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Introduction



Clustering

Group data points into clusters to understand the structure of the data.

Given a notion of similarity between points, we want:

• similar points to be in the same cluster,
• really different points to be in different clusters, and
• well separated clusters.
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Some clustering applications

Hyperspectral image segmentation

Bouveyron et al.(2007)

Network community detection
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One solution: K-means

Given {xi}ni=1 ⊂ Rm, find Ĉ = {C1, ..., CK}withµk =
1

|Ck|
∑

x∈Ck
x so that

Ĉ = argmin
C

K∑
k=1

∑
x∈Ck

∥x− µk∥22

Simple idea. 3

Very fast. 3

Works well only when: 7

• round-shaped clusters,
•with similar variance, and
•well-separated.
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GMM: Improving K-means

Wemodel data as a mixture of Gaussian distributionsN (µk,Σk):

f(x) =
K∑

k=1

πkfk(x),

with πk the proportion of cluster k and fk the normal pdf.

fk(x) =
1

(2π)m/2|Σk|1/2
exp

[
−
(x− µk)

TΣ−1
k (x− µk)

2

]
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Expectation-Maximization (EM) algorithm

For each xi, Zi indicates the cluster it belongs to.

EZ|X,θ[l(xi, zi;θ)] =
n∑
i=1

K∑
k=1

P(Zi = k|Xi = xi) log(πkfk(xi))

Iterative algorithm to estimate parameters θ = (πk,µk,Σk)1≤k≤K.

Algorithm 1: General scheme of EM Algorithm for clustering

1 Set initial random values θ0;
2 while not convergence do
3 E: Compute pik = P(Zi = k|Xi = xi) based on θold;
4 M: Search θnew = (πk,µk,Σk)1≤k≤K that maximizes the

expectation of the likelihood;
5 end
6 Assign xi to k∗ = argmax

j
P(Zi = j|Xi = xi);
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Motivation

The EM algorithm has problems to cluster data with noise, different distri-
bution shapes and outliers.

Result with data contaminated:

Why? Because estimators are not robust.
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Some robust clustering literature



Types of robust clustering algorithms

Mainly two directions to robustify clusteringmethods in the literature:

• model the noise
• Extra uniform cluster (Banfield and Raftery, 1993)
• Model low density areas (Coretto and Hennig, 2017)
• Mixture of Student’s t (Peel and McLachlan, 2000)

• include classic robust techniques in the estimation
• Trimmingmethods (Garcia-Escudero et al, 2008)
• Plugged-in robust estimators (Gonzalez, 2019)
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t-EM

They assume amixture of Student’s t-distributions.

A variable X ∼ tm(µ,Σ, ν), its pdf is

f(x) =
Γ (ν+m

2 )|Σ|1/2

(πν)m/2Γ (ν/2)(1+∆(x;µ,Σ)/ν)(ν+m)/2

with∆(x;µ,Σ) = (x− µ)TΣ−1(x− µ).

We can derive an EM algorithmwith µk andΣk robust estimators.

But no closed equations to update the degrees of freedom νk. We have to
use a non-linear optimizer to estimate it.
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F-EM algorithm



F-EM algorithm

Initial idea: Extend GMM to cover more general distributions.

A random vector Xi in the class of Compound Gaussian distributions can
be written like this:

Xi = µ+
√
τ̃i Aj gi,

where τ̃i is a positive random variable independent from gi, gi ∼ N (0, Im)
and AjAjT = Σ j.

We do not fix a distribution for τ̃i → consider an approximatedmodel:

deterministic τi [PCO+08]
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F-EM algorithm

Given {xi}ni=1 ∈ Rm we have to estimate the usual parameters

Θ = {(πk,µk,Σk)}k=1,..,K

but we now have a lot of τ parameters

Θ̃ = {τik}k=1,..,K
i=1,..,n

that give F-EM the flexibility to accommodate to heavier (or lighter) tails
or outliers.

We derive the two-step algorithm based on the likelihood with fixed τ and
obtain the following:

τ̂ik =
(xi − µ̂k)

TΣ̂
−1
k (xi − µ̂k)

m
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F-EM algorithm

On the other side we have linked fixed-point equations for the parameters
wemost care about:

µ̂k =

n∑
i=1

pikxi
(xi−µ̂k)

TΣ̂
−1
k (xi−µ̂k)

n∑
i=1

pik
(xi−µ̂k)

TΣ̂
−1
k (xi−µ̂k)

Σ̂k = m
n∑
i=1

wik(xi − µ̂k)(xi − µ̂k)
T

(xi − µ̂k)
TΣ̂

−1
k (xi − µ̂k)

,

withwik = pik/
∑n

l=1 plk. We impose tr(Σ) = m

They are like Tyler’s M-estimators with extra weights coming from themix-
ture.
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Tyler’s estimators intuitively

Like usual sample estimators with small weights for outlying points

1
n

n∑
i=1

xi =⇒
1
n

n∑
i=1

wixi

1
n

n∑
i=1

(xi − µ̂)T(xi − µ̂) =⇒ 1
n

n∑
i=1

wi(xi − µ̂)T(xi − µ̂)

withwi ≈ 1
(xi−µ̂)TΣ̂

−1
(xi−µ̂)
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High-dimension can actually help

When the dimension grows we can estimate the τi’s better.

