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Reminders from last year (part I)

Books, Reviews and Lecture Notes
• Bartelmann & Schneider 2001, review Weak gravitational lensing,

Phys. Rep., 340, 297 arXiv:9912508

• Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
III (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

• Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

• Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

• Mandelbaum 2018, review Weak lensing for precision cosmology, ARAA
submitted, arXiv:1710.03235

• Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

• Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

• Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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Reminders from last year (part I)

Science with gravitational lensing
Outstanding results
Dark matter profiles in outskirts of galaxies.
Measuring halo mass to very large galactic scales.

Halo profile around stacked fg galaxies
8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)
(Velander et al. 2014)
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Reminders from last year (part I)

Science with gravitational lensing
Outstanding results
Hints of inconsistency of our cosmological model at low and high z?
Planck and WL in tension? Also WL cluster masses for Planck SZ clusters;
H0 from cepheids + SL.18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the

present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.

The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see

MNRAS 000, 1–48 (2016)

(Hildebrandt et al. 2017)
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Reminders from last year (part I)

Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

• Continuous deflection: sensitive to
projected 2D mass distribution.

• Differential deflection:
magnification, distortions of
images.

• Small distortions, few percent
change of images: need statistical
measurement.

• Coherent distortions: measure
correlations, scales few Mpc to few
100 Mpc.

scales
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Reminders from last year (part I)

Reminder: Convergence and shear

The lens equation is the mapping from lens to
soure 2D coordinates. The linearized lens
equation

∂βi
∂θj
≡ Aij = δij − ∂i∂jψ,

is described by the symmetrical 2× 2 Jacobi
matrix,

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
,

Which defines convergence κ and shear γ.

• convergence κ: isotropic magnification

• shear γ: anisotropic stretching
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Reminders from last year (part I)

Reminder: Complex ellipticity/shear

Define complex shear

γ = γ1 + iγ2 = |γ|e2iϕ;

The relation between convergence, shear, and the
axis ratio of elliptical isophotes is then

|γ| = |1− κ|1− b/a
1 + b/a

ϕ

x

y

a

b
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Reminders from last year (part I)

E- and B-modes: recap from part I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for γ.
That results in radial pattern.Projected mass and distortionCONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011

overdensity
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Reminders from last year (part I)

E- and B-modes: recap from part I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for γ.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the E-mode. A so-called B-mode is not generated.

E mode

B mode

mass
trough

mass
peak

E mode

B mode

mass
trough

mass
peak
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Reminders from last year (part I)

E- and B-modes: recap I

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

• Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

• Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

• Intrinsic alignment (although magnitude not well-known!)

• Varying seeing and other observational effects

• Non-standard cosmologies (non-isotropic, TeVeS, . . .)

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 10 / 63



Reminders from last year (part I)

E- and B-modes: recap II

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain E and B from γ, there is leakage between modes due to the
finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear γt is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering κ with a function U that is related to Q.
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Reminders from last year (part I)

E- and B-modes: recap III

εt

ε×

θ

The resulting quantity is called aperture mass Map(θ), which is a function of
the filter size, or smoothing scale, θ. It is only sensitive to the E-mode.

If one uses the cross-component shear γ× instead, the filtered quantity, M×
captures the B-mode contribution only.

End of recap from part I.
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Part II day 1. E-/B-modes

Convergence as potential field
Again convergence κ and shear γ:

∂βi
∂θj
≡Aij = δij − ∂i∂jψ;

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
.

From this, write κ and γ as second derivatives of the potential.

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ; γ1 =

1

2
(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ.

We can generalise the real convergence and potential, and add an imaginary
field representing the B-mode. The real part is the E-mode,

ψ = ψE + iψB; κ = κE + iκB,

which are related by the Poisson equations,

∇2ψE,B = 2κE,B.

Note that ψB and κB do not correspond to physical mass over-densities.
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Again convergence κ and shear γ:
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Part II day 1. E-/B-modes

E- and B-mode potential, convergence, and shear I

The shear can be computed as

γ1+i γ2 =
1

2

(
∂1∂1ψ

E − ∂2∂2ψ
E
)
−∂1∂2ψ

B+i

[
∂1∂2ψ

E +
1

2

(
∂1∂1ψ

B − ∂2∂2ψ
B
)]
.

Now, we can write the E-, B-, and mixed EB-mode power spectrum.

〈κ̂E(`)κ̂E(`′)〉 = (2π)2δD(`− `′)PE
κ (`),

〈κ̂B(`)κ̂B(`′)〉 = (2π)2δD(`− `′)PB
κ (`),

〈κ̂E(`)κ̂B(`′)〉 = (2π)2δD(`− `′)PEB
κ (`),

and can derive (from γ̂(`) = e2iβκ̂(`), see last years’ TD) for the correlators of
γ in Fourier space

〈γ̂(`)γ̂∗(`′)〉 = (2π)2δD(`− `′)
[
PE
κ (`) + PB

κ (`)
]
,

〈γ̂(`)γ̂(`′)〉 = (2π)2δD(`+ `′)e4iβ
[
PE
κ (`)− PB

κ (`) + 2iPEB
κ (`)

]
.
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Part II day 1. E-/B-modes

Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

〈γ(θ)γ∗(θ + ϑ)〉 = 〈γγ∗〉(ϑ) =F [〈γ̂(`)γ̂∗(`′)〉] (ϑ);

〈γγ〉(ϑ) =F [〈γ̂(`)γ̂(`′)〉] (ϑ);

But these correlators are very closely related to the shear two-point
correlation functions ξ+ and ξ−, that we defined on day 1 (part I):

ξ+(ϑ) = 〈γtγt〉 (ϑ) + 〈γ×γ×〉 (ϑ)

ξ−(ϑ) = 〈γtγt〉 (ϑ)− 〈γ×γ×〉 (ϑ)
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Part II day 1. E-/B-modes

Recall: 2PCF
Correlation of the shear at two points yields four quantities

γtγt < 0

> 0 < 0

〈
γtγ×

〉
,
〈
γ×γt

〉

〈
γ×γ×

〉

〈γtγt〉

Parity conservation −→ 〈γtγ×〉 = 〈γ×γt〉 = 0

The two components of the shear two-point correlation function (2PCF) are
defined as

ξ+(ϑ) = 〈γtγt〉 (ϑ) + 〈γ×γ×〉 (ϑ)

ξ−(ϑ) = 〈γtγt〉 (ϑ)− 〈γ×γ×〉 (ϑ)

Due to statistical isotropy & homogeneity, these correlators only depend on ϑ.
Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 16 / 63



Part II day 1. E-/B-modes

2PCF and E-/B-mode power spectra I

Ignoring the imaginary part, we have thus two observables (ξ+, ξ−) and two
unknowns (PE

κ , P
B
κ ). We can derive, using the orthogonality of the Bessel

function,

PE
κ (`) =π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ) + ξ−(ϑ)J4(`ϑ)] ,

PB
κ (`) =π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ)− ξ−(ϑ)J4(`ϑ)] .

So, in principle, the E-/ and B-mode power spectra can be computed
separately, but not in practice, since this requires information about the shear
correlation that is unobservable, towards 0 and ∞ separation.
→ We have to further filter the field for a better separation.
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Part II day 1. E-/B-modes

Aperture mass

Earlier, we introduced the aperture-mass as convolution of the shear field with
a filter Q,

Map(θ,ϑ) =

∫
d2ϑ′Qθ(|ϑ− ϑ′|) γt(ϑ

′)

and claimed that this was equivlaent of convolving the convergence with
another filter U ,

Map(θ,ϑ) =

∫
d2ϑ′ Uθ(|ϑ− ϑ′|)κE(ϑ′), (1)

(Kaiser et al. 1994, Schneider 1996).
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Part II day 1. E-/B-modes

E-/B-mode separation with Map I

εt

ε×

θ

It is clear that Map (M×) is sensitive to the E-mode (B-mode) of the shear
field γ.

When chosing Q such that its support is finite, with Q(θ) = 0 for θ > θmax,
the E-/B-mode separation is achieved on a finite interval.

To get this separation at the second-order level, let’s take the variance of the
aperture-mass: Square Map(θ,ϑ) and average over circle centres ϑ (Schneider
et al. 1998).
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Part II day 1. E-/B-modes

E-/B-mode separation with Map II
Square Map(θ,ϑ) and average over circle centres ϑ:

〈M2
ap〉(θ) =

∫
d2ϑ′ Uθ(|ϑ− ϑ′|)

∫
d2ϑ′′ Uθ(|ϑ− ϑ′′|)〈κE(ϑ′)κE(ϑ′′)〉

= . . . =
1

2π

∫
d` ` Û2(θ`)PE

κ (`).

Analogous equations for B- and mixed modes are

〈M2
×〉(θ) =

1

2π

∫
d` ` Û2(θ`)PB

κ (`);

〈MapM×〉(θ) =
1

2π

∫
d` ` Û2(θ`)PEB

κ (`).

Note: Typically, the filter function U depends on the scale ϑ normalized to the
radius θ, Uθ(ϑ) = U(ϑ/θ). In Fourier space this then becomes Û(θ`).
For many choices of U , Û2 is a narrow pass-band. Thus, the aperture-mass
dispersion filters out a small range of `-modes around ` ∼ const θ−1.
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Part II day 1. E-/B-modes

E-/B-mode separation with Map III

Real space.

Filter functions in Fourier
space.
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2.2 Second-order statistics

 1e-06

 1e-05

 1e-04

 0.001

 0.1  1  10  100
θ [arcmin]

ξ+(θ)    
ξ−(θ)    

<Map
2  (θ)>   (2.9)

<Map
2  (θ)> (2.10)

Figure 2.4: The second-order
statistics of cosmic shear used in
this work, for a ΛCDM model
(Table B.1, model 1). The solid
and long-dashed lines show the
two components of the 2PCF, ξ+
and ξ−, respectively. The two
aperture mass dispersions cor-
respond to the polynomial (2.9,
short-dashed) and Gaussian filter
(2.10, dash-dotted line), respec-
tively.
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Figure 2.5: Filter functions for the different second-order shear statistics.

2.2.3 Interrelations

The dispersion of the aperture mass can in principle be measured directly from data by
placing apertures onto the observed area. However, this method is very ineffective – regions
with bright stars, foreground galaxies or telescope reflections have to be omitted in order not
to bias the result. Moreover, for the Gaussian filter (2.10), apertures of radius θ cannot be
put closer than about 3θ from the image border because of the significant exponential tail of
the filter.

A more effective way to get ⟨M 2
ap⟩ from data is by integration over the 2PCF. Since ⟨M 2

ap⟩ is
given in terms of the power spectrum (2.14), and the equation which relates the 2PCF to the
power spectrum (2.12) can be inverted, one can express ⟨M 2

ap⟩ (and any other second-order
statistics) in terms of the 2PCF. The following relation can be derived (Schneider et al. 2002;

43

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 21 / 63



Part II day 1. E-/B-modes

Aperture-mass dispersion measurements

CFHTLS 2007 versus CFHTlenS 2013.

L. Fu et al.: Very weak lensing in the CFHTLS wide 15
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Fig. 4. Two-point statistics from the combined 57 pointings. The error
bars of the E-mode include statistical noise added in quadrature to the
non-Gaussian cosmic variance. Only statistical uncertainty contributes
to the error budget for the B-mode. Red filled points show the E-mode,
black open points the B-mode. The enlargements in each panel show
the signal in the angular range 35′−230′.

theoretical (statistical) and not estimated from the data, which
would include systematics (for example error contributions may
arise from the incomplete PSF correction). Moreover, the signal-
to-noise with the present CFHTLS Wide data is so high, even
for B-modes, that subtle effects may dominate the very small
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Fig. 5. The top-hat E-mode shear signals of W1 up to 200′ , of W2 up to
120′ and of W3 up to 230′ are shown. The error bars includes statistical
noise and cosmic variance for each individual field.

Poissonian error, particularly on large scales where there are a
significant number of galaxy pairs.

The field-to-field variation of the B-modes is a possible way
to assess these effects on the error buget. We tried to measure this
by splitting the 3 Wide fields into 11 blocks of 2 × 2 deg2 each,
which allows to calculate the B-modes on scales up to 60 arcmin
in each block. We obtained B-modes with amplitude very simi-
lar to Fig. 4 but the field-to-field scatter is larger than the plotted
error bars and reaches a factor of 2 at 60′. This is an interest-
ing indication that we are likely underestimating the error on
B-modes, even though it is not a precise measurement due to the
small number of independant fields. A thorough analysis of this
noise contribution needs many more field and is left to a future
analysis of the CFHTLS four year data.

4.4. Cross-check and control of systematics

We cross-checked the shear measurement by using an indepen-
dent analysis on the same data sets. This analysis was done
with another version of KSB+ that has been tested with the
STEP1+2 simulations (“HH” in Heymans et al. 2006a; Massey
et al. 2007b). Hereafter, we refer to our analysis as “Pipeline I”
and to the “HH” results as “Pipeline II”.

The left panel of Fig. 6 shows the shear estimated for each
galaxy by each of the pipelines. The results are in good agree-
ment for ellipticity values per component between −0.6 and 0.6.
For ellipticities outside this range the dispersion between the
pipelines is larger and a trend for an underestimation of the shear
from Pipeline I with respect to Pipeline II can be seen. Note
however that the pipelines are not optimised for large elliptic-
ities, since the STEP simulation galaxies have ellipticities that
are smaller than 0.1.

