Learning Decentralized Controllers for Robot Swarms with Graph Neural Networks”, CoRL 2019

Gama, Li, Tolstaya, Prorok, Ribeiro, “Decentralized Control with Graph Neural Networks”, arxiv.org/abs/2012.14906

arxiv.org/abs/2012.14906

39/40

Graph Neural Networks
fgama@berkeley.eduConclusions

Graph Neural Networks

Equivariance and Stability Properties

Robotics

Conclusions

40/40

Graph Neural Networks
fgama@berkeley.eduMachine Learning on Graphs

I Successful learning on graphs ⇒ Scalability, exploit data structure, distributed implementation

I Graph neural networks (GNNs) ⇒ Graph convolutions followed by pointwise nonlinearities

I GNNs are permutation equivariant and stable to changes in the graph ⇒ Scale, transfer
I Graph convolutions are either stable or selective, but cannot be both
I Nonlinearities ⇒ GNNs are both stable and selective information processing architectures

I Learning decentralized controllers ⇒ Distributed systems ⇒ Partial information structure
⇒ Parametrize controller with GNN ⇒ Naturally adapts to partial information structure

I Flocking ⇒ Coordinate a team of robots to fly at the same velocities ⇒ Transfers at scale

Thank you!

	Graph Neural Networks
	Equivariance and Stability Properties
	Robotics
	Conclusions

