A flexible EM-like clustering algorithm for noisy data

CosmoStat Day - ML in Astrophysics

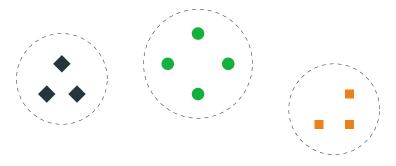
Violeta Roizman @ CentraleSupélec and UBA

Joint work with Matthieu Jonckheere and Frédéric Pascal

Introduction

Clustering

Group data points into clusters to understand the structure of the data.

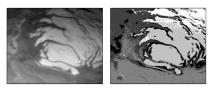


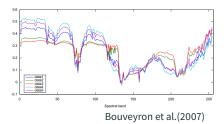
Given a notion of similarity between points, we want:

- similar points to be in the same cluster,
- · really different points to be in different clusters, and
- well separated clusters.

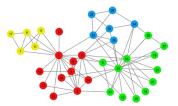
Some clustering applications

Hyperspectral image segmentation





Network community detection



One solution: K-means

Given
$$\{\mathbf{x}_i\}_{i=1}^n \subset \mathbb{R}^m$$
, find $\hat{\mathbf{C}} = \{C_1, ..., C_K\}$ with $\boldsymbol{\mu}_k = rac{1}{|\mathcal{C}_k|} \sum_{\mathbf{x} \in \mathcal{C}_k} \mathbf{x}$ so that

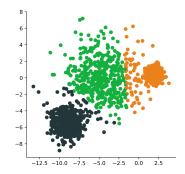
$$\hat{\mathbf{C}} = \underset{C}{\operatorname{argmin}} \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_{k}} \|\mathbf{x} - \boldsymbol{\mu}_{k}\|_{2}^{2}$$

Simple idea. 🗸

Very fast. 🗸

Works well only when: 🗡

- round-shaped clusters,
- with similar variance, and
- well-separated.

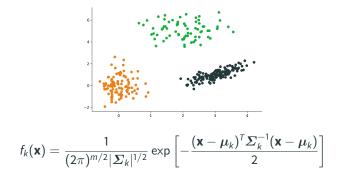


GMM: Improving K-means

We model data as a mixture of Gaussian distributions $\mathcal{N}(\mu_k, \Sigma_k)$:

$$f(\mathbf{x}) = \sum_{k=1}^{K} \pi_k f_k(\mathbf{x}),$$

with π_k the proportion of cluster k and f_k the normal pdf.



Expectation-Maximization (EM) algorithm

For each \mathbf{x}_i , Z_i indicates the cluster it belongs to.

$$E_{Z|\mathbf{X},\boldsymbol{\theta}}[l(\mathbf{x}_i, z_i; \boldsymbol{\theta})] = \sum_{i=1}^n \sum_{k=1}^K P(Z_i = k | \mathbf{X}_i = \mathbf{x}_i) \log(\pi_k f_k(\mathbf{x}_i))$$

Iterative algorithm to estimate parameters $\theta = (\pi_k, \mu_k, \Sigma_k)_{1 \le k \le K}$.

Algorithm 1: General scheme of EM Algorithm for clustering

- 1 Set initial random values θ_0 ;
- 2 while not convergence do
- **E:** Compute $p_{ik} = P(Z_i = k | \mathbf{X}_i = \mathbf{x}_i)$ based on $\boldsymbol{\theta}_{old}$;
- 4 **M:** Search $\theta_{new} = (\pi_k, \mu_k, \Sigma_k)_{1 \le k \le K}$ that maximizes the expectation of the likelihood;

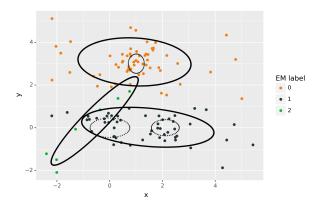
5 end

6 Assign
$$\mathbf{x}_i$$
 to $k^* = \underset{i}{\operatorname{argmax}} P(Z_i = j | \mathbf{X}_i = \mathbf{x}_i);$

Motivation

The EM algorithm has problems to cluster data with noise, different distribution shapes and outliers.