We then compare the two-point functions using the aperture-
mass variance. We choose this statistic because angular scales
are less correlated than for the top-hat dispersion. Moreover,
it does not have any ambiguity related to a non-local E/B de-
composition. The values of Map are calculated from the two
pipelines using only objects detected by both pipelines. Because
the pipelines have different selection criteria the common ob-
jects are only two-thirds of the whole sample. Each object
is assigned a weight which is the product of its weights in
each of the two pipelines. The largest radius explored in the

From (Fu et al. 2008).

2208 M. Kilbinger et al.

Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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From (Kilbinger et al. 2013).
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Part II day 1. Galaxy-galaxy lensing

Galaxy-galaxy lensing: Overview

Correlation between high-z galaxy shapes and low-z galaxy positions.
E.g. average tangential shear around massive galaxies.
Provides mass associated with galaxy sample.

• Galaxy halo profiles from kpc to Mpc

• Mass-to-light ratio

In combination with other tracers of matter (galaxy clustering, cosmic shear,
velocity correlations, X-ray emission, . . .):

• Galaxy bias. Properties such as linearity, scale-dependence, stochasticity

• Test of General Relativity

Can be done quasi model-independent since two or more observables trace
same matter field, but with different biases.
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Part II day 1. Galaxy-galaxy lensing

Tangential shear and surface mass I

In an exercise you can derive the relation between tangential shear and
encompassed projected surface mass,

〈γt〉 (θ) = κ̄(≤ θ)− 〈κ〉 (θ).

No assumption about mass distribution is made here!
We will re-write this equation defining the surface mass excess ∆Σ.

Before that: brief reminder of relation between lensing convergence and
matter density from last year.
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Part II day 1. Galaxy-galaxy lensing

Reminder: Convergence and cosmic density contrast

Back to the lensing potential

• Since κ = 1
2∆ψ:

κ(θ, χ) =
1

c2

∫ χ

0

dχ′
(χ− χ′)χ′

χ
∆θφ(χ′θ, χ′)

• Terms ∆χ′χ′φ average out when integrating along line of sight, can be
added to yield 3D Laplacian (error O(φ) ∼ 10−5).

• Poisson equation

∆φ =
3H2

0 Ωm

2a
δ

(
δ =

ρ− ρ̄
ρ

)

→ κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .
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Part II day 1. Galaxy-galaxy lensing

Tangential shear and surface mass I

In an exercise you have derived the relation between tangential shear and
encompassed projected surface mass,

〈γt〉 (θ) = κ̄(≤ θ)− 〈κ〉 (θ).

Now we are ready to re-write equation defining the surface mass excess ∆Σ.

Surface mass excess

Assume a single lens at (angular diameter) distance Dl. Approximate for this
case the expression of the convergence

κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .

and write Ds for the distance of the source, and Dls for the distance between
lens and source. Write all distances as proper, not comoving distances, express
the density contrast in terms of the density, δ = ∆ρ/ρ̄, and use the critical
density ρcrit.
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Part II day 1. Galaxy-galaxy lensing

Tangential shear and surface mass II
Assume that the lens mass distribution ρ extends over the inverval
[Dl −∆D/2;Dl + ∆D/2].

κ(θ) =
4πG

c2
DlDls

Ds

Dl+∆D/2∫

Dl−∆D/2

dD∆ρ(Dθ, D).

Define the critical surface mass density

Σ−1
cr (θ) :=

4πG

c2
DlDls

Ds

to write convergence as

κ(θ) =
Σ(θ)

Σcr
. (2)

[Why is Σcr called critical surface mass?]
With that, we define the surface mass excess

∆Σ(≤ θ) := 〈γt〉 (θ) Σcr = Σ̄(θ)− 〈Σ〉 (θ).
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Part II day 1. Galaxy-galaxy lensing

Statistical galaxy-galaxy lensing (GGL) I
The convergence or tangential shear defined in the last slides depend linearly
on the mass distribution ρ, or Σ. So it seems to be a first-order statistic.

However, when measured statistically using a population of foreground
galaxies, it can be written as two-point correlation function. The convergence
is then the correlation of background lensing convergence and foreground
galaxy position.

If we write the latter as galaxy over-density δg, we get

〈κ〉 (θ) = 〈κ(ϑ)δg(ϑ+ θ)〉ϑ
= Σ−1

cr ρ̄

∫
dD 〈δ(Dθ, D)δg(Dlθ, Dl)〉

= Σ−1
cr ρ̄

∫
dD ξδg(

√
(Dθ)2 + (D −Dl)2).
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Part II day 1. Galaxy-galaxy lensing

Statistical galaxy-galaxy lensing (GGL) II

Properties of statistical GGL

• Circular averages of tangential shear: robust against (some) systematic,
e.g. large-scale modes of PSF residuals cancel out.
CFHTLenS: 25% fields had to be discarded for cosmic shear, none for
GGL.

• Simple null tests:
〈γ×〉 around foreground objects (parity mode, should vanish).
〈γt〉 around random points, or special points that should not be correlated
with foreground sample such as chip corners, field centres, stars.

• Higher SNR compared to cosmic shear:
correlation with tracers of dense matter regions;
one shape instead of two;

• Can use spectroscopic galaxies for foreground sample.
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Part II day 1. Galaxy-galaxy lensing

Parenthesis: galaxy bias I
Simple bias

GGL measures the cross-correlation between galaxies and dark (more
precisely: total) matter, 〈δgδ〉. This correlation is non-zero since galaxies trace
the underlying matter.
Simplest model: linear, constant, deterministic bias:

δg = bδ.

From that it follws that

〈δgδg〉(θ) = b2〈δδ〉(θ); 〈δgδ〉(θ) = b〈δδ〉(θ),

or in Fourier space

Pgg(k) = b2Pmm(k); Pgm(k) = bPmm(k).
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Part II day 1. Galaxy-galaxy lensing

Parenthesis: galaxy bias II

Properties

• The bias depends on the galaxy properties (type, color, luminosity, . . .,
and can be measured for different populations (e.g. early/late-type).

• Bias is redshift-dependent. Difficult to measure since degenerate with
z-dependent selection effects. Volume-limited samples: Bias tends to
increase with z: galaxies are more rare objects at higher z, situated in
more extreme environments (halo centres).
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Part II day 1. Galaxy-galaxy lensing

Sample selection for galaxy bias measurementJ. Coupon et al.: Galaxy clustering in the CFHTLS-Wide

Fig. 4. Sample selection in the full (left), red (centre) and blue (right) galaxy samples. In each panel, the galaxy number density in the plane Mg/z
is shown; red rectangles represent the luminosity threshold samples.

at high redshift z > 0.8 have slightly bluer colours. Their dis-
tribution peaks near the blue galaxy distribution, suggesting that
these objects could be blue galaxies erroneously identified as red
galaxies due to photometric redshift errors. We also note that
a simple colour cut would not exactly reproduce our selection.
However, in the interests of simplicity and clarity we keep the
“red”/”blue” labels for the rest of the paper.

We extract volume-limited luminosity-selected samples for
each of the “full” (or “all galaxies”), “red” and “blue” samples,
using Mg absolute magnitude thresholds (hereafter denoted as
“luminosity threshold samples”), from Mg − 5 log h = −17.8
(fainter threshold in the range 0.2 < z < 0.4) to Mg − 5 log h =
−22.8 (brighter threshold in the range 1.0 < z < 1.2). The sam-
ple selection is illustrated in Fig. 4. For the rest of this paper
we will refer to these samples as simply full, red and blue. Due
to low numbers of pairs at small scales, luminous blue samples
were discarded. We are left with 45 samples, each comprising on
average ∼153 000, ∼70 000 and ∼129 000 galaxies for a typical
full, red and blue sample, respectively. The sample properties are
displayed in Tables B.1–B.3.

Finally, in each redshift interval [zmin; zmax] we compute the
galaxy number density:

nobs
gal = Ntotal/

[
Ω

∫ zmax

zmin

dV
dz

dz
]
, (1)

where Ω represents the solid angle subtended by the survey,
and dV/dz the volume element. Errors are estimated from the
weighted galaxy number density field-to-field variance.

3.2. Photometric redshift uncertainties

Our modelled two-point correlation function is projected using
the measured redshift distributions. In order to take into ac-
count statistical errors on redshifts, we select galaxies in the
redshift range considered and convolve the observed redshift
distributions with the estimated photometric redshift errors, de-
rived from the probability distribution functions. We construct a
Gaussian error distribution for each galaxy centred on the me-
dian redshift of the PDF, with a width corresponding to the 68%
confidence limits of the PDF, and normalised to unity. We then
sum these Gaussians to construct the redshift distribution resam-
pled to a redshift bin width of 0.04. Redshift distributions for
each sample are illustrated in Fig. 5.

To further assess the quality of photometric redshifts,
we perform the cross-correlation analysis introduced in

Benjamin et al. (2010). The measurement of the angular corre-
lation functions for galaxies in different photo-z bins is used to
constrain the fraction of galaxies that are scattered into “wrong”
redshift bins due to photo-z errors. We measure the bin-to-bin
cross correlation function for the full, red and blue samples, re-
spectively. A non-zero correlation between adjacent redshift bins
is present in all cases. This may be due to the presence of large-
scale structures extending over several redshift bins. More im-
portantly, this is also due to photometric redshift scatter, which
results in the leakage of galaxies into neighbouring bins. This
error contribution to the redshifts is taken into account by the
convolution of the redshift distribution with the errors, therefore,
we do not consider adjacent bins further in the analysis of pho-
tometric redshifts uncertainties.

The angular cross-correlation of galaxies in non-adjacent
redshift bins is much lower, indicating a small fraction of catas-
trophic outliers. We use the “global pairwise analysis” method to
measure the contamination between two redshift bins i and j. In
this approximation, the following linear combinations of the an-
gular cross-correlation function wi j and the two auto-correlation
functions, wii and w j j, respectively, are expected to cancel for all
angular scales θt,

dt = wi j(θt)
(
fii f j j + fi j f ji

)
− wii(θt)

Ni

Nj
fi j f j j − w j j(θt)

Nj

Ni
f ji fii

= 0. (2)

Here, Ni (Nj) is the observed number of galaxies in bin i ( j).
The contamination fi j is the number of galaxies with true red-
shift in bin i, but misidentified into bin j, as a fraction of the
true number of galaxies in bin i. For each bin pair (i, j), the leak-
age of the other redshift bins is neglected. This approximation is
valid for contamination fractions of up to 10% (Benjamin et al.
2010). With this, the fraction of galaxies which stay in their bin
is fii = 1 − fi j. We fit the two parameters fi j and f ji in Eq. (2)
by performing a χ2 null-test on dt. For the covariance ⟨dtds⟩, we
take into account the correlation between angular scales for each
of the three correlation functions using a Jackknife estimate (see
next section). We neglect the sub-dominant covariance between
different correlation functions. This corresponds to using the first
three terms in Eq. (A4) of Benjamin et al. (2010).

Due to degeneracies between the parameters fi j and f ji, large
values for fi j (i > j) cannot be ruled out in principle. However,
for the full and red galaxy samples, the contamination fractions
are consistent with zero in most cases. The blue galaxy samples
are slightly worse, but contaminations are consistent with values

A5, page 5 of 31

Sample selection in absolute magnitude and redshfit, from (Coupon et al. 2012).
Samples in horizontal boxes have same absolute magnitudes and are

volume-limited.
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Part II day 1. Galaxy-galaxy lensing

Galaxy bias extended I

More complex bias models

• Scale-dependence, b(θ), or b̂(k̂). In particular on small scales, bias is not
constant.

• Non-linear bias

δg = b1δ + b2δ
2 + b3δ

3 + . . .

• Stochastic bias

Relation between δg is not determinstic (δg = bδ) but stochastic. In a
statistical picture, the two fields δg and δ can be interpreted a realizations
of random fields with joint pdf p(δg, δ). The study of stochastic biasing is
trying to quantify this joint pdf.
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Part II day 1. Galaxy-galaxy lensing

Galaxy bias extended II

At second-order level, one can measure the variances of both fields, and
their cross-correlation. If the fields are correlated, one can write down the
following two relations:

b =
σg

σ
=

√
〈δ2

g〉
〈δ2〉 ; r =

σ2
gm

σgσ
=

〈δgδ〉√
〈δ2

g〉〈δ2〉

introducing a correlation coffecient r = −1 . . . 1 between both fields.

In the above ratio cosmology dependence (dm correlation function or
power spectrum) mainly drops out!

Allows for model-independent measurement.
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GALAXIES AND THEIR RELATION TO THE DARK MATTER

r=+0.8, b=1r=+0.5, b=1

b=0.5

r=+1

b=2

r=+1

r=�0.8, b=1r=�0.5, b=1

Figure 1.10.: Example illustrating the linear stochastic bias (scale-independent). The (Gaussian)
random field in the centre is statistically related to the other (Gaussian) random fields according to six
different combinations of bias factors, b, and correlation coefficients, r, Eqs. (1.54). The fields could
be models for the large-scale density contrast of galaxies or dark matter. The contours encircle regions
with positive values for the density contrast (overdensity regions). The contour levels are the same for
all fields.

of an underlying probability distribution function P (δm, δg) (PDF); the density contrasts are
statistically homogeneous and isotropic random fields (Sect. 1.2). Studying the stochastic
biasing between δg and δm thus means quantifying their joint PDF. The density contrasts are
smoothed to a certain scale before looking at the PDF; by varying the smoothing scale we can
scan through the different scales.

