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Anomaly detection. Anomalous?

Machine Learning in Astrophysics C. Ballester (UPF) 4 / 48



Anomaly detection. Anomalous?

Out-of-distribution
Machine Learning in Astrophysics C. Ballester (UPF) 4 / 48



Anomaly detection. Anomalous?

Out-of-distribution
Machine Learning in Astrophysics C. Ballester (UPF) 4 / 48



Anomalous? Out-of-distribution
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KMNIST

CIFAR-10

CelebA

SVHN
Tiny ImageNet
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Generative approaches

Generative methods that produce novel samples from high-dimensional data distributions,
such as images, are currently very used.

Some of the most prominent approaches are
autoregressive models (e.g., Van den Oord, et al., 2016)

variational autoencoders (VAE) (e.g., Kingma, a Welling, 2013)

generative adversarial networks (GAN) (e.g., Goodfellow et al., 2014)
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Generative approaches

• The goal is to learn the probability distribution Preal of the given data, usually by learning
its probability density.

• Classically, it is tackled by defining a parametric family of densities (Pθ)θ∈Rd and finding
the one that maximizes the likelihood on our data.

Problems:
− Does the real data distribution Preal admit a density?

− Does the model density Pθ exist?
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Generative approaches

• But, although natural images belong to high dimensional spaces, they contain geometric
and semantic structure.

• Thus, following 1, rather than estimating the density of Preal, which may not exist, we can
define a random variable Z with a fixed distribution Pz and pass it through a parametric
function Gθ : Z → X (typically a neural network) that directly generates samples following a
certain distribution Preal.

• PG = G#PZ , the pushforward measure of PZ through G (parametric density G#PZ
through the neural network G).

• By varying θ, we can change this distribution PGθ and make it close to (converge, if
possible) the real data distribution Preal.

1 Arjovsky, Chintala, and Bottou. Wasserstein GAN. 2017.
2 Many authors: Peyré, Genevay, Cuturi, Brenier, Dieng, Lunz, Delon, Willett, Dumoulin, Schönlieb, Berthelot,

Bengio, and many more.
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Generative adversarial approaches

First of the many GAN’s papers (2014):
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GAN Framework
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Training GAN

Original GAN objective:

min
G

max
D

V (G,D) = Ex∼Preal
[logD(x)] + Ez∼Pz [log(1−D(G(z))]

Min max iterations: iterate the "two steps" until convergence (which may not happen)

• Updating the discriminator should make it better at discriminating between real images and generated ones
(discriminator improves).

• Updating the generator makes it better at fooling the current discriminator (generator improves).

Eventually (we hope) that the generator gets so good that it is impossible for the discriminator to tell the
difference between real and generated images. Discriminator guess = 0.5.

Image credits: Santiago Pascual, 2018
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Distances and divergences between probability distributions

• Vanila-GAN training objective:

min
G

max
D

V (G,D) = Ex∼Preal [logD(x)] + Ez∼Pz [log(1−D(G(z))]

• Under optimal discriminator D∗G(x) =
preal(x)

preal(x)+pG(x)
,

min
G

V (G,D∗G) = − log(4) + 2 · δJS (Preal,PG)

(where preal, pG densities)

• Jensen-Shannon Divergence:

δJS(P1,P2) ,
1

2

[
DKL

(
P1||

P1 + P2

2

)
+DKL

(
P2||

P1 + P2

2

)]
where P1,P2 ∈ Prob(X ), space of probability distributions defined on X , X a compact metric set (e.g., the

space of images)
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Distances. Wasserstein-GAN

Wasserstein 1 Distance:

W1(P1,P2) = inf
π∈Π(P1,P2)

Ex,y∼π(‖x− y‖),

By Kantorovitch-Rubenstein duality:

W1(P1,P2) = sup
D∈D

(Ex∼P1 [D(x)]− Ey∼P2 [D(y)]) .

where D denotes the set of 1-Lipschitz functions (i.e., 1, the set of c-convex functions
for the cost function c(x, y) =| x− y |.).