Result with data contaminated:



Why? Because estimators are not robust.

Some robust clustering literature

Mainly two directions to **robustify clustering methods** in the literature:

- model the noise
 - Extra uniform cluster (Banfield and Raftery, 1993)
 - Model low density areas (Coretto and Hennig, 2017)
 - Mixture of Student's t (Peel and McLachlan, 2000)
- include classic robust techniques in the estimation
 - Trimming methods (Garcia-Escudero et al, 2008)
 - Plugged-in robust estimators (Gonzalez, 2019)

They assume a mixture of Student's t-distributions.

A variable $X \sim t_m(\mu, \Sigma, \nu)$, its pdf is

$$f(x) = \frac{\Gamma(\frac{\nu+m}{2})|\Sigma|^{1/2}}{(\pi\nu)^{m/2}\Gamma(\nu/2)(1+\Delta(x;\mu,\Sigma)/\nu)^{(\nu+m)/2}}$$

with $\Delta(x; \mu, \Sigma) = (x - \mu)^T \Sigma^{-1} (x - \mu)$.

We can derive an EM algorithm with μ_k and Σ_k robust estimators.

But no closed equations to update the degrees of freedom ν_k . We have to use a non-linear optimizer to estimate it.

F-EM algorithm

Initial idea: Extend GMM to cover more general distributions.

A random vector ${\bf X}_{{\bf i}}$ in the class of Compound Gaussian distributions can be written like this:

$$\mathbf{X}_i = oldsymbol{\mu} + \sqrt{ ilde{ au_i}} \, \mathbf{A_j} \, \mathbf{g}_i,$$

where $\tilde{\tau}_i$ is a positive random variable independent from $\mathbf{g}_i, \mathbf{g}_i \sim \mathcal{N}(0, I_m)$ and $\mathbf{A}_j \mathbf{A}_j^T = \boldsymbol{\Sigma}_j$.

We do not fix a distribution for $\tilde{\tau}_i \rightarrow \text{consider an approximated model:}$

deterministic τ_i [PCO⁺08]

F-EM algorithm

Given $\{\mathbf{x}_i\}_{i=1}^n \in \mathbb{R}^m$ we have to estimate the usual parameters

$$\boldsymbol{\varTheta} = \left\{ \left(\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\varSigma}_k
ight)
ight\}_{k=1,..,K}$$

but we now have a lot of au parameters

$$\widetilde{\boldsymbol{\Theta}} = \{\tau_{ik}\}_{\substack{k=1,\dots,K\\i=1,\dots,n}}$$

that give F-EM the flexibility to accommodate to heavier (or lighter) tails or outliers.

We derive the two-step algorithm based on the likelihood with fixed τ and obtain the following:

$$\widehat{\tau}_{ik} = \frac{(\mathbf{x}_i - \widehat{\boldsymbol{\mu}}_k)^T \widehat{\boldsymbol{\Sigma}}_k^{-1} (\mathbf{x}_i - \widehat{\boldsymbol{\mu}}_k)}{m}$$

F-EM algorithm

On the other side we have linked fixed-point equations for the parameters we most care about:

$$\widehat{\boldsymbol{\mu}}_{k} = \frac{\sum_{i=1}^{n} \frac{p_{ik} \mathbf{x}_{i}}{(\mathbf{x}_{i} - \widehat{\boldsymbol{\mu}}_{k})^{\mathsf{T}} \widehat{\boldsymbol{\Sigma}}_{k}^{-1} (\mathbf{x}_{i} - \widehat{\boldsymbol{\mu}}_{k})}}{\sum_{i=1}^{n} \frac{p_{ik}}{(\mathbf{x}_{i} - \widehat{\boldsymbol{\mu}}_{k})^{\mathsf{T}} \widehat{\boldsymbol{\Sigma}}_{k}^{-1} (\mathbf{x}_{i} - \widehat{\boldsymbol{\mu}}_{k})}}$$

$$\widehat{\Sigma}_k = m \sum_{i=1}^n \frac{w_{ik} (\mathbf{x}_i - \widehat{\mu}_k) (\mathbf{x}_i - \widehat{\mu}_k)^{\mathsf{T}}}{(\mathbf{x}_i - \widehat{\mu}_k)^{\mathsf{T}} \widehat{\Sigma}_k^{-1} (\mathbf{x}_i - \widehat{\mu}_k)},$$

with $w_{ik} = p_{ik} / \sum_{l=1}^{n} p_{lk}$. We impose $\operatorname{tr}(\boldsymbol{\Sigma}) = m$

They are like Tyler's M-estimators with extra weights coming from the mixture.

