

DeepMass Deep learning dark matter map reconstructions from DES weak lensing data

Niall Jeffrey collab. F. Lanusse, O. Lahav, J-L. Starck, F. Boulanger

DeepMass

Outline

1. Weak lensing map reconstruction

2. Deep learning a Bayesian estimate

3. Dark Energy Survey results

4. New results:DeepMass and the CMB

Weak lensing mass maps

Growth of structure

(*Using "lens_your_face"- provided by A. Leonard)

Mass mapping

Weak gravitational lensing

- I. Galaxy shape encoded in the shear: γ
- II. Weighted projected density is convergence: κ
- III. Objective: use observed y from galaxies to reconstruct k

DATA

Mass mapping

Linear data model

Mass mapping

Linear data model

Kaiser-Squires 1993 Estimator

$$\hat{\gamma}(\vec{l}) = \pi^{-1} \hat{\mathcal{D}}(\vec{l}) \hat{\kappa}(\vec{l})$$

Mass mapping inference

Bayesian "maximum a posteriori"

$$\hat{\kappa} = \arg \max_{\kappa} \log P(\gamma | \kappa, \mathcal{M}) + \log P(\kappa | \mathcal{M})$$
Gaussian Random Field? Dark Matter Halos?

Approximate priors DES SV results

- I. Improved accuracy:
 - i. Gaussian prior (Wiener filter)
 - ii. "Halo-model" sparsity prior (GLIMPSE)
- II. Sparsity prior increases peaks statistic signal-tonoise (up to x9)

No closed-form probability distribution of the matter field for the late Universe...

 $P(\kappa|\theta, \mathcal{M})$ **Cosmological model** Parameters

But, we can sample from the prior distribution...

 $\frown P(\kappa | \theta, \mathcal{M})$

But, we can sample from the prior distribution...

 $\frown P(\kappa | \theta, \mathcal{M})$

simulated convergence map

But, we can sample from the prior distribution...

 $\frown P(\kappa | \theta, \mathcal{M})$

simulated convergence map

But, we can sample from the prior distribution...

 $\frown P(\kappa | \theta, \mathcal{M})$

simulated convergence map

Mean posterior estimate Deep learning framework

I. We seek to approximate the mean posterior:

$$\hat{\kappa} = \mathscr{F}_{\Theta}(\gamma) = \int \kappa P(\kappa|\gamma) \, \mathrm{d}\kappa$$

II. This is achieved by minimising:

$$J(\Theta) = ||\mathscr{F}_{\Theta}(\gamma) - \kappa_{\text{true}}||_2^2$$

Step 1 Sample simulations from prior $P(\theta)$

Step 2 Learn the unknown function

 $\hat{\kappa} = \mathscr{F}_{\Theta}(\gamma)$

I. Approximate function as a Convolutional Neural Network (CNN)

II. Unknown parameters Θ are mainly convolution filters

III. Minimise $J(\Theta)$ using 3×10^5 {clean map, noisy data} realisations

DeepMass architecture: U-Net

Expanding and contracting paths

- I. Hierarchy of downsampling i.e. "pooling"
- II. Increasing filter "receptive area"
- III. Multiscale filters

Dark Energy Survey

SV weak lensing data

- I. Ground based 5-band photometric survey (just completed 6 years)
- II. Science Verification (SV) data are <5% of the final coverage, but to final depth

III. 1.6 million background galaxies with 0.6 < z < 1.2 in this sample

Results

Results

I. Wiener filter is optimal linear MSE filter

II. 8000 sample maps not used for training

III. DeepMass improves MSE by 11% compared to Wiener

DeepMass improvement over Wiener

DeepMass improves over Wiener more for:

- i. Pixels with larger value
- ii. Maps with more structure higher *P(k)*

DeepMass as general tool

- I. If observations can be modelled, DeepMass recovers the signal
- II. Example, synthesise CMB foreground data:

DeepMass as general tool

LABORATOIRE DE PHYSIQUE DE L'ÉCOLE NORMALE SUPÉRIEURE

- I. If observations can be modelled, DeepMass recovers the signal
- II. Example, synthesise CMB foreground data:

DeepMass as general tool

- I. If observations can be modelled, DeepMass recovers the signal
- II. Example, synthesise CMB foreground data:

DeepMass: CMB T foreground removal (preliminary)

Simulated observed data

 2.70×10^{6} 2.72×10^{6} 2.75×10^{6} μK

DeepMass: CMB T foreground removal (preliminary)

LABORATOIRE DE PHYSIQUE DE L'ÉCOLE NORMALE SUPÉRIEURE

DeepMass: CMB T foreground removal (preliminary)

LABORATOIRE DE PHYSIQUE DE L'ÉCOLE NORMALE SUPÉRIEURE

arXiv:1908:00543

github.com/NiallJeffrey/DeepMass

 μK

Merci !

.