In these articles 2,3, the training objectives are adapted to minimize W1(Preal,PG)

1 Villani. Optimal transport: old and new. 2008
2 Arjovsky, et al. Wasserstein GAN. 2017.
3 Gulrajani, et al. Improved training of Wasserstein GANs. 2017.
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Distances. Total Variation

δ(P1,P2) = sup
A∈F
|P1(A)− P2(A)|

which represents the choice c(x, y) = 1x6=y in the optimal transport problem 1.

δ(P1,P2) = 1
2‖P1 − P2‖TV .

Kantorovitch-Rubenstein duality:

δ(P1,P2) = sup
−1≤D≤1

(Ex∼P1 [D(x)]− Ey∼P2 [D(y)])

Taking µ = P1 − P2, a signed measure, and (P,N) its Hahn decomposition
(P = {P1 > P2}), we can define the
optimal discriminator D∗ := 1P − 1N

1 Villani. Optimal transport: old and new. 2008

Machine Learning in Astrophysics C. Ballester (UPF) 14 / 48



Distances. Optimal dual variable

P1, P2, and the optimal D∗ = 1P − 1N
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Wasserstein Generative Adversarial Network

• Main vanilla-GANs problems: vanishing
gradients, mode collapse 1, non-continuity.

• In these articles 2,3, the training objectives
are adapted to minimize W1(Preal,PG).

• Wasserstein GAN (WGAN) uses an
approximation of the Wasserstein distance. It
is continuous everywhere and differentiable
almost everywhere.

1 Arjovsky, and Bottou. Towards principled methods for training generative adversarial networks. 2017
2 Arjovsky, et al. Wasserstein GAN. 2017.
3 Gulrajani, et al. Improved training of Wasserstein GANs. 2017.
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Wasserstein GAN

Theorem. Let Preal a fixed distribution over X . Let Z be a random variable (e.g Gaussian)
over another space Z. Let G : Z × Rd → X be a function, that will be denoted Gθ(z) with z
the first coordinate and θ the second. Let Pθ denote the distribution of Gθ(Z). Then,

1 If G is continuous in θ, so is W (Preal,Pθ).
2 If G is locally Lipschitz and satisfies the regularity assumption Ez∼p[L(θ, z)] < +∞ on

the local Lipschitz constants L(θ, z), then W (Preal,Pθ) is continuous everywhere, and
differentiable almost everywhere.

3 Statements 1-2 are false for the Jensen-Shannon divergence JS(Preal,Pθ) and all the
KLs.

The authors show that
• The assumption in 2 is satisfied for any feedforward neural network Gθ, and thus
W (Preal,Pθ) is continuous everywhere and differentiable almost everywhere.

• ∇θW (Pr, Pθ) = −Ez∼p(z)[∇θfw(gθ(z))], when both terms are well defined.

1 Arjovsky, et al. Wasserstein GAN. 2017.
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Wasserstein GAN

How to ensure to have a 1-Lipschitz discriminator?

• WGAN: Weight clipping:1 clipping the parameters of the discriminators

• Problems, including that it reduces the capacity of the discriminator.

• WGAN-GP: Gradient penalty:2 penalizing the norm of discriminator gradients with
respect to data samples during training to be less than 1.

min
G

max
D∈D

Ex̃∼Preal [D(x̃)]− Ex∼PG [D(x)]− λEx̃∼Px̃

[
(‖∇x̃D(x̃)‖2 − 1)2

]
where Px̃ is implicitly defined sampling uniformly along straight lines between pairs of point sampled from
the data distribution Preal and the generator distribution PG.

• The dual variable D is expected to be positive on real data samples and negative on generated
ones.