Linear stochastic bias

Characterising the stochastic biasing, using two-point statistics only, boils down to two bias
parameters, which define a linear stochastic bias:

b(R) =

√〈
δ2
g

〉

⟨δ2
m⟩ ; r(R) =

⟨δmδg⟩√
⟨δ2

m⟩
〈
δ2
g

〉 . (1.49)

These parameters differ from unity in the case of two biased fields. They depend in general on
scale, since the joint PDF is a function of the smoothing applied to the density contrasts of

specific fields; they may be the density contrasts of any random field, such as of two different galaxy
populations as in Chapter 5 for the relative galaxy bias.
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Illustration of correlated fields, from [P. Simon, PhD thesis, 2005].



Part II day 1. Galaxy-galaxy lensing

GGL: model-independent measurement of b/r

Idea:
Combine weak lensing and galaxy clustering to determine b and r.

• Galaxy clustering 〈δ2
g〉

• Galaxy-galaxy lensing 〈δgδ〉
• Cosmic shear 〈δ2〉

Cosmic shear is the most difficult to measure, so first measurements only used
GC and GGL.

Form ratio:

〈δgδ〉(θ)
〈δgδg〉(θ)

=
br

b2
=
b

r
.

Any cosmology-dependence, e.g. of clustering, drops out in the ratio.
These density correlations are projected to weak-lensing observables, and b
and r (if constant) can directly be measured.
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Part II day 1. Galaxy-galaxy lensing

GGL: Aperture measures I

How can we trace the galaxy and dark-matter over-densities with weak
lensing?
Use aperture measures

〈N2〉(θ), 〈NMap〉(θ), 〈M2
ap〉(θ)

to trace
〈δ2

g〉, 〈δgδ〉, 〈δ2〉.
Difficulty: Structure along all redshifts contribute to cosmic shear 〈M2

ap〉, not
only mass associated with foreground galaxy sample δg.

Solutions:

• Choose background sample such that maximum lensing efficiency
coincides with foreground redshift.

• Add correction functions with minor dependency on cosmology
(geometry).
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Part II day 1. Galaxy-galaxy lensing

GGL results: model-independent measurement of b/r

No. 1, 2001 HOEKSTRA, YEE, & GLADDERS L13

Fig. 1.—(a) Observed ratio of as a function of aperture radius . NoteR vap
that the points are somewhat correlated. The error bars are computed using
the scatter in the measurements of the individual fields. The dashed line in-
dicates the model predictions for an OCDM model, and the dotted line cor-
responds to an LCDM model. We find an average value of R p 0.021!

(indicated by the hatched region), where we have used the full covariance0.002
matrix in order to account for the correlation between the points. (b) Mea-
surement when the phase of the shear is increased by , which should vanishp/2
if the signal in (a) is caused by lensing. The results are indeed consistent with
no signal. The signal also vanishes when we correlate of a given fieldN(v )ap
with measured from the other pointings.M (v )ap ap

can write

r
R p Q f (Q , Q ), (13)m m Lb

where is a constant for a given cosmology. Thus, thef (Q , Q )m L

measurement of as a function of scale provides a unique wayR
to examine whether depends on scale or not. In fact, weakb/r
gravitational lensing allows one to estimate b and r separately,
when the ratio is also measured.2 2 2B p AM S/AN S ∝ (Q /b)ap m
Although this ratio is not constant with scale, does not dependB
much on the assumed power spectrum (in particular, on scales
less than 10!). Unfortunately, our data are not sufficient to obtain
a good measurement of , but with more data we will be2AM Sap
able to measure both r and b as a function of scale.

4. REDSHIFT DISTRIBUTIONS

In order to interpret the observed value of , we have toR
evaluate equations (9) and (10), and this requires knowledge
of the redshift distributions of the lens galaxies and the source
galaxies. For the sample of lens galaxies, we use the redshift
distribution found from the second Canadian Network for Ob-
servational Cosmology (CNOC2) Field Galaxy Redshift Sur-
vey (e.g., Lin et al. 1999; Yee et al. 2000; Carlberg et al. 2000).
The CNOC2 Survey provides a well-determined (spectroscop-
ically) redshift distribution for field galaxies down to R pC

, which is ideal given our limits of . The21.5 19.5 ! R ! 21C
adopted redshift distribution gives a median redshift z p

for the lens galaxies.0.35

For the source galaxies, the situation is more complicated.
These galaxies are generally too faint for spectroscopic surveys,
although recently Cohen et al. (2000) measured spectroscopic
redshifts around the Hubble Deep Field–North down to R ∼C
. Cohen et al. (2000) find that the spectroscopic redshifts agree24

well with the photometric redshifts derived frommulticolor pho-
tometry. Because of likely field-to-field variations in the redshift
distribution, we prefer to use the photometric redshift distribu-
tions derived from both Hubble Deep Fields (Fernández-Soto,
Lanzetta, & Yahil 1999; Chen et al. 1998). Photometric redshift
distributions generally work well, as has been demonstrated by
Hoekstra et al. (2000). This redshift distribution yields a median
redshift of for the source galaxies.z p 0.53
We computed the value of for a range of cosmologicalR

parameters and find that, for the adopted redshift distributions,
can be approximated with a fractional accuracy of 2% usingR

rQm 0.63 0.63 1.23R p [(5.8! 1.6Q )" (4.6! 2.6Q )Q ]. (14)m m L100b

5. MEASUREMENT OF THE BIAS PARAMETER

To measure and from the data, we use the2AM N S AN Sap
estimators for and introduced by Schneider (1998):M Nap

NfNb! Q(v )wg 1ip1 i i T, i2 ˜M̃ p pv and N p U(v ), (15)!ap ap iN ¯b! w N ip1ip1 i

where and are, respectively, the number of lens and sourceN Nf b
galaxies found in the aperture of radius . The weightsv wap i
correspond to the inverse square of the uncertainty in the shape
measurement (see Hoekstra et al. 2000 for a detailed discussion).
The observed value of as a function of aperture size isR

presented in Figure 1a. We note that the points are somewhat
correlated. A significant signal is detected at all scales. The
results are consistent with a value of that is constant withR
scale, which implies that is constant as well. This is anb/r
important result since the smallest scales that we are probing
are comparable to the sizes of galaxy halos. We obtain an
average value of , where we have used theR p 0.021! 0.002
covariance matrix to account for the correlation between the
points at different scales.
To examine possible systematic effects, we also computed

when the galaxies are rotated by 45". This signal shouldAM N Sap
vanish in the case of lensing. The results presented in Fig-
ure 1b are consistent with no signal, indicating that the cor-
rections for the systematic distortions have worked well (more
details will be provided in H. Hoekstra et al. 2001, in prepa-
ration). As another check, we correlated for each fieldN(v )ap
with of the other pointings and find that the signalM (v )ap ap
also vanishes in this case.
In Figure 2, we present the resulting value of as a functionb/r

of aperture radius for the currently favored cosmology (Q pm
, ). In this case, we find that . For"0.120.3 Q p 0.7 b/r p 1.05L !0.10

an open model ( , ), we obtainQ p 0.3 Q p 0.0 b/r pm L

. For comparison, we have also indicated the effective"0.080.73!0.07
physical scale (the approximate FWHM of the filter function)
probed by the compensated filter at the median redshift ofU(f)
the lenses .(z p 0.35)
A direct comparison with dynamical studies is difficult be-

cause different galaxy types cluster differently and because of
the different scales probed in our study. However, our results
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Fig. 2.—Value of as a function of angular scale, under the assumptionb/r
that and . Note that the points are slightly correlated. TheQ p 0.3 Q p 0.7m L

error bars (which indicate the 68% confidence limits) are computed using the
scatter in the measurements of the individual fields. The upper axis indicates
the effective physical scale probed by the compensated filter at the medianU(f)
redshift of the lenses . The results are consistent with a value of(z p 0.35)

that is independent of scale. For this cosmology, we find thatb/r b/r p
(indicated by the hatched region), whereas for an open model!0.121.05"0.10

( , ), we obtain . The error on the average has!0.08Q p 0.3 Q p 0.0 b/r p 0.73m L "0.07
been computed using the full covariance matrix, in order to account for the
correlation between the points at various scales.

are in fair agreement with the results from dynamical studies,
in the sense that we find (e.g., Berlind et al. 2001;b/r ∼ 1
Peacock et al. 2001). Therefore, from scales ranging from 0.15
out to ∼10 Mpc, i.e., from the scales of galaxy halos out"1h50
to the linear regime, the measurements are consistent with a
value of , suggesting that the light distribution tracesb/r ∼ 1
the dark matter distribution quite well.

6. PROSPECTS

For the first time, we have measured the parameter as ab/r
function of scale using weak lensing based on 16 deg2 of data
from the RCS. With the analysis of the full survey, the error
bars are expected to decrease by a factor of ∼2, thus improving
the constraints on a possible variation of with scale. Also,b/r
we will be able to probe larger scales since we have limited
the analysis to the individual pointings rather than the full
patches that are ∼ . Other cosmic shear surveys will2!.1# 2!.3
place additional constraints, eventually allowing us to measure
r and b separately as a function of scale.
The lens galaxies were selected on the basis of their apparent

magnitude, but with planned multicolor photometry, it is also
possible to measure the biasing properties as a function of
galaxy type or luminosity (using photometric redshifts). Even-
tually, using bigger surveys, it might even be possible to study
the evolution of galaxy biasing as a function of redshift.
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Part II day 1. Galaxy-galaxy lensing

GGL results: model-indep. measurement of b and r I
868 P. Simon et al.: Galaxy bias in GaBoDS. VI.

Fig. 3. Redshift distribution of the foreground and background galaxies as estimated from the photometric redshifts in the COMBO-17 fields
A901, AXAF (CDFS) and S11 (dashed doted lines); the histograms are not normalised to unity. The solid lines are maximum-likelihood fits of
Eq. (42) to the histograms.

Table 2. Best-fit parameters of the template redshift distribution,
Eq. (42), to the COMBO-17 histograms. z̄ is the mean of the template
redshift distribution. The statistical errors of z̄ are derived from the field-
to-field variance in COMBO-17.

Galaxy sample z0 α β z̄
FORE-I 0.534 0.509 3.173 0.35 ± 0.03
FORE-II 0.765 0.617 5.839 0.47 ± 0.03
FORE-III 0.945 0.830 5.103 0.61 ± 0.02

BACK 1.069 0.809 7.369 0.68 ± 0.02
BACK-II 1.072 0.988 7.655 0.70 ± 0.02
BACK-III 1.073 1.611 8.560 0.77 ± 0.02

of the three fields are combined. With three ways of combin-
ing this yields overall N = 3 Jackknife samples. To estimate the
standard deviation of the mean redshift, z̄, one computes from
each Jackknife sample the mean redshift, z̄i. According to the
Jackknife method the statistical 1σ-error of the mean is then
roughly:

σ2(z̄) =
N − 1

N

∑

i

(zi − z̄)2, (43)

where z̄ is the mean redshift obtained by combining all three
COMBO-17 redshift distributions. The results for σ(z̄) are listed
in Table 2. As can be seen there the uncertainty of z̄ ranges
from σ(z̄)/z̄ ≈ 10% to σ(z̄)/z̄ ≈ 2% for FORE-I to BACK, re-
spectively. This behaviour makes sense because the number of
galaxies increases when going from the shallower to the deeper
samples.

The problem of the calibration of redshift distributions
for cosmic shear studies has recently been studied by

van Waerbeke et al. (2006). They find a statistical uncertainty of
σ(z̄) = 0.03−0.04 for a 0.75 deg2 survey with mean z̄ ∼ 1. This
value is somewhat higher than our estimate.

The Jackknife samples can also be used to assess how the
statistical uncertainty of the full p(z)’s translates into the in-
ferred galaxy bias parameters. This problem will be addressed
in Sect. 4.3.

4. Outline of the method

The approach to obtain the bias parameters from lensing adopted
here proceeds in several steps:

1. estimating the binned correlators ω(θ), ⟨γt⟩(θ) and ξ±(θ) in
all individual survey fields;

2. numerical integration of the correlators to obtain
⟨Nm(θap)Mn

ap(θap)⟩ for m + n = 2 (E-modes and B-modes);
3. repetition of 1. and 2. with bootstrapped data sets to obtain

statistical errors of the aperture statistics in the single fields;
4. combining the individual field measurements and evaluating

the bias parameters as a function of aperture radius from the
combined signal (includes calibration);

5. bootstrapping of the combined signal to estimate the error
in the final signal and the covariances between the different
bins.

A detailed account of these steps is given in the following.