Under some assumptions, if n andm are big enough then

√
m(τ̂i − τi)

approx∼ N
(
0, 2τ 2i

)
This is in accordance with previous RMT results (m/n = γ → (0, 1)).

We can combine this result with parsimonious restrictions on the covari-
ance matrix to avoid identifiability issues in the case of very bigm.
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Measuring the performance

We compare our algorithm to

• k-means

• EM (GMM)

• Mixture of Student’s t (t-EM or EMMIX)

• HDBSCAN

• Spectral Clustering

Based on the ground truth, we use metrics to compare:

• Adjusted Mutual Information (AMI)

• Adjusted Rand Index (AR)

For simulations also:

• Estimation error of the parameters
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Some simulation results

Simulations: Mixtures of t-distributions with different degrees of freedom
and covariance matrix classes

Setup distributions µ1 µ2 µ3 Σ1 Σ2 Σ3

1 3 t, dof = 3 U(0,1) 2 ∗ 1m 1.5 ∗ 1m + 3e1 diag diag Im
2 3 t, dof = 10 U(0,1) 5 ∗ 1m 1.5 ∗ 1m + ε diag diag Im

Dataset error EM EM (sd) t-EM t-EM (sd) F-EM F-EM (sd)
Setup 1 µ1 0.2179 0.3373 0.0220 0.0079 0.0237 0.0075
Setup 1 µ2 0.2725 0.6624 0.0209 0.0068 0.0235 0.0080
Setup 1 µ3 0.3281 0.8190 0.0232 0.0067 0.0235 0.0077
Setup 1 Σ1 0.2534 0.4563 0.0097 0.0028 0.0089 0.0020
Setup 1 Σ2 0.2566 0.5023 0.0089 0.0021 0.0087 0.0018
Setup 1 Σ3 0.2633 0.5442 0.0097 0.0020 0.0089 0.0019
Setup 2 µ1 0.0398 0.0559 0.0306 0.0390 0.0224 0.0072
Setup 2 µ2 0.0408 0.0541 0.0190 0.0063 0.0218 0.0072
Setup 2 µ3 0.0338 0.0305 0.0340 0.0503 0.0234 0.0077
Setup 2 Σ1 0.0196 0.0111 0.0104 0.0086 0.0081 0.0017
Setup 2 Σ2 0.0203 0.0125 0.0077 0.0018 0.0078 0.0016
Setup 2 Σ3 0.0187 0.0110 0.0097 0.0062 0.0083 0.0017

Table 1: Average and standard deviation of the errors.
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Real data clustering results

MNIST[LeCun’98] NORB[LeCun’04]

Dataset m n kmeans EM t-EM F-EM spectral
MNIST 38 30 1600 0.2203 0.4878 0.5520 0.5949 0.5839
MNIST 71 30 1600 0.7839 0.8414 0.8947 0.8811 0.8852
MNIST 386 30 1800 0.6149 0.7159 0.7847 0.7918 0.8272

MNIST 386+noise 30 2080 0.3622 0.4418 0.4596 0.4664 0.3511
small NORB 30 1400 0.0012 0.0476 0.4894 0.4997 ∼ 0
20newsgroup 100 1400 0.2637 0.3526 0.4496 0.5087 0.1665

Table 2: AMI index median measuring the performance of the different
algorithms.
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Real data clustering results - The NORB case

Dataset kmeans EM t-EM F-EM spectral
small NORB 0.0012 0.0476 0.4894 0.4997 ∼ 0

t-SNE embedding of the dataset colored with labels:

real labels F-EM labels EM labels
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Extension of F-EM for PolSAR
Images Segmentation



Extension for PolSAR images segmentation

Segment PolSAR images with a clustering algorithm to detect land use.

Keep flexibility but also take advantage of spatial structure.

Compute each τ by patches→ R-EM.
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R-EM: Modifying F-EM

We propose this modification to include spacial information of the neigh-
bors in the scale τ computation:

For each pixel xi:

For each pixel xt in the patch of xi :

τ
(l)
tk =

(xt − µ
(l)
k )T(Σ

(l)
k )−1(xt − µ

(l)
k )

m

Set τ (l)ik = g({τ (l)tk }t)

xi

For different patch sizes and different g(x) summary functions as mean,
median and trimmedmean.
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Simulation example - clustering results

Image example Classes

From left to right: k-means, EM and R-EM

6-looked

9-looked

12-looked

Clustering accuracy

n-looked k-means EM R-EM
6 0.85 0.92 0.92
9 0.82 0.88 0.91
12 0.96 0.98 0.99
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Conclusions



Conclusions and Future work

• We developed F-EM: a flexible clustering algorithm,

• and an extension for image segmentation applied to PolSAR images ,
IEEE-CAMSAP 2019.

• The source code of the F-EM algorithm is available here:

github.com/violetr/fem

• Consider more general distributions.

• Extend to the complex case.

• Design a method to reject points.
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https://github.com/violetr/fem


Thank you for your attention.
Any questions?
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