Journal club presentation

Imane El hamzaoui imane.el-hamzaoui@cea.fr

Séparation non-supervisée de composantes multivaluées parcimonieuses et applications en astrophysique

20/05/2019

Outline

Introduction

- 2 Sparse BSS from Poisson measurements
 - Overview of the problem
 - Full description of the pGMCA algorithm
 - Applications in astrophysics
- Sparse BSS with spectral variabilities
 - Overview of the problem
 - Proposed algorithm
 - Preliminary results

4) Conclusion

9

parse BSS from Poisson measurements

parse BSS with spectral variabilities

Conclusion

Multivalued data analysis with BSS Introduction to BSS

 Modelization of the data through the Linear Mixture Model (LMM):

 Blind Source Separation (BSS) aims at disentangling mixed components to retrieve spectral and spatial information.

Université Paris-Saclay

Laboratoire Cosmostat, CEA Paris-Saclay

3/35

parse BSS from Poisson measurements

parse BSS with spectral variabilities

Conclusion

Multivalued data analysis with BSS Introduction to BSS

$$\min_{\mathbf{A},\mathbf{S}} \|\mathbf{X} - \mathbf{A}\mathbf{S}\|_F^2.$$
 (1)

Ill-posed problem requiring further assumptions:

- Statistical independence of the sources: Independent Component Analysis ¹,
- Non-negativity of the components: Non-negative Matrix Factorization ²,
- Sparsity of the sources (possibly in a transformed domain): sparse BSS *e.g.* Generalized Morphological Component Analysis algorithm (GMCA ³).

¹Comon et al 2010

²Lee et al 1999

³Bobin et al 2007

parse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Multivalued data analysis with BSS Goal and organization of the PhD

 BSS has proven to be efficient in the detection of microwave and infra-red rays, including the detection of the oldest observable electromagnetic radiation of the Universe ⁴

This PhD is aimed at extending BSS methods to high energy data (detection of supernova remnants, blackholes...).

Supernova remnant Cassiopeia A seen by X-ray

telescope Chandra

CMB reconstruction with sparse BSS

⁴ Bobin et al 2013

Université Paris-Saclay

Laboratoire Cosmostat, CEA Paris-Saclay

5/35

parse BSS from Poisson measurements

parse BSS with spectral variabilities

Conclusion

Multivalued data analysis with BSS Goal and organization of the PhD

Challenges raised by high-energy imaging

Poisson noise: High-energy photon count is so low that we cannot consider the noise gaussian. The modelisation
 X = AS + N is no more valid.

Observation derived from Chandra simultations with gaussian noise and poissonian noise. Both of the noises have the same level in terms of mean square error.

Poisson noise, unlike gaussian noise is data dependent.

parse BSS from Poisson measurements

parse BSS with spectral variabilities

Conclusion

Multivalued data analysis with BSS Goal and organization of the PhD

Challenges raised by high-energy imaging

Opectral variabilities:

- spatially variant spectra are ubiquitious to X-ray imaging.
- Their estimation is of great astrophysical interest
- *e.g.* Fe line shifting allows to estimate the speed of supernovae remnants for example.

Necessity of a method fully accounting for spectral variabilities.

Outline

Introduction

- 2 Sparse BSS from Poisson measurements
 - Overview of the problem
 - Full description of the pGMCA algorithm
 - Applications in astrophysics
- Sparse BSS with spectral variabilities
 - Overview of the problem
 - Proposed algorithm
 - Preliminary results

4) Conclusion

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Overview of the problem

Model $\mathbf{X} = \mathbf{AS} + \mathbf{N}$ not valid.

The noise corrupting high energy data follows shot noise statistics.

where $[AS]_j[t]$ is the sample of the pure mixture AS located at the *j*-th row and *t*-th column.