Like usual sample estimators with small weights for outlying points

$$\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i} \Longrightarrow \frac{1}{n}\sum_{i=1}^{n}w_{i}\mathbf{x}_{i}$$

$$\frac{1}{n}\sum_{i=1}^{n}(\mathbf{x}_{i}-\widehat{\mu})^{T}(\mathbf{x}_{i}-\widehat{\mu}) \Longrightarrow \frac{1}{n}\sum_{i=1}^{n}w_{i}(\mathbf{x}_{i}-\widehat{\mu})^{T}(\mathbf{x}_{i}-\widehat{\mu})$$

with $w_i \approx \frac{1}{(\mathbf{x}_i - \widehat{\boldsymbol{\mu}})^T \widehat{\boldsymbol{\Sigma}}^{-1}(\mathbf{x}_i - \widehat{\boldsymbol{\mu}})}$

When the dimension grows we can estimate the τ_i 's better.

Under some assumptions, if *n* and *m* are big enough then

$$\sqrt{m}(\widehat{ au}_i - au_i) \overset{approx}{\sim} \mathcal{N}\left(0, 2 au_i^2\right)$$

This is in accordance with previous RMT results ($m/n = \gamma \rightarrow (0, 1)$).

We can combine this result with parsimonious restrictions on the covariance matrix to avoid identifiability issues in the case of very big *m*.

Measuring the performance

We compare our algorithm to

- k-means
- EM (GMM)
- Mixture of Student's t (t-EM or EMMIX)
- HDBSCAN
- Spectral Clustering

Based on the ground truth, we use metrics to compare:

- Adjusted Mutual Information (AMI)
- Adjusted Rand Index (AR)

For simulations also:

• Estimation error of the parameters

Some simulation results

Simulations: Mixtures of t-distributions with different degrees of freedom and covariance matrix classes

-	Setup	distri	butions	μ_1	μ_2		μ_3	$\boldsymbol{\Sigma}_1$	$\boldsymbol{\varSigma}_2$	Σ_3	
	1	3 t, d	of = 3	$U_{(0,1)}$	2 * 1 _m	1.5 *	1 _m + 3e ₁	diag	diag	I _m	
-	2	3 t, de	of = 10	$\mathcal{U}_{(0,1)}$	5 * 1 m	1.5 :	$* 1_m + \varepsilon$	diag	diag	Im	
Dat	taset	error	EM	EM (s	d) t -	EM	t-EM (sd)	F-	EM	F-EM ((sd)
Set	tup 1	μ_1	0.2179	0.337	'3 0.	0220	0.0079	0.0)237	0.007	75
Set	tup 1	μ_2	0.2725	0.662	.4 0.0)209	0.0068	0.0)235	0.008	30
Set	tup 1	μ_3	0.3281	0.819	0 .0	0232	0.0067	0.0)235	0.007	77
Set	tup 1	Σ_1	0.2534	0.456	63 0.	0097	0.0028	0.0	089	0.002	20
Set	tup 1	Σ_2	0.2566	0.502	.3 0.	0089	0.0021	0.0	087	0.001	18
Set	tup 1	Σ_3	0.2633	0.544	2 0.	0097	0.0020	0.0	089	0.001	19
Set	tup 2	μ_1	0.0398	0.055	69 0.	0306	0.0390	0.0)224	0.007	72
Set	tup 2	μ_2	0.0408	0.054	1 0.	0190	0.0063	0.0)218	0.007	72
Set	tup 2	μ_3	0.0338	0.030	05 0.	0340	0.0503	0.0)234	0.007	77
Set	tup 2	Σ_1	0.0196	0.011	.1 0.	0104	0.0086	0.0	081	0.001	17
Set	tup 2	Σ_2	0.0203	0.012	.5 0.	0077	0.0018	0.0	078	0.001	16
Set	tup 2	Σ_3	0.0187	0.011	.0 0.	0097	0.0062	0.0	083	0.001	17

Table 1: Average and standard deviation of the errors.