1 Arjovsky, et al. Wasserstein GAN 2017.
2 Gulrajani, et al. Improved Training of Wasserstein GANs. 2017.
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How can this be used for anomaly detection?
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GANs in anomaly detection, main strategies

• If we learned to generate normal data, only normal data can be reconstructed with
such a generator 1

• Use or create an auxiliary dataset of corrupted data (out of distribution) as negative
data for a classifier (outlier exposure) 2,3

• Corrupt the generator to provide anomalies 4

1 Schlegl, et al. AnoGAN. Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide
Marker Discovery. 2017.
2 Hendrycks, et al. Deep Anomaly Detection with Outlier Exposure. 2019.
3 Meinke& Hein: Towards neural networks which provably know when they don’t know. 2020.
4 Ngo, et al. Fence GAN: Towards Better Anomaly Detection. 2019.
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Our approach

History-based anomaly detector: an adversarial approach to anomaly detection

Joint work with Pierrick Chatillon
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Our approach

Method’s idea: Oscillation during training provides anomalies

Figure: Generated distribution pGt oscillating around preal
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Method: ’HistoryAD’

(a) Train a W-GAN on normal data while saving states

(b) Craft an ’anomalous’ distribution

(c) Classify normal and anomalous data with the total variation framework

• We use the obtained classifier DTV as anomaly detector
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Which anomalous distribution?

Figure: Generated distribution pGt oscillating around preal

Hypothesis: supp (Preal) ⊂ supp
(
PGhist

)
.
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Anomalous distribution

PGhist is our anomalous distribution: it is a weighted average of PGt for the different
states of G during training.

PGhist ,
∫ nepoch

1

c ·Gt(PZ) · e−βtdt

To sample PGhist
:

• During W-GAN training, save the Generator’s state at regular time steps

• When training DTV , sample t along the exponential distribution, then sample z from PZ , and finally
compute Gt(z).
i.e., in practice, we approximate PGhist

by sampling data from PGt where t is a random variable of density

of probability c · 1[α,nepochs]
· e−βt
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Total Variation

DTV training objective:

sup
−1≤D≤1

(
Ex∼Preal [D(x)]− Ey∼PGhist

[D(y)]
)

For the optimal DTV , the expression above is equal to δ(Preal,PGhist), where δ is the
total variation distance:

δ(P1,P2) = sup
A measurable

|P1(A)− P2(A)|
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Optimal discriminator

Preal, PGhist , and the optimal DTV
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In a nutshell

Our method does not depend on any specific perturbation of the GAN objective,
but rather on an intrinsic property of GAN training: the oscillation of the generated
distribution around real data.

Our method can be seen as an extension of the ’early stopping in GANs’ 1

1 Gu, et al. Semi-Supervised Outlier Detection Using a Generative and Adversary Framework. 2018.
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Which initialization for DTV ? Merging discrimination information

• The mean of the different discriminator states is a good candidate

• The network with mean parameters (W0
DTV

=
∫nepoch
1 c ·WDt · e

−βtdt) is a good
approximation 1

(b) Discriminator score output during
training (from blue to red)

(c) Comparison of the average outputs
of saved discriminators during training
and the output of a discriminator with
average coefficients.

1 Wang, et al. Deep Network Interpolation for Continuous Imagery Effect Transition. 2019.
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Proposed work. Implementation details

During DTV training, we want −1 ≤ DTV ≤ 1:

7 non-linearity, bad gradient behavior, as the solution tends to −1 or 1 almost
everywhere.

4 λbounded · d(x, [−1, 1])2, smooth constraint loss term
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Experimental results

One sample from each class of MNIST.
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Experiments. Training

TV-GAN Optimization process

(d) training of DTV (e) Histogram of Discriminator output over testing
set

Figure: Successful training on digit 1, AUPCR around 0.95
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Experiments. Latent space linear interpolation

• anomaly score of G((1− t)z1 + tz2)

Figure: History-GAN trained on MNIST
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Experiments. Gaussian Noise on normal data

Figure: Density of distribution of anomaly scores
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Results. Comparison to others on MNIST experiment

Figure: mean AUPRC for each digit of MNIST for experimental case 2, compared with other
methods (performances of methods provided by the authors of Fence-GAN)
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Results. Multiple datasets evaluation

Method trained on SVHN and evaluated on several datasets

Approximate density of anomaly score distribution

test split CIFAR-10 CelebA Tiny ImageNet
AUPRC 0.941 0.976 0.949

Table AUPRC for SVHN compared to other datasets.
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3. Image inpainting through an adversarial strategy

Joint work with Patricia Vitoria and Joan Sintes
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Image inpainting

• Image inpainting is also known as image
completion, disocclusion or object removal. It aims
to obtain a visually plausible completion of the
image in a region in which data is missing due to
damage or occlusion.