9

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Overview of the problem Sparse BSS with Poisson measurements

$$\mathcal{P}(\mathsf{X}_j[t] \mid [\mathsf{AS}]_j[t]) = rac{\mathrm{e}^{-[\mathsf{AS}]_j[t]}[\mathsf{AS}]_j[t]^{\mathsf{X}_j[t]}}{\mathsf{X}_j[t]!}$$

Optimization function

$$\min_{\mathbf{A},\mathbf{S}} \underbrace{\mathcal{L}(\mathbf{X} \mid \mathbf{AS})}_{\text{antiloglikelihood}} + \underbrace{\| \Lambda \odot \mathbf{S} \Phi^{\mathcal{T}} \|_{1} + i_{\geq 0}(\mathbf{S})}_{\text{constraints on } \mathbf{S}} + \underbrace{i_{\mathcal{C}}(\mathbf{A})}_{\text{constraints on } \mathbf{A}}, \quad (3)$$

where $\ensuremath{\mathcal{L}}$ the antiloglikelihood of Poisson noise:

$$\mathcal{L}(\mathbf{X} \mid \mathbf{AS}) = \sum_{j,t} [\mathbf{AS}]_j[t] - \mathbf{X}_j[t] \log([\mathbf{AS}]_j[t])$$

= $\mathbf{AS} - \mathbf{X} \odot \log(\mathbf{AS}),$ (4)

Λ contains the regularization parameters; $C = OB(m) \cap K^+$.

10/35

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Overview of the problem Sparse BSS with Poisson measurements

Optimization function

$$\min_{\mathbf{A},\mathbf{S}} \underbrace{\mathcal{L}(\mathbf{X} \mid \mathbf{AS})}_{\text{antiloglikelihood}} + \underbrace{\| \Lambda \odot \mathbf{S} \Phi^{\mathcal{T}} \|_{1} + i_{\geq 0}(\mathbf{S})}_{\text{constraints on } \mathbf{S}} + \underbrace{i_{\mathcal{C}}(\mathbf{A})}_{\text{constraints on } \mathbf{A}}, \quad (5)$$

- Multiconvex problem \implies Block Coordinate Descent (BCD) algorithm ⁵;
- Smooth and differentiable likelihood required \implies replace it by a smooth approximate.

$$\mathcal{L}(\mathbf{X} \mid \mathbf{AS}) = \mathbf{AS} - \mathbf{X} \odot \log(\mathbf{AS}).$$

⁵ Tseng 2001

Sparse BSS from Poisson measurements

parse BSS with spectral variabilities

Conclusion

Smooth approximation of the data-fidelity term

We propose an approximation of \mathcal{L} based on Nesterov's technique Nesterov, 2005 $\mathcal{L}_{\mu}(\mathbf{X} \mid \mathbf{Y}) = \inf_{\mathbf{U}} < \mathbf{Y}, \mathbf{U} > - \underbrace{\mathcal{L}^{*}(\mathbf{X} \mid \mathbf{U})}_{\text{Fenchel dual of } \mathcal{L}} - \underbrace{\mu \|\mathbf{U}\|_{F}^{2}}_{\text{regularization function}},$ (6)

where $\mu \in \mathbb{R}^+$ is the smoothing parameter.

 \mathcal{L}_{μ} is differentiable and admits a $\frac{1}{\mu}$ -Lipschitzian gradient.

The cost function we aim at minimizing becomes:

$$\min_{\mathbf{A},\mathbf{S}} \mathcal{L}_{\mu}(\mathbf{X}|\mathbf{AS}) + \| \Lambda \odot \mathbf{S} \Phi^{\mathsf{T}} \|_{1} + i_{\mathsf{C}}(\mathbf{A}) + i_{\geq 0}(\mathbf{S}), \qquad (7)$$

parse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Multiconvex problem Block Coordinate Descent algorithm (BCD)

$$\min_{\mathbf{A},\mathbf{S}} \mathcal{L}_{\mu}(\mathbf{X}|\mathbf{AS}) + \| \Lambda \odot \mathbf{S} \Phi^{\mathcal{T}} \|_{1} + i_{\mathcal{C}}(\mathbf{A}) + i_{\geq 0}(\mathbf{S}), \qquad (8)$$

BCD: alternative estimation of the convex subproblems.

Structure of pGMCA algorithm

- Initialization: (A⁽⁰