4.1. Practical estimators for the correlators

The correlators are estimated by using

ω (θ) =
DD
RR
− 2

DR
RR
+ 1, (44)

Redshift distributions for GaBoDS samples, estimated from COMBO-17. From (Simon

et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Part II day 1. Galaxy-galaxy lensing

GGL results: model-indep. measurement of b and r IIP. Simon et al.: Galaxy bias in GaBoDS. VI. 873

Fig. 6. The aperture number count dispersions, as measured in GaBoDS,
for FORE-I (filled boxes), FORE-II (open stars) and FORE-III (open
crosses). The 1σ error bars have the size of the data points. Upper
panel: comparison to ΛCDM predictions assuming unbiased galaxies,
upper to lower line: FORE-I (solid), FORE-II (dashed) and FORE-III
(dotted). Lower panel: power laws give excellent descriptions of the
measurements. The dotted-dashed line denotes ⟨N2⟩ as measured by
Hoekstra et al. (2002) (Aω = 0.115, δ = 0.7).

The angular correlation of the galaxies in FORE-I – a sample
roughly comparable to the foreground sample of Hoekstra et al.
(2002) – has a slope slightly steeper than what is found in the
sample of Hoekstra et al. (there δ = 0.7 and Aω = 0.115) and is
smaller in amplitude for aperture radii larger than θap ≈ 3′. This
discrepancy in Aω and δ is not as drastic as it may seem if one
takes into account that the errors of Aω and δ are anti-correlated:
a smaller Aω results in a steeper δ. Another issue that may play a
role in this context is the fact that Hoekstra et al. use a different
filter, Rc, which is somewhat different from our R-band filter.
All in all we think that the measurement of ω(θ) for FORE-I is
consistent with the measurement of Hoekstra et al.

Compared to the ΛCDM prediction of ⟨N2⟩ for unbiased
galaxies, which trace the dark matter distribution, our measure-
ments are clearly different, namely exceeding the dark matter
expectation on scales smaller than θap ≈ 5′, and falling slightly
below the prediction for the largest aperture radii. This already
suggests a scale-dependence of the bias factor.

Dark matter clustering. The clustering of the total matter con-
tent as derived from the ellipticities of the background galaxies is
expressed by the dispersion of the aperture mass, Fig. 7. We cal-
culated this quantity for a range of different aperture radii from
the cosmic shear two-point correlators, ξ±, which are shown in
Fig. 8 (rebinned for that plot).

In all figures, the prediction for the adopted fiducial cos-
mological model and the estimated redshift distributions in our
galaxy samples is plotted. We conclude that this prediction is in
good agreement with our measurements. Therefore the fiducial
cosmology taken for the bias parameter calibration seems to be
reasonable.

Judging from the B-modes, ⟨M2
×⟩, in Fig. 7, which serve as

an indicator for systematics in the PSF correction, the PSF cor-
rection is ok. Over the whole range of aperture radii considered

the B-modes are consistent with zero, maybe with a minor ex-
ception at about θap ≈ 3′. See Hetterscheidt et al. (2006) for a
detailed discussion on this issue.

Correlation between galaxy and matter distribution. The
cross-correlation between the N-maps and the Map-maps is plot-
ted in Fig. 7. Apart from θap ≈ 3′ in FORE-II the B-modes
of the signal are all consistent with zero. The cross-correlation
has been worked out on the basis of the mean tangential shear
about galaxies in the foreground samples. Results for the galaxy-
galaxy lensing signal are depicted in Fig. 9.

The data points (E-mode) on intermediate scales are be-
low the theoretical prediction for ⟨NMap⟩ based on an unbiased
galaxy population. This again indicates that either the bias fac-
tor or the correlation parameter or both differ from unity, hinting
towards a population of galaxies that does not perfectly trace the
(dark) matter distribution.

5.2. Galaxy bias parameters

The final result of our work is displayed in Fig. 10. The bias pa-
rameters calculated from the aperture statistics, Eqs. (50), have
been calibrated, and the aperture radii have been converted into
a typical physical scale, R, based on the mean redshift of the
range over which the parameters are averaged. As this redshift
range stretches over about 40%−50% (1σ) of the mean red-
shift (see Fig. 5), there is a relative uncertainty attached to the
physical range, R, which is of the same order; for instance for
R = 6 h−1 Mpc we have as resolution for the effective scale
σR = 3 h−1 Mpc (see Sect. 4.5).

Over the range of (comoving) physical scales investigated,
below about R ! 10 h−1 Mpc, the bias factor stays more or less
constant, rising towards smaller and possibly also larger scales
with a valley on intermediate scales, where b becomes slightly
inconsistent with b = 1 at a 68% confidence level; this im-
plies a scale-dependence of the bias factor. As absolute mini-
mum we obtain bmin = 0.78 ± 0.10, 0.74 ± 0.10, 0.78 ± 0.10 at
roughly θap ≈ 10′. The position of the minimum is not well de-
fined, however, due its width. In order to get an average value
for the bias factor, we make a maximum likelihood fit assum-
ing a constant bias over the range 2′ ≤ θap ≤ 19′ while tak-
ing into account the covariance between the errors, as estimated
from the bootstrap samples, shown in Fig. 11. This fit yields:
b̄ = 0.81 ± 0.11, 0.79 ± 0.10, 0.81 ± 0.11 for FORE-I, FORE-II
and FORE-III, respectively. Therefore, over the selected range of
scales, galaxies are anti-biased, i.e. less clustered than the dark
matter.

The correlation factor, r, has a larger relative uncertainty
than the bias factor, b, since it is based on two lensing
quantities, ⟨NMap⟩ and ⟨M2

ap⟩, which are generally noisier
than ⟨N2⟩. Broadly speaking, the correlation of the galaxies
to the (dark) matter distribution is relatively high. A scale-
dependence of the correlation factor is hard to determine
due to the large uncertainties and the high correlation of
neighbouring bins; it may be present in the sample FORE-I.
Averaging the correlation factor over 2′ ≤ θap ≤ 19′ yields
r̄ = 0.61 ± 0.16, 0.64± 0.16, 0.58± 0.19 (FORE-I to FORE-III)
which reflects both the high correlation and the unfortunately
still large error bars. Obviously, a much larger survey area is re-
quired to obtain better constraints. We are going to discuss our
results in the following section.

Filled boxes, open stars, open crosses = FORE-I, FORE-II, FORE-III.

Galaxy clustering: Bias on small scales is not constant, but scale-dependent.
Stronger galaxy clustering than from constant bias. (Simon et al. 2007),
GaBoDS (Garching-Bonn Deep Survey).
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Fig. 7. Top row panels and lower left panel: cross-correlation between aperture mass and aperture number count for the three different foreground
samples FORE-I (solid boxes), FORE-II (open stars) and FORE-III (open crosses). The panels are subdivided; the lower panel shows the B-mode,
upper panel is the E-mode of ⟨NMap⟩. The curves are ΛCDM predictions assuming unbiased galaxies. Lower right: aperture mass dispersion,
lower and upper panel are B-mode and E-mode, respectively. The solid line is a ΛCDM prediction. The solid lines in the B-mode panel are the
E-mode prediction with positive and negative sign, which have been inserted for comparison.

6. Discussion and conclusions

Observationally, the galaxy-dark matter bias can be probed by
means of various methods (see introduction). Gravitational lens-
ing provides a promising new method in this respect. It is spe-
cial because it allows for the first time to map the total matter
content (mainly dark matter) with a minimum of assumptions
and independent of the galaxy distribution. Such a map can be
compared to the distribution of galaxies, or particular types of
galaxies, in order to investigate the galaxy bias. In particular,
correlations between galaxy and dark matter density become di-
rectly visible. For working out the galaxy-dark matter bias, older
methods rely on assumptions regarding the growth of dark mat-
ter density perturbations, the peculiar velocities of galaxies and
their correlation to the dark matter density. Moreover, they of-
ten only allow one to measure the bias on large (linear) scales,
!8 h−1 Mpc, whereas the non-linear regime is also accessible
with lensing. However, gravitational lensing has the disadvan-
tage that it is not equally sensitive at all redshifts. The cosmic
shear signal is most sensitive to matter fluctuations roughly half-
way between z = 0 and the mean redshift of the background.
This defines a natural best-suited regime for the method at a
redshift of about z ≈ 0.5, often even slightly lower, consider-
ing the depth of current galaxy surveys. It is expected that the
most sensitive regime will be shifted towards higher redshifts
by future space-based lensing surveys. Furthermore, lensing

observables are quite noisy so that large survey areas are re-
quired for a good signal-to-noise. Impressively large surveys
with instruments such as the CFHT (CFHT-Legacy-Survey,
CFHTLS), the VST (Kilo-Square-Degree-Survey, KIDS), Pan-
STARRS, or SNAP are either ongoing or about to start within
the next years, providing us with plenty of high signal-to-noise
information on dark matter and galaxy clustering.

In this paper, we employed aperture statistics to quantify
the relation between the dark matter and galaxy density. We
tested the evaluation software against Monte Carlo simulated
WFI fields, assuming an unbiased galaxy population, and found
that the software is working to at least a few percent accuracy
(Simon 2005). The data used is the GaBoDS with restriction
to galaxies brighter than 24 mag in the R-band; this allowed us
to estimate the redshift distribution of the galaxies on the ba-
sis of three COMBO-17 fields (A901, AXAF/CDFS and S11)
for which photometric redshifts in 0 ≤ z " 1.4 are available. For
all the other fields, only R-band magnitudes can be used to se-
lect galaxies. For this selection, we defined foreground galaxy
samples by choosing galaxies from three R-band magnitude bins
that have increasingly fainter median magnitudes. The sample
FORE-I is comparable to the foreground selection in Hoekstra
et al. (2002) who applied the same technique as we are using
here. By means of the photometric redshifts of the COMBO-17
fields we can translate a GaBoDS R-band magnitude interval

GGL and cosmic shear. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Fig. 10. The linear stochastic bias parameters of galaxies in the samples FORE-I, FORE-II and FORE-III (left to right column); the bias factor,
b, is upper, the correlation parameter, r, is in the lower row. The parameters have been calibrated assuming Ωm = 0.3 and ΩΛ = 0.7 (see Fig. 4).
The effective comoving scale is based on the aperture radius and the mean redshift of the weight functions h1/3, Fig. 5. The bias parameters for a
particular aperture radius are averages over different physical scales and redshifts (Sect. 4.5). The shaded area denotes the average bias factor or
correlation factor over all aperture radii between θap = 2′ . . . 19′; the maximum-likelihood of this average and its statistical uncertainty are shown
in numbers inside the panels.

foreground sample which was not possible in our case, because
we did not allow background galaxies fainter than 24 mag.

Going back to the observed scale-dependence of the bias fac-
tor, galaxies become anti-biased on intermediate scales; they are
less strongly clustered than the matter. In our data, the minimum
value of the bias factor is determined to be bmin ∼ 0.76. This
kind of scale-dependence has also been detected by Pen et al.
(2003) (VIRMOS-DESCART survey) and Hoekstra et al. (2002)
(VIRMOS-DESCART and RCS) which both rely on weak gravi-
tational lensing to probe galaxy bias. While Pen et al. use I-band
luminosities to select galaxies, which results in a larger value
for the minimum bias factor but at a similar scale of about
R ≈ 3 h−1 Mpc (k = 2π/R ≈ 2 h Mpc−1), the data and sample
selection of Hoekstra et al. is relatively similar to our sample
FORE-I; their value of bmin = 0.71+0.06

−0.04 is in agreement (1σ) with
our measurement, but the quoted scale of R ≈ 1 h−1 Mpc is dif-
ferent. However, as emphasised before, the position of the min-
imum is not well defined in our data. Considering the statistical
errors one has to admit that the position of the bias minimum is
not well determined also in the Pen et al. analysis (their Fig. 19).
Hence, there is no contradiction between our data and that of the
other authors.

An anti-bias on the scales considered here and a charac-
teristic “dip” in the functional form of the bias factor is in

concordance with recent numerical simulations of dark matter
structure formation (Springel et al. 2005; Weinberg et al. 2004;
Guzik & Seljak 2001; Pearce et al. 2001; Yoshikawa et al. 2001;
Somerville et al. 2001; Jenkins et al. 1998). The scale-
dependence is due to the fact that the galaxy clustering is a
power-law over a wide range of scales, reflected by ⟨N2⟩ in
Fig. 6, while the dark matter clustering has different shape in
CDM simulations and in the observations suggested by, for in-
stance, ⟨M2

ap⟩ in Fig. 7.
For the linear correlation parameter, we observe as Hoekstra

et al. (2002) and Pen et al. (2003) a high correlation between
galaxy and matter distribution. Averaging the measurement of
Hoekstra et al. over the range 2′ ≤ θap ≤ 19′ yields roughly
r ≈ 0.8 which is consistent with our average (1σ). Our observed
correlations between fluctuations in the galaxy number and mass
density appear to be a bit lower, though (Hoekstra, private com-
munication). This could hint to an hitherto undiscovered system-
atic effect in our data. However, it should be kept in mind that the
statistical errors in r are highly correlated and quite large so that
this slightly lower value of r may be just a statistical fluke. The
clear scale-dependence of the correlation parameter observed by
Hoekstra et al. is not visible in our data, because this feature
probably gets lost within the statistical uncertainties.