• Problem: When missing regions are large and

moreover the missing information is unique in the

sense that the information and redundancy

available in the image is not useful to guide the

completion, the task becomes even more

challenging.
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Approaches for image inpainting

Classical Methods use redundancy of the
incomplete input image.

• Local Methods (Masnou and Morel, 1998; Chan and
Shen, 2001; Ballester et al. 2001; Esedoglu et al. 2003;
Deriche et al. 2005; Figueiredo et al. 2007; Bertozi et
al. 2007; Weickert et al. 2012; Schöonlieb et al. 14;...)

• Non-local Methods (Efros and Leung, 1999;
Demanet et al, 2003; Wexler et al, 2004; Criminisi;
Aujol; Bugeau; and many more).

Machine Learning in Astrophysics C. Ballester (UPF) 38 / 48



Approaches for image inpainting

Classical Methods use redundancy of the
incomplete input image.

• Local Methods (Masnou and Morel, 1998; Chan and
Shen, 2001; Ballester et al. 2001; Esedoglu et al. 2003;
Deriche et al. 2005; Figueiredo et al. 2007; Bertozi et
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• Non-local Methods (Efros and Leung, 1999;
Demanet et al, 2003; Wexler et al, 2004; Criminisi;
Aujol; Bugeau; and many more).

Semantic inpainting infers large missing regions
based on perception and image semantics (Nguyen
et al. 2016; Yeh et al. 2017; Burlin et al. 2017; Pathak;
Efros; Vedaldi; Zeng; and many more).

We use the understanding of more abstract and
high level information provided by Generative
Adversarial Models
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Semantic image inpainting

Method, based on an self-supervised adversarial strategy followed by an energy-based
completion algorithm:

• 1st Step: given a dataset of (non-corrupted) images, the data latent space is learned
via an improved version of the Wasserstein GAN

min
G

max
D∈D

Ex̃∼Preal [D(x̃)]− Ex∼PG [D(x)]− λEx̃∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
• 2nd Step: given an incomplete image y and the converged generative adversarial G and
D, a minimization procedure is performed to infer the missing content of the incomplete
image by conditioning on the known regions

ẑ = argmin
z
{Lc(z|y,M) + ηLp(z)}

where Lp is the prior loss and Lc the contextual loss defined as

Lc(z|y,M) = αW‖M(G(z)− y)‖+ βW‖M(∇G(z)−∇y)‖

with M a binary mask equal to 1 on the known pixels, W a weight mask, α, β, η > 0, and
Lp(z) = −D(G(z)) favours realistic images, similar to the samples that are used to train the
generative model.
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1st Step: Train our generative model

Architecture (based on the one of WGAN-GP plus some improvements)

Machine Learning in Astrophysics C. Ballester (UPF) 40 / 48



2nd Step: Perform inpainting using an optimization method

Given a GAN model trained on real
images, we iteratively update z to find
the closest mapping on the latent
image manifold, based on the
designed loss function.

Manifold traversing when iteratively update z using
back-propagation. z(0) is random initialized; z(k)

denotes the result in k-th iteration; and ẑ denotes the
final solution before the Poisson editing step is applied.
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Optional:
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Experimental results

Original Masked Ours Yeh 2017 Masked Ours Yeh 2017
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Street View House Numbers (SVHN)

Original Masked Ours Yeh 2017 Masked Ours Yeh 2017Machine Learning in Astrophysics C. Ballester (UPF) 47 / 48



Quantitative results

thank you!
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