Real data clustering results

MNIST[LeCun'98]

NORB[LeCun'04]

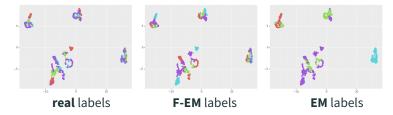
Dataset	m	n	kmeans	EM	t-EM	F-EM	spectral
MNIST 38	30	1600	0.2203	0.4878	0.5520	0.5949	0.5839
MNIST 71	30	1600	0.7839	0.8414	0.8947	0.8811	0.8852
MNIST 386	30	1800	0.6149	0.7159	0.7847	0.7918	0.8272
MNIST 386+noise	30	2080	0.3622	0.4418	0.4596	0.4664	0.3511
small NORB	30	1400	0.0012	0.0476	0.4894	0.4997	\sim 0
20newsgroup	100	1400	0.2637	0.3526	0.4496	0.5087	0.1665

Table 2: AMI index median measuring the performance of the different algorithms.

Real data clustering results - The NORB case

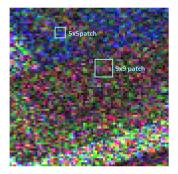
Dataset	kmeans	EM	t-EM	F-EM	spectral
small NORB	0.0012	0.0476	0.4894	0.4997	\sim 0

t-SNE embedding of the dataset colored with labels:



Extension of F-EM for PolSAR Images Segmentation

Segment PolSAR images with a clustering algorithm to detect land use. Keep **flexibility** but also take advantage of **spatial structure**. Compute each τ by **patches** \rightarrow R-EM.



We propose this modification to include spacial information of the neighbors in the scale τ computation:

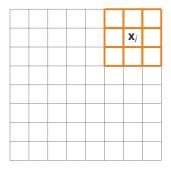
For each pixel x_i:

S

For each pixel \mathbf{x}_t in the patch of \mathbf{x}_i :

$$\tau_{tk}^{(l)} = \frac{(\mathbf{x}_t - \boldsymbol{\mu}_k^{(l)})^{\mathsf{T}} (\boldsymbol{\Sigma}_k^{(l)})^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_k^{(l)})}{m}$$

et $\tau_{ik}^{(l)} = g(\{\tau_{tk}^{(l)}\}_t)$

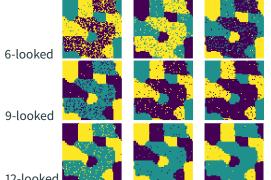


For different patch sizes and different g(x) summary functions as mean, median and trimmed mean.

Simulation example - clustering results

Image example

From left to right: k-means, EM and R-EM



Clustering accuracy

n-looked	k-means	EM	R-EM
6	0.85	0.92	0.92
9	0.82	0.88	0.91
12	0.96	0.98	0.99

12-looked

Conclusions

Conclusions and Future work

- We developed F-EM: a flexible clustering algorithm,
- and an extension for image segmentation applied to PolSAR images , IEEE-CAMSAP 2019.
- The source code of the F-EM algorithm is available here:

github.com/violetr/fem

- Consider more general distributions.
- Extend to the complex case.
- Design a method to reject points.

Thank you for your attention. Any questions?

- F. Pascal, Y. Chitour, J-P. Ovarlez, P. Forster, and P. Larzabal.
 Covariance structure maximum-likelihood estimates in compound gaussian noise: Existence and algorithm analysis. *Trans. Sig. Proc.*, 56(1):34–48, January 2008.
 - V. Roizman, G. Drašković, and F. Pascal.
 A new clustering algorithm for PolSAR images segmentation.
 In *IEEE-CAMSAP-2019*, Guadeloupe, France, December 2019.
- V. Roizman, M. Jonckheere, and F. Pascal.
 A flexible EM-like clustering algorithm for noisy data. arXiv e-prints, page arXiv:1907.01660, Jul 2019.