The figures for the correlation parameter – r is smaller than
unity with 68% confidence – show that the galaxies are either

Bias and correlation coefficient. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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indicates that a fair fraction of faint red lenses are satellites inside
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−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that

CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
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best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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the satellite fraction α are left as free parameters while we keep
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noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
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The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
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bins have therefore been removed from the analysis of blue lenses.
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where the number of bootstraps ensure convergence of the mean.
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70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
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70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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sample, lower luminosity bins display a slight bump at scales of
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70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
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constrain the halo mass. In the following sections, these two blue
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where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
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halo term arising from the contribution of nearby haloes. We note,
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while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
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with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
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the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in

The Astrophysical Journal, 744:159 (28pp), 2012 January 10 Leauthaud et al.

Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
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use represents 35 galaxies per arcmin2.
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validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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(Velander et al. 2014)
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Part II day 1. Galaxy-galaxy lensing

GGL: HOD model measurements

increasing luminosity →

CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
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sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
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bins have therefore been removed from the analysis of blue lenses.
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where the number of bootstraps ensure convergence of the mean.
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
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each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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sample, lower luminosity bins display a slight bump at scales of
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70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
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elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
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nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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halo term arising from the contribution of nearby haloes. We note,
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curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
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two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
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important and indicates that a significant fraction of the galaxies in
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other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
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values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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for the lower luminosity bins, but this feature is at larger scales
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This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
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errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
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distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
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70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
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70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
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70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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where the number of bootstraps ensure convergence of the mean.
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70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1
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70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in

The Astrophysical Journal, 744:159 (28pp), 2012 January 10 Leauthaud et al.

Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
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Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
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4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)

Tuesday, February 11, 14

Halo profile around stacked fg galaxies
8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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such as non-linear galaxy biasing, halo exclusion representation
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)

Tuesday, February 11, 14

Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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in about 50 per cent of the subhalo dark matter being stripped, and
we acquire a satellite term which supplies a signal on small scales.
Thus, satellite galaxies add three further components to the total
lensing signal: the contribution from the stripped subhalo (!"strip),
the satellite 1-halo term which is off-centre since the satellite galaxy
is not at the centre of the main halo and the 2-halo term from nearby
haloes. Just as for the central galaxies, the three terms add to give
the satellite lensing signal:

!"sat = !"
strip
sat + !"1h

sat + !"2h
sat . (7)

There is an additional contribution to the lensing signal, not yet
considered in the above equations. This is the signal induced by
the lens baryons (!"bar). This last term is a refinement of the halo
model presented in VU11, necessary since weak lensing measures
the total mass of a system and not just the dark matter mass. Fol-
lowing Leauthaud et al. (2011) we model the baryonic component
as a point source with a mass equal to the mean stellar mass of the
lenses in the sample:

!"bar = ⟨M∗⟩
πr2

. (8)

This term is fixed by the stellar mass of the lens, and we do not
fit it. Note that we choose not to include the baryonic term for
neighbouring haloes, but its contribution is negligible.

Finally, to obtain the total lensing signal of a galaxy sample of
which a fraction α are satellites, we combine the baryon, central
and satellite galaxy signals, applying the appropriate proportions:

!" = !"bar + (1 − α)!"cent + α!"sat . (9)

All components of our halo model are illustrated in Fig. 3. In this ex-
ample, the dark matter halo mass is M200 = 1012 h−1

70 M⊙, the stellar
mass is M∗ = 5 × 1010 h−2

70 M⊙, the satellite fraction is α = 0.2,
the lens redshift is zlens = 0.5 and Dls/Ds = 0.5. On small scales the
1-halo components are prominent, while on large scales the 2-halo
components dominate.

Figure 3. Illustration of the halo model used in this paper. Here we
have used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =
5 × 1010 h−2

70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is
zlens = 0.5. The dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while the light green lines correspond
to satellite quantities. The dark purple dash–dotted line shows the baryonic
component, the light green dash–dotted line shows the stripped satellite halo,
the dashed lines denote the 1-halo components induced by the main dark
matter halo and the dotted lines represent the 2-halo components originating
from nearby haloes.

We note here that the halo model is necessarily based on a number
of assumptions. Some of these assumptions may be overly stringent
or inaccurate, and some may differ from assumptions made in other
implementations of the galaxy–galaxy halo model. To be able to
make useful comparisons with other studies (such as the compar-
ison done in this paper, see Section 6), particularly considering
the statistical power and accuracy afforded by the CFHTLenS, we
attempt to provide a quantitative impression of how large a role
the assumptions actually play in determining the halo mass and
satellite fractions. The full evaluation is recounted in Appendix A
where we study the effect of the following modelling choices: the
inclusion of a baryonic component, the NFW mass–concentration
relation as applied to the central halo profile, the truncation radius
of the stripped satellite component, the distribution of satellites
within a given halo, the HOD and the bias prescription. Our general
finding is that, given reasonable spans in the parameters affect-
ing these choices, the best-fitting halo mass can change by up to
∼15–20 per cent for each individual assumption tested. The magni-
tude of the effect depends on the luminosity or stellar mass, and bins
with a greater satellite fraction will often be more strongly affected.
In essentially all cases the effect is subdominant to observational
errors and we therefore do not take them into account in what fol-
lows, though we do acknowledge that several effects may conspire
to cause a non-negligible change to our results.

4 LU M I N O S I T Y TR E N D

The luminosity of a galaxy is an easily obtainable indicator of
its baryonic content. To investigate the relation between the dark
matter halo mass and galaxy mass, we therefore split the lenses
into eight bins according to MegaCam absolute r′-band magnitudes
as detailed in Table 1 and illustrated in Fig. 4. The lens property
averages quoted in this and forthcoming tables are pure averages
and do not include the lensing weights, unless explicitly specified.
The choice of bin limits follows the lens selection in VU11. This
choice will allow us to directly compare our results to the results
shown in VU11 since the RCS2 data have been obtained using the
same filters and telescope. We also split each luminosity bin into
red and blue subsamples as described in Section 2.1 and proceed
to measure the galaxy–galaxy lensing signal for each sample, with
errors obtained via bootstrapping 104 times over the full CFHTLenS
area, where the number of bootstraps ensure convergence of the
mean. We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and the
satellite fraction α are left as free parameters while we keep all other
variables fixed. When fitting, we assume that the covariance matrix
of the lensing measurements is diagonal. Off-diagonal elements
are generally present due to cosmic variance and shape noise, but

Table 1. Details of the luminosity bins. (1) Absolute
magnitude range; (2) number of lenses; (3) mean redshift;
(4) fraction of lenses that are blue.

Sample Mr ′ (1) nlens
(2) ⟨z⟩(3) fblue

(4)

L1 [−21.0, −20.0] 91 224 0.32 0.70
L2 [−21.5, −21.0] 33 633 0.32 0.45
L3 [−22.0, −21.5] 23 075 0.32 0.32
L4 [−22.5, −22.0] 12 603 0.32 0.20
L5 [−23.0, −22.5] 5344 0.32 0.11
L6 [−23.5, −23.0] 1704 0.31 0.05
L7 [−24.0, −23.5] 344 0.30 0.03
L8 [−24.5, −24.0] 76 0.30 0.09

2134 M. Velander et al.

Figure D1. Galaxy–galaxy lensing signal around red lenses which have been split into luminosity bins according to Table 1, and modelled using the halo
model described in Section 3.2. The black dots denote the measured differential surface density, !", and the black line shows the best-fitting halo model with
the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model
fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the
negative points. The grey squares represent distance bins containing no objects.

Figure D2. Galaxy–galaxy lensing signal around blue lenses which have been split into luminosity bins according to Table 1, and modelled using the halo
model described in Section 3.2. The black dots denote the measured differential surface density, !", and the black line shows the best-fitting halo model with
the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model
fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the
negative points. The grey squares represent distance bins containing no objects.

HOD model, (Velander et al. 2014).
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙]; (2) Mean stellar mass for red lenses

[1010 h−2
70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 — — — —
L8 25.4 20.3 690+294

−183 0.20+0.00
−0.20 — — — —

Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL

(10)
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70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
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70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.
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tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL
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Figure 13. Comparison between four different datasets, showing the ra-
tio of measured halo mass to stellar mass as a function of stellar mass.
The top (bottom) panels show the results for red/early-type (blue/late-type)
galaxies. The datasets used are all based on galaxy-galaxy lensing analy-
ses with solid dots showing the CFHTLenS results from this paper. Also
shown are halo masses measured using the RCS2 (open stars; VU11), the
SDSS (open squares Mandelbaum et al. 2006) and COSMOS (solid band;
Leauthaud et al. 2012). In the case of COSMOS we use the results from
their lowest redshift bin. Also note that no distinction between red and blue
lenses was made in the COSMOS analysis, so the same results are shown
in both panels.

type, while VU11 use the brightness distribution profiles to sepa-
rate their lenses in a bulge-dominated and a disk-dominated sample.
Even though the resulting samples are expected to be fairly similar,
they are not identical. As the mass-to-luminosity ratio of galax-
ies strongly depends on their colour, even small colour differences
between the samples could result in different masses. This may ex-
plain why our halo mass estimates of the red lenses at the high lu-
minosity end are lower than those of VU11 and Mandelbaum et al.
(2006), who both use identical galaxy type separation criteria and
whose masses agree in this regime. The difference is smaller for the
stellar mass results, providing further support for this hypothesis.
Furthermore, in our halo model we account for the baryonic mass
of each lens, something that was not done in VU11. As shown in
Appendix A, however, the slope and amplitude of our power laws
do not change significantly when the baryonic component is re-
moved. Hence this does not explain why VU11 find a steeper slope
than we do.

Another factor to take into account is the fact that we limit
our lens samples to redshifts of 0.2 ! zlens ! 0.4 keeping
our mean lens redshift fairly stable at ⟨zlens⟩ ∼ 0.3. This is not
done in VU11, and as a result the median redshift of our lower
luminosity or stellar mass bins is higher than for the same bins
in VU11, with the opposite being true for the higher bins. Re-
cent numerical simulations indicate that the relation between stel-
lar mass and halo mass will evolve with redshift (see for example

Conroy & Wechsler 2009; Moster et al. 2010). Lower-mass host
galaxies (M∗ < 1011 M⊙) increase in stellar mass faster than their
halo mass increases, i.e. for higher redshifts the halo mass is lower
for the same stellar mass. The opposite trend holds for higher-
mass host galaxies (M∗ > 1011 M⊙). As a result, the relation
between halo mass and stellar mass (or an indicator thereof, such
as luminosity) steepens with increasing redshift. This means that
for the lower-luminosity bins, where our redshifts are higher, we
may measure a steeper slope than VU11 and vice-versa for higher-
luminosity bins. The effect is likely small, however, because of the
relatively small redshift ranges involved.

Finally we note that the lenses in the sample studied by VU11
are rather massive and luminous as only galaxies with spectroscopy
are used. Our lens sample includes many more low luminosity and
low stellar mass objects, however. Hence the difference in slope
may be partly due to the fact that we probe different regimes, and
that the relation between baryonic observable and halo mass is not
simply a power law but turns upward at high luminosities/stellar
masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn
our attention to the comparison with the Mandelbaum et al. (2006)
analysis of 3.5 × 105 lenses in the SDSS DR4, shown as open
squares in Figures 12 and 13. Their lens sample is, similarly to
the VU11 sample, also divided into early- and late-type galaxies
based on their brightness profiles. To allow for a comparison be-
tween our results and theirs we first have to consider the differ-
ences in the luminosity definition. Mandelbaum et al. (2006) use
absolute magnitudes which are based on a K correction to a red-
shift of z = 0.1 and a distance modulus calculated using h = 1.0.
Furthermore, their luminosities are corrected for passive evolution
by applying a factor 1.6(z −0.1). However, VU11 convert their lu-
minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and find that for low-luminosity low-redshift sam-
ples the difference between the two definitions is negligible. The
more luminous lenses reside at higher redshifts and for them the
correction is found to be greater, most likely due to the differ-
ence in the passive evolution corrections. Since our lenses are con-
fined to relatively low redshifts, and since the main difference be-
tween luminosity definitions is the passive evolution factor, we can
compare our results to Mandelbaum et al. (2006) without correct-
ing the luminosities. Our halo mass definition is also different to
that used by Mandelbaum et al. (2006) though. Mandelbaum et al.
(2006) define the mass within the radius where the density is 180
times the mean background density while we set it to be 200 times
the critical density. The correction factor stemming from the dif-
ferent definitions amounts to ∼ 30%. Having corrected for this,
our results are then very similar to those from Mandelbaum et al.
(2006), but the same concerns of object selection and baryonic
contribution discussed above apply here as well. The relation that
Mandelbaum et al. (2006) find between halo mass and luminosity
for red lenses is shallower than the one found by VU11, as dis-
cussed therein, and are therefore more in agreement with our re-
sults. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their highest
stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙]; (2) Mean stellar mass for red lenses

[1010 h−2
70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 — — — —
L8 25.4 20.3 690+294

−183 0.20+0.00
−0.20 — — — —

Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL

(10)
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used for fitting the power law relation in Section 4.1.
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Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL

(10)
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Figure 13. Comparison between four different datasets, showing the ra-
tio of measured halo mass to stellar mass as a function of stellar mass.
The top (bottom) panels show the results for red/early-type (blue/late-type)
galaxies. The datasets used are all based on galaxy-galaxy lensing analy-
ses with solid dots showing the CFHTLenS results from this paper. Also
shown are halo masses measured using the RCS2 (open stars; VU11), the
SDSS (open squares Mandelbaum et al. 2006) and COSMOS (solid band;
Leauthaud et al. 2012). In the case of COSMOS we use the results from
their lowest redshift bin. Also note that no distinction between red and blue
lenses was made in the COSMOS analysis, so the same results are shown
in both panels.

type, while VU11 use the brightness distribution profiles to sepa-
rate their lenses in a bulge-dominated and a disk-dominated sample.
Even though the resulting samples are expected to be fairly similar,
they are not identical. As the mass-to-luminosity ratio of galax-
ies strongly depends on their colour, even small colour differences
between the samples could result in different masses. This may ex-
plain why our halo mass estimates of the red lenses at the high lu-
minosity end are lower than those of VU11 and Mandelbaum et al.
(2006), who both use identical galaxy type separation criteria and
whose masses agree in this regime. The difference is smaller for the
stellar mass results, providing further support for this hypothesis.
Furthermore, in our halo model we account for the baryonic mass
of each lens, something that was not done in VU11. As shown in
Appendix A, however, the slope and amplitude of our power laws
do not change significantly when the baryonic component is re-
moved. Hence this does not explain why VU11 find a steeper slope
than we do.

Another factor to take into account is the fact that we limit
our lens samples to redshifts of 0.2 ! zlens ! 0.4 keeping
our mean lens redshift fairly stable at ⟨zlens⟩ ∼ 0.3. This is not
done in VU11, and as a result the median redshift of our lower
luminosity or stellar mass bins is higher than for the same bins
in VU11, with the opposite being true for the higher bins. Re-
cent numerical simulations indicate that the relation between stel-
lar mass and halo mass will evolve with redshift (see for example

Conroy & Wechsler 2009; Moster et al. 2010). Lower-mass host
galaxies (M∗ < 1011 M⊙) increase in stellar mass faster than their
halo mass increases, i.e. for higher redshifts the halo mass is lower
for the same stellar mass. The opposite trend holds for higher-
mass host galaxies (M∗ > 1011 M⊙). As a result, the relation
between halo mass and stellar mass (or an indicator thereof, such
as luminosity) steepens with increasing redshift. This means that
for the lower-luminosity bins, where our redshifts are higher, we
may measure a steeper slope than VU11 and vice-versa for higher-
luminosity bins. The effect is likely small, however, because of the
relatively small redshift ranges involved.

Finally we note that the lenses in the sample studied by VU11
are rather massive and luminous as only galaxies with spectroscopy
are used. Our lens sample includes many more low luminosity and
low stellar mass objects, however. Hence the difference in slope
may be partly due to the fact that we probe different regimes, and
that the relation between baryonic observable and halo mass is not
simply a power law but turns upward at high luminosities/stellar
masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn
our attention to the comparison with the Mandelbaum et al. (2006)
analysis of 3.5 × 105 lenses in the SDSS DR4, shown as open
squares in Figures 12 and 13. Their lens sample is, similarly to
the VU11 sample, also divided into early- and late-type galaxies
based on their brightness profiles. To allow for a comparison be-
tween our results and theirs we first have to consider the differ-
ences in the luminosity definition. Mandelbaum et al. (2006) use
absolute magnitudes which are based on a K correction to a red-
shift of z = 0.1 and a distance modulus calculated using h = 1.0.
Furthermore, their luminosities are corrected for passive evolution
by applying a factor 1.6(z −0.1). However, VU11 convert their lu-
minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and find that for low-luminosity low-redshift sam-
ples the difference between the two definitions is negligible. The
more luminous lenses reside at higher redshifts and for them the
correction is found to be greater, most likely due to the differ-
ence in the passive evolution corrections. Since our lenses are con-
fined to relatively low redshifts, and since the main difference be-
tween luminosity definitions is the passive evolution factor, we can
compare our results to Mandelbaum et al. (2006) without correct-
ing the luminosities. Our halo mass definition is also different to
that used by Mandelbaum et al. (2006) though. Mandelbaum et al.
(2006) define the mass within the radius where the density is 180
times the mean background density while we set it to be 200 times
the critical density. The correction factor stemming from the dif-
ferent definitions amounts to ∼ 30%. Having corrected for this,
our results are then very similar to those from Mandelbaum et al.
(2006), but the same concerns of object selection and baryonic
contribution discussed above apply here as well. The relation that
Mandelbaum et al. (2006) find between halo mass and luminosity
for red lenses is shallower than the one found by VU11, as dis-
cussed therein, and are therefore more in agreement with our re-
sults. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their highest
stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
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Part II day 1. Shear calibration

Shear bias
For basically all shape measurement methods: observed shear 6= true shear.
This is called shear bias.
Reminder: Write as multiplicative and additive bias:

〈εobs
α 〉 = gobs

α = (1 +mα)gtrue
α + cα; α = 1, 2.

There is also ellipticity bias, which is different:

εobs
i = (1 +m′i)ε

true
i + c′i; i = 1, 2.

Typical values:

year program ∆m ∆c σ(c)
2006 STEP I 0.1 10−3

2012 CFHTLenS 0.06 0.002
2013 great3 0.01 10−3

2014 DES 0.03–0.04 10−3

2016 KiDS 0.01–0.02 8 · 10−4

2021 Euclid required 2 · 10−3 5 · 10−4
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Part II day 1. Shear calibration

Shear bias and simulations I
From the STEP I shear measurement challenge (Heymans et al. 2006).

STEP: weak lensing analysis of simulated data 1331

Figure 2. Examples of two analyses of PSF 3 simulations using KSB+ (HH
implementation, upper panel) and BJ02 (MJ implementation, lower panel)
comparing the measured shear γ 1 and input shear γ true

1 . The best-fitting to
equation (11) is shown dashed, and the optimal result (where γ 1 = γ true

1 )
is shown dot–dashed. Both analyses have additive errors that are consistent
with shot noise (fitted y-offset parameter c) and low 1 per cent calibration
errors (fitted slope parameter m). The weighting scheme used in the BJ02
analysis introduces a non-linear response to increasing input shear (fitted
quadratic parameter q), reducing the shear recovery accuracy for increasing
shear. The accuracy of the KSB+ analysis responds linearly to increasing
input shear and so these results were refit with a linear relationship, i.e.
q = 0.

range of sheared images, the best-fitting parameters to

γ1 − γ true
1 = q

(
γ true

1

)2 + mγ true
1 + c1, (11)

where γ true
1 is the external shear applied to each image. Fig. 2 shows

fits to two example analyses of PSF 3 simulations using KSB+ (HH
implementation) and BJ02 (MJ implementation). In the absence of
calibration bias, we would expect m = 0. We would also expect
c1 = 0 in the absence of PSF systematics and shot noise, and q =
0 for a linear response of the method to shear. In the case where

the fitted parameter q is consistent with zero, we refit with a linear
relationship, as demonstrated by the KSB+ example in Fig. 2.

For all simulations the external applied shear γ true
2 = 0 and we

therefore also measure for each PSF type c2 = ⟨γ 2⟩, averaged over
the range of sheared images. In the absence of PSF systematics and
shot noise, we would expect to find c2 = 0. From this analysis, we
found the values of m and q to be fairly stable to changes in PSF type
and we therefore define a measure of calibration bias to be ⟨m⟩ and
a measure of non-linearity to be ⟨q⟩ where the average is taken over
the six different PSF sets. We find the value of ⟨ci⟩ averaged over the
six different PSF sets to be consistent with shot noise at the 0.1 per
cent level for all authors, with the highest residuals seen with PSF
model 1 (coma) and PSF model 2 (jitter). We therefore define σ c as
a measure of our ability to correct for all types of PSF distortions,
where σ 2

c is the variance of c1 and c2 as measured from the six
different PSF models. As the underlying galaxy distributions are the
same for each PSF this measure removes most of the contribution
from shot noise, although the galaxy selection criteria will result in
slightly different noise properties in the different PSF data sets. σ c

therefore provides a good estimate of the level of PSF residuals in
the whole STEP analysis. A more complicated set of PSF distortions
will be analysed in Massey et al. (in preparation) to address the issue
of PSF-dependent bias more rigorously.

Fig. 3 shows the measures of PSF residuals σ c and calibration bias
⟨m⟩ for each author, where the author key is listed in Table 2. For the
non-linear cases where q ̸= 0, denoted with a circle, the best-fitting
⟨q⟩ parameter is shown with respect to the right-hand scale. Results
in the shaded region suffer from less than 7 per cent calibration bias.
All methods which have been used in a cosmological parameter
cosmic shear analysis lie within this region. With regard to PSF
contamination, these results show that PSF residuals are better than
1 per cent in all cases and are typically better than 0.1 per cent.
Note that for clarity the results plotted in Fig. 3 are also tabulated
in Table 5.

Figure 3. Measures of calibration bias ⟨m⟩, PSF residuals σ c and non-
linearity ⟨q⟩ for each author (key in Table 2), as described in the text. For
the non-linear cases where ⟨q⟩ ̸= 0 (points enclosed within a large circle),
⟨q⟩ is shown with respect to the right-hand scale. In short, the lower the
value of σ c, the more successful the PSF correction is at removing all types
of PSF distortion. The lower the absolute value of ⟨m⟩, the lower the level
of calibration bias. The higher the q value the poorer the response of the
method to stronger shear. Note that for weak shear γ < 0.01, the impact of
this quadratic term is negligible. Results in the shaded region suffer from
less than 7 per cent calibration bias. These results are tabulated in Table 5.

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 368, 1323–1339
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Part II day 1. Shear calibration

Shear bias and simulations II

From the great3 shear measurement challenge (Mandelbaum et al. 2015).GREAT3 results I 2983

Figure 17. Multiplicative and additive biases for constant-shear branches in the control (left) and realistic galaxy (right) experiments, for ground (top) and
space (bottom) branches. For each branch, we show the averaged (over components) multiplicative bias ⟨m⟩ versus c+, the additive bias term defined in the
coordinate system defined by the PSF anisotropy. The axes are linear within the target region (|m| < 2 × 10−3 and |c| < 2 × 10−4, shaded grey) and logarithmic
outside that region.

calibration biases, although the sign of the change in ⟨m⟩ depended
on method.

The top-right panel of Fig. 18 shows how ⟨m⟩ changes from
control to realistic galaxy experiment for space-based simulations.
Again, some methods exhibit no significant model bias due to real-
istic galaxy morphology (but note that sFIT included this effect in
their simulations, and explicitly calibrated it out), while others have
typically ∼1 per cent level calibration changes.

The bottom-left panel of Fig. 18 shows c+ for CGC versus RGC,
with everything from complete consistency to strong differences in
c+ in these branches, implying that realistic galaxy morphology can
in some cases cause additive biases.

Finally, in the bottom-right panel of Fig. 18, the c+ are consistent
between control and realistic galaxy experiments for space-based
simulations for most methods. It seems that for space simulations,
removing the PSF anisotropy is similarly difficult for both paramet-
ric and realistic galaxy models.

5.3.2 Impact of ground- versus space-based PSF

Comparing the top and bottom rows of Fig. 17 reveals the effects
of using a space-based PSF rather than a ground-based PSF. Note

that the numerical values of the c+ and ⟨m⟩ changes are shown in
Table D3. Focusing first on the control experiment (left-hand side),
the c+ values shifted to the right (more positive) in space data for
the majority of the methods. Note that if c+ scales linearly with PSF
ellipticity (a model that we will validate in Section 5.4), then c+ for
the space branches should be larger than in the ground branches by a
factor of ∼2. This may explain the changes in c+ for several teams,
but not all, implying that in some cases the additive systematics
have some additional dependence on the form of the PSF beyond
its ellipticity.

Comparing multiplicative biases for CGC and CSC, they are ei-
ther statistically consistent between space and ground or more nega-
tive for space branches; curiously, they did not become more positive
for any teams. Given the wide diversity of methods and the apparent
lack of commonality between many that exhibit similar behaviour
between ground and space data, it is difficult to draw conclusions,
but the pattern is indeed interesting.

These results were for the control experiment. If we compare
RGC versus RSC (right-hand panels), we see that the differences in
c+ and ⟨m⟩ between space and ground simulations in the realistic
galaxy experiment are similar to what was seen for the control
experiment for all teams except CEA_denoise. This finding suggests
that the effect of the type of PSF (space versus ground) on additive

MNRAS 450, 2963–3007 (2015)
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Shear bias and simulations III
Interprete with caution!

• Small biases because simulations are not realistic enough? E.g. constant
PSF, analytical galaxy light distributions, simplistic noise, (constant
shear)

• Simulation (challenges) only address part of the problem. Usually no
blended galaxy images, star-galaxy separation, color effects, . . .

• Calibrated or un-calibrated?

Amplitude of m, c not that important, since they can be calibrated emirically.
What counts are ∆m,∆c after calibration!

More on this in a few slides.
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Shear bias and simulations IV

A very general statement (see Part I day 2):

Most ellipticity estimators are non-linear pixel light distribution. Noise then
creates biases in the estimator. This is called noise bias.

Thus, observed shear needs to be de-biased (calibrated) using simulations.

There are a few unbiased estimators:

• Not normalised to total flux: maybe unbiased, but very large variance

• Bayesian estimators, sample posterior distribution, unbiased if correct
model, likelihood and prior.
Prior needs to be estimated from simulations or deep survey!
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Sources of bias

Reminder:

• Noise bias

• Model bias

• Model-fitting method: incorrect model, complex galaxy morphology
• Direct estimation: inappropriate filter function for weighted moments;

truncated eigenfunction decomposition
• Ellipticity gradients
• Color gradients

• PSF residuals

• CTI (charge transfer inefficiency)

• Selection effects (population biases). Detection probability depends on
ellipticity, orientation with PSF, pixel scale

• New: Environmental effects

• Unresolved faint galaxies
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Shear calibration

The bias should be robust for method to be calibratable.
Define sensitivity as dependence of bias with respect to parameters, or

|∂m/∂pi|, for p = set of parameters.

A method is calibratable, see (Hoekstra et al. 2017), if

• the sensitivity is small (otherwise simulation sampling in p too costly)

• does not depend on too many parameters

• those parameters can be measured accurately (e.g. intrinsic ellipticity
dispersion σε from Euclid Deep Survey → requirement on accuracy of
measured σε sets area of calibration fields)

• those parameters can be reasonably simulated to estimate sensitivity

• difficult if parameter is correlted with shear signal (e.g. local galaxy
density with large-scale structure, correlated with shear signal,
magnification)
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Shear calibration: Unresolved faint galaxies I

Martin Kilbinger, CEA
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Shape measurement - image simulations

Shear bias from unresolved background galaxies

Henk Hoekstra
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How faint do we need to go? 

1074!!

Sensitivity of shape measurements 9

Figure 6. Multiplicative bias for galaxies with 20 < m < 24.5

when only galaxies with magnitudes brighter than mlim are in-
cluded in the simulation. Because of the small PSF, even galaxies
as faint as m ∼ 29 affect the bias.

Figure 7. Change in bias when the sizes of the input galaxies
with m > 27 are increased by a factor fsize compared to our
reference distribution.

radii of galaxies with m > 27 by a factor fsize and measure
the difference ∆µ compared to the reference simulation. To
reduce the number of the positions and intrinsic ellipticities
of the galaxies are the same for the different values of fsize.

The results, based on 50 sets of simulations for each
value of fsize, are presented in Figure 7. We find that the
multiplicative bias is smaller (corresponding to positive ∆µ

Figure 8. Multiplicative bias as function of the slope of the

counts of galaxies fainter than magnitude 24.5; the reference sim-
ulation assumes a powerlaw slope of 0.36 for all magnitudes,
whereas the UDF counts suggest a slope of 0.24 for faint mag-
nitudes.

because µ < 0.) when the faint galaxies are larger. This
is expected, because the galaxies are more spread out and
thus introduce noise that is less skewed. To ensure |∆µ| <
5 × 10−4 our results indicate that the mean size of galaxies
with m > 27 should be determined to better than ∼ 5%.

The measurements by Coe et al. (2006) are based on an
earlier release of the UDF. Some comments on how well
we think we can measure this from the UDF based
on the number of galaxies.

7.2 Varying the count slope of faint galaxies

For our reference model we assume a single powerlaw slope
for the galaxy counts of 0.36 down to magnitude 29. The
actual counts from the UDF from Coe et al. (2006) shown
in Figure 1 suggests that the actual slope is lower, with a
best fit value of XXX.

Here we examine the change in bias when we modify
the slope for galaxies with m > 24.5. αfaint

The results indicate that the bias increases linearly with
increasing slope. We find a best fit dµ/dαfaint = −0.0239 ±
0.0014, which suggests we need to determine the mean slope
with a precision of ∼ 0.002 if we wish a multiplicative bias
µ = 5 × 10−5.

From the UDF we estimate that the slope can be de-
termined to XXX.

A more realistic scenario, taking into account all avail-
able HST observations is likely to give better constraints,
because the slope at brighter magnitides can be constrained
much better, whereas the impact of the faintest galaxies is
smaller, as can be inferred from the flattening of the bias as
a function of mlim in Figure 6.

Cosmic variance can be reduced further by combining

c⃝ 0000 RAS, MNRAS 000, 000–000

Note:!this!took!31,000!core!hours!to!compute!!Multiplicative bias m (here µ) for galaxies 20 < m <

24.5 as function of limiting magnitude of simulated

galaxies. From (Hoekstra et al. 2017).

Overall values on y-axis (ampli-
tude of m) not really important,
will be corrected for.

Need simulation up to very high
depth, until plateau in m is
reached (∂m/∂mlim = 0).

Error bars need to decrease to
match hashed region.
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Shear calibration: Unresolved faint galaxies II

Martin Kilbinger, CEA
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Sensitivity to galaxy density 

The bias depends on the local density of 
galaxies: it will increase towards high density 
regions.  It also depends on the sizes.  
 
This needs to be accounted for, which is 
possible using machine-learning tools. 
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Sensitivity to magnification 

The bias depends on the number density of 
faint galaxies: magnification will affect the 
bias which is thus coupled to the lensing 
signal! 

1074!!

Shear bias depends on local galaxy density,  
magnification, galaxy clustering 

Not yet accounted for: galaxy substructure 

Method-dependent? 

Alternative ways to calibrate, using less simulations?
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Shear calibration from simulations: tricks of the trade I

Again: multiplicative and additive bias,

〈εobs
α 〉 = gobs

α = (1 +mα)gtrue
α + cα; α = 1, 2.

for sample of galaxies with vanishing intrinsic ellipticity 〈εI
α〉 = 0.

How can we determine the multiplicative bias?
Simple method
From linear fit of many simulated pairs (εobs

α , gtrue
α ).

A&A proofs: manuscript no. shear_bias_measurements

Fig. 2. Scheme of the estimation of biases m1 and c1 from the
linear fit of the distribution of eobs

1 as a function of g1.

where eobs
↵,A and eobs

↵,B are the observed ellipticities of respec-
tively two orthogonal galaxies, whose intrinsic ellipticities
cancel exactly, eI

↵,A = �eI
↵,B for both ↵ = 1, 2.

The shear bias is then estimated from a linear fit of
gobs
↵ as a function of g↵. This estimator is an improvement

over the simple linear fit reviewed in the previous section,
with reduced contribution from shape noise. However, the
observed ellipticities in the absence of shear do not cancel
in general, due to various effects. First, the stochasticity
of the two (assumed independent) ellipticity measurements
means that eobs

↵,A + eobs
↵,B is a random variable with non-zero

dispersion. We model this dispersion in Sect. 4.3. Second,
the response of the measurement to ellipticity, or ellipticity
bias, that depends on the galaxies orientation, either with
respect to the pixel coordinate system or to the PSF, can
cause the estimated shear to be biased with respect to g↵
(Kacprzak et al. 2012; Pujol et al. 2017). Third, selection
effects can break the symmetry if one of the two galaxies
is missed. This selection can occur at the detection level
or the shape measurement stage, both of which can fail for
one of the two objects. This could be due to a dependence
on the relative orientation of the galaxy with respect to the
PSF, or random noise fluctuations in particular in the low-

SNR range. Fourth, when accounting for galaxy weights the
ellipticity cancellation is broken.

A generalisation of this method consist on simulating
sets of n galaxies on a ring with constant |eI|, rotated
uniformly such that their mean intrinsic ellipticity is zero
(Nakajima & Bernstein 2007). The case with n = 2 cor-
responds to the case of orthogonal pairs discussed above.
In Sect. 4.3 we show that increasing n beyond n = 2 does
not reduce the shape noise contribution to the shear bias
estimator.

4. Error estimation

In this section we study and compare the precision and pre-
cision of the different shear bias estimators. In this section,
a latin index of shear, ellipticity, bias, etc. serve to indicate
a galaxy number from a population.

4.1. Our method: shape-noise-free shear bias estimation

Each galaxy i with properties Pi has a shear response Ri

estimated as described in Sect. 3.1, from different sheared
versions of the original simulated galaxy image with the
same noise realisation. We assume that the statistical un-
certainty of this measurement given Pi is negligible. This
is based on the results shown in App. A. The response Ri

depends deterministically on Pi, given by the input parame-
ters of the simulated image, the PSF, and the stochastically
of the random processes of the image realisation. The latter
in our case is a simple Gaussian pixel noise realisation, but
we can easily include other effects such as Poisson noise,
cosmic rays, etc. The effects on R from this stochasticity
can be measured by repeatedly estimating Ri for fixed Pi

with different noise realisations. This provides us with sam-
ples from the probability density function (PDF) of Ri(Pi).
This PDF defines the uncertainty �N,↵ for both components
of the estimated shear response due to stochastic effects.

In Fig. 3 we show two examples of this stochasticity
coming from noise. We have measured R 10, 000 times
for 10, 000 different noise realisations for the two galaxies
shown in the figure (see Sect. 5 for details on the simu-
lated images and shape measurement). As before, for each
realisation we do not change the noise for the original and
the 4 sheared versions of the image. The mean responses
hRii depend on the galaxy properties Pi. In general, the
response is further from 1 for small galaxies (the top panel)
and closer for large galaxies (bottom panel), and the two
response components can be different as in the top panel.
These results are consistent with the bias results from Pujol
et al. (2017).

The dispersion for each component �N,↵ of the response
depends on the noise level and on the properties P of the
object. The dispersion is generally larger for smaller ob-
jects. For our shear estimation method we only measure
R↵↵ once per galaxy, which means that each shear response
R↵↵i(Pi) has a stochasticity �N,↵i.

Quantifying �N,↵ allows us to estimate the number of
galaxies we need to simulate such that the stochasticity
is subdominant in the final bias uncertainty originating in

Article number, page 4 of 14
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estimated as described in Sect. 3.1, from different sheared
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is based on the results shown in App. A. The response Ri

depends deterministically on Pi, given by the input parame-
ters of the simulated image, the PSF, and the stochastically
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in our case is a simple Gaussian pixel noise realisation, but
we can easily include other effects such as Poisson noise,
cosmic rays, etc. The effects on R from this stochasticity
can be measured by repeatedly estimating Ri for fixed Pi

with different noise realisations. This provides us with sam-
ples from the probability density function (PDF) of Ri(Pi).
This PDF defines the uncertainty �N,↵ for both components
of the estimated shear response due to stochastic effects.

In Fig. 3 we show two examples of this stochasticity
coming from noise. We have measured R 10, 000 times
for 10, 000 different noise realisations for the two galaxies
shown in the figure (see Sect. 5 for details on the simu-
lated images and shape measurement). As before, for each
realisation we do not change the noise for the original and
the 4 sheared versions of the image. The mean responses
hRii depend on the galaxy properties Pi. In general, the
response is further from 1 for small galaxies (the top panel)
and closer for large galaxies (bottom panel), and the two
response components can be different as in the top panel.
These results are consistent with the bias results from Pujol
et al. (2017).

The dispersion for each component �N,↵ of the response
depends on the noise level and on the properties P of the
object. The dispersion is generally larger for smaller ob-
jects. For our shear estimation method we only measure
R↵↵ once per galaxy, which means that each shear response
R↵↵i(Pi) has a stochasticity �N,↵i.

Quantifying �N,↵ allows us to estimate the number of
galaxies we need to simulate such that the stochasticity
is subdominant in the final bias uncertainty originating in
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Shear calibration from simulations: tricks of the trade II

Error on best-fit mα given by width in εobs (including measurement errors),
gtrue, and stochasticity of galaxy images (from pixel noise),

σm,α =
1√
N

√
σ2
R,α +

σ2
S,α

σ2
g,α

Second terms is dominant in most cases.

A&A proofs: manuscript no. shear_bias_measurements

Fig. 5. The distributions of eI
1 and g1 used for the 2 million

simulated galaxies. The second component shows similar distri-
butions.

will be dominated by the intrinsic ellipticity eI
↵i. We write

the dependence of observed to intrinsic ellipticity as S↵i =
f(eI

↵i) with some generic function f . In general, f is not the
identity that would represent a perfect measurement. Nor
is this relation S↵i = R↵↵ie

I
↵i, since the ellipticity response

has been shown to be different from the shear response. Be-
cause ellipticity is typically larger than shear, this relation
is likely to be non-linear. When comparing the predictions
with results from data, we will only make the weak assump-
tion that S↵ is dominated by eI

↵.
For the linear fit to (10) we use a set of values of g↵

and eI
↵, whose distributions have dispersions �g,↵ and �e,↵,

respectively. In Fig. 5 we show these distributions measured
on our simulated images, which we describe in more detail
in Sect. 5.

The best values of (1+m↵) and c↵ obtained from a linear
regression fit from equation (10) are given by (Kenney &
Keeping 1962) as,

1 + m↵ =
h(eobs

↵ � heobs
↵ i)(g↵ � hg↵i)i
hg2

↵i
; (11)

c↵ = heobs
↵ i � m↵hg↵i. (12)

Assuming hg↵i = 0, these relations become:

1 + m↵ =
h(eobs

↵ � c↵)g↵i
�2

g,↵

; (13)

c↵ = heobs
↵ i. (14)

We assume that R↵↵ and g↵ are not correlated, which is a
very good approximation since the shear bias is linear with
g↵. Then, with

h(eobs
↵ � c↵)g↵i = hR↵↵g2

↵ + S↵g↵i = hR↵↵i�2
g,↵ + hS↵g↵i,

(15)

we find

1 + m↵ = hR↵↵i +
hS↵g↵i
�2

g,↵

. (16)

Note that the estimated m↵ is consistent with our
method if hS↵g↵i = 0. A correlation between these two
quantities would effectively modify the slope of the distri-
bution of equation (10), resulting in a biased estimate of
m↵. Note that for our method this condition does not need
to be fulfilled.

We can estimate the error �m,↵ on m↵ via simple Gaus-
sian error propagation assuming that the uncertainties in
R↵↵i and S↵i are uncorrelated. This assumption would be
violated if the shape estimator has a shear bias that depends
on ellipticity. We test our assumptions and approximations
in Sect. 6, where we compare the numerical predictions with
measurements from simulated images. The sensitivity of the
bias with respect to these two quantities is

✓
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Replacing for simplicity the individual galaxies’ dispersions
�R,↵i and �S,↵i by the mean values, we get
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Compared to (7) this expressions shows the additional
term �2

S,↵/�2
g,↵. In most scenarios this is indeed the domi-

nant term for the bias dispersion, which is the main reason
why the linear fit achieves a much lower precision in bias
estimation compared to our method.

The uncertainty on the additive bias comes directly from
the dispersion in the stochasticity,

�c,↵ =
�S,↵p

N
. (20)
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Fig. 3. The stochasticity of the measurement of R due to noise.
The upper and lower panel show the distribution of R11 (blue
histogram) and R22 (in green) for two different galaxies, respec-
tively, shown as inlayed postage stamps, with different proper-
ties.

the distribution of galaxy properties Pi. To meet an allowed
shear bias uncertainty of �req,↵, assuming that all galaxies
have the same stochasticity �N,↵ (alternatively one can use
the mean, or a worst-case value), we would need at least
Nmin ⇠ �2

N,↵/�2
req,↵ image simulations not to be dominated

by pixel noise.
In the following, for the calculation of the precision of

our estimator, we do not try to disentangle the contribu-
tions from noise and galaxy properties.

Our bias estimator m↵ for a sample of N galaxies is the
average of the individual shear responses,

1 + m↵ = hR↵↵i =

PN
i=1 R↵↵i(Pi)

N
. (6)

The uncertainty of the estimated response is

�m,↵ =
�R,↵p

N
, (7)

where �R,↵ is the standard deviation of the distribution of
R↵↵.

Fig. 4. The distribution of R11 (top) and a1 (bottom) for the 2
million simulated galaxies. The second component of the biases
shows similar distributions.

Analogously, the additive bias is estimated as

c↵ = ha↵i =

PN
i=1 a↵i(Pi)

N
, (8)

with uncertainty

�c,↵ =
�a,↵p

N
, (9)

where now �a,↵ corresponds to the dispersion of the addi-
tive bias over the galaxy population. Fig. 4 shows the dis-
tributions of the of R11 and a1 for our sample of simulated
images (see in Sect. 5).

Note that only the multiplicative bias is insensitive to
intrinsic ellipticity noise. The additive bias estimated via
(9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can
be defined as

eobs
↵i = R↵↵i(Pi)g↵i + a↵i(Pi) + S↵i (10)

where g↵i is the shear, and S↵i is the stochasticity around
the linear regression of the measurement for galaxy i that
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Fig. 3. The stochasticity of the measurement of R due to noise.
The upper and lower panel show the distribution of R11 (blue
histogram) and R22 (in green) for two different galaxies, respec-
tively, shown as inlayed postage stamps, with different proper-
ties.
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our estimator, we do not try to disentangle the contribu-
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Our bias estimator m↵ for a sample of N galaxies is the
average of the individual shear responses,
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, (8)

with uncertainty
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�a,↵p

N
, (9)

where now �a,↵ corresponds to the dispersion of the addi-
tive bias over the galaxy population. Fig. 4 shows the dis-
tributions of the of R11 and a1 for our sample of simulated
images (see in Sect. 5).

Note that only the multiplicative bias is insensitive to
intrinsic ellipticity noise. The additive bias estimated via
(9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can
be defined as

eobs
↵i = R↵↵i(Pi)g↵i + a↵i(Pi) + S↵i (10)

where g↵i is the shear, and S↵i is the stochasticity around
the linear regression of the measurement for galaxy i that
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Part II day 1. Shear calibration

Shear calibration from simulations: tricks of the trade
III

Noise suppression
Simulate pairs of galaxies with same shear and orthogonal intrinsic ellipticity
(rotated by 90 degrees),

εI
A + εI

B = 0.

This however does not mean that the observed ellipticity vanishes, due to:

• Measurement stochasticicy

• Ellipticity bias, if depends on galaxy orientation wrt PSF, shear,
(pixelization)

• Selection effects, one pair member might drop out of sample
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Part II day 1. Shear calibration

Shear calibration from simulations: tricks of the trade
IV

More advanced noise suppression: ring test. Simulate n galaxies with
equidistant intrinsic ellipticity on ring around 0.
Derivative method
Write shear bias for individual galaxies, and as matrix equation (Huff &
Mandelbaum 2017):

εobs
α = Rgtrue + c

The shear response tensor R generalizes m: 1 +mα = Rαα.
To get population bias, average over measured shear responses 〈R〉, and
correct measured ellipticities by 〈R〉−1.
Measure individual R as numerical derivatives

Rαβ =
∂εobs
α

∂gβ

by simulating the same galaxy several times with small added shear
±∆gα ∼ 0.02. With same noise realisation this measurement is extremely
precise!
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Shear calibration from simulations: tricks of the trade VArnau Pujol, Martin Kilbinger, Florent Sureau, et al.: shear bias estimator

Fig. 1. Scheme of shear response estimation for a single galaxy
for R11.

We then approximate the shear response (2) by finite dif-
ferences, following Huff & Mandelbaum (2017),

R↵� ⇡ eobs,+
↵ � eobs,�

↵

2�g�
, (4)

where eobs,±
↵ is the measured ellipticity of the image with

additional small shear ±�g↵. We therefore create addi-
tional sheared images for each original one. With four
sheared images we can estimate all components of R for
each galaxy. To determine the shear response averaged over
a sample of galaxies, we only require two appropriately cho-
sen shear values, or three images in total, see Sect. 5 and
App. A for more details.

To further reduce the stochasticity of our response es-
timator, we use the same noise realisation for all image
copies for each galaxy. This guarantees that intrinsic ellip-
ticity cancels exactly for our bias estimator.

When randomising the noise for each image, we obtain
the same mean but noisier response values. Keeping the
same noise realisation of our five images is not an artificial
noise reduction in the bias estimate, it only helps us to ob-
tain a noise-free numerical derivative. The noise properties
will be sufficiently well sampled by the different simulated
galaxies.

The additive shear bias for each galaxy is measured via
(3), on the original, non-sheared image.

In Fig. 1 we show an example of the estimated com-
ponent of the response, R11, for one galaxy image. The
finite-difference estimate is insensitive to the shear value as
long as it is small, |�g↵| <⇠ 0.05 for ↵ = 1, 2. More details
about the robustness of our new estimator are presented in
App. A.

From the measurements of individual galaxy shear bi-
ases, we estimate the ensemble multiplicative and additive
bias of a galaxy population as the average of the individ-
ual estimates, respectively hR↵↵i and ha↵i. This can be a
weighted average if galaxies have different weights.

We ignore the non-diagonal terms of R, as we have
found that their contribution averages out to zero if the
shear values are symmetrical around zero, see App. A.

We emphasise again that our new bias estimator is not
affected by shape noise coming from the intrinsic galaxy el-
lipticity. This is true not only for the estimated mean, but
for the bias distribution. In our method, the intrinsic ellip-
ticity can be considered as just as another property of the
galaxy (such as the flux, radius, etc.) and as such affects the
shear bias in a deterministic way, but does not contribute to
the statistical uncertainty. Therefore, we can obtain a much
more precise bias estimation compared to methods that av-
erage over observed galaxy ellipticities. Consequently, our
method requires a much smaller number of simulated im-
ages. This will be quantified in Sect. 4. Note also that our
simulations do not require a vanishing mean intrinsic ellip-
ticity, which can be a hurdle when dealing with selection
biases or galaxy weights.

In the following two subsections, we review two com-
monly used calibration methods to estimate the shear bias.

3.2. Linear fit estimation

The most common methods to estimate the shear bias in
the literature is to perform a linear fit of (1) to simulated
sheared galaxy images (e.g. Heymans et al. 2006; Miller
et al. 2013; Zuntz et al. 2013; Mandelbaum et al. 2015;
Fenech Conti et al. 2017; Huff & Mandelbaum 2017; Hoek-
stra et al. 2017; Pujol et al. 2017; Zuntz et al. 2017; Man-
delbaum et al. 2017). For each galaxy population (e.g. for
each bin of given galaxy properties) we obtain the addi-
tive and multiplicative biases c↵ and m↵ from a linear fit
of the measured ellipticities as function of simulated input
shear, as illustrated in the top panel of Fig. 2. The error
of the parameter estimation can then be obtained by jack-
knife resampling, and obtaining the distribution of best-fit
parameters for each resample.

Alternatively, the straight line can be fitted to the av-
erage measured ellipticities for each input shear, heobs

↵ i, as
shown in the bottom panel of Fig. 2. Both fitting schemes
provide consistent values and error bars for the shear bias
parameters.

3.3. Linear fit estimation with shape-noise suppression

The precision of the linear fitting technique to measure
shear bias is limited by shape noise stemming from the
intrinsic ellipticity distribution. To beat down this noise
requires the use of a very large number of galaxy images.
An alternative method to reduce the shape-noise contribu-
tion is to force the mean ellipticity to cancel, by simulating
orthogonal pairs of galaxy images (Massey et al. 2007; Man-
delbaum et al. 2014), As described in Massey et al. (2007),
the estimated shear of a pair of orthogonal objects is

gobs
↵ =

eobs
↵,A + eobs

↵,B

2
, (5)

Article number, page 3 of 14

This measurement is independent of ellipticity (observed and intrinsic) and
thus removes the main uncertainty of error!
Note: For a different noise realisation, the obtained R can be quite different.
But the use of many simulated galaxy images assures the sampling of the
distribution of R, no additional error is introduced on the population bias.
Error on bias estimate:

σm,α =
σR,α√
N

This method requires a factor of several hundred fewer image simulations.
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Shear calibration from simulations: tricks of the trade
VIA&A proofs: manuscript no. shear_bias_measurements

Fig. 6. Multiplicative shear bias as a function of the disk flux Fd,
measured with our method (black lines) and (in orange) from
the linear fit to equation (1). Solid (dashed) lines correspond
to m1 (m2). The top panel shows the results using the same
number of object for both methods. In the bottom panel, only
1/1300 objects have been used for our method.

property we use the input disk flux Fd of the simulated
bulge+disk galaxies. As shown in the top panel of that fig-
ure, both methods give consistent results when using all
two million galaxies. However, our method estimates the
biases with a significantly better precision. The location of
the points on the x-axis corresponds to the centre of the
Fd bins. In addition to a small shift that we apply for an
easier visual comparison, the bin centres for our method in
the lower panel are modified, since the galaxies are now a
random subsample. It is remarkable that when using all two
million galaxies, the curves of m1 and m2 for our method
are almost identical.

We quantify the precision of the different shear bias es-
timation methods in Fig. 7. as a function of the number of
simulated galaxies Nsim. We create different random sub-
sets of galaxies with size Nsim, and measure for each subset
the shear bias for the three methods as described in Sect. 3.
We compute the RMS for each sub-set by jackknife resam-
pling of the input galaxies for all methods, using 50 sub-
samples (other numbers of subsamples have given the same
results).

Fig. 7. RMS of the multiplicative (top panel) and additive (bot-
tom panel) shear bias. We compare our method (red/orange
lines) to the linear fit with (green) and without (cyan/blue)
shape-noise suppression. The solid lines are measurement from
the numerical simulations. Dashed lines show the analytical pre-
dictions derived in Sect. 4.

We compare these uncertainties as measured from the
simulations to the numerical predictions derived in Sect. 4.
For the latter, we measure the parameters �R,↵, �a,↵, �S,↵,
�eobs,↵, and �g,↵ directly from the simulations, as illustrated
in Figs. 4 and 5. The amplitude and N

�1/2
sim -dependence

of the uncertainty measured from the data shows excel-
lent agreement with the analytical calculations for all three
methods. This suggests that the assumptions we made
to derive these expressions are valid for the system and
regime studied here. For the linear fit predictions, we set
�S,↵ = �I

e,↵, assuming that stochasticity S↵ is entirely de-
termined by the intrinsic ellipticity. For the linear fit with
shape noise suppression, we measure �eout,↵ directly from
the distribution of the sum of observed ellipticities of the
orthogonal pairs, (eobs

A,↵ + eobs
B,↵)/2.

Our method has a much higher precision on the mul-
tiplicative shear bias estimation. Compared to the lin-
ear fit, �m,↵ for our method is smaller by a factor of
35.9. This means that for this study our method requires
35.92/n0 ⇠ 1300/n0 times fewer simulated images to obtain
the same precision, where n0 is the number of sheared ver-
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From (Pujol et al. 2019).
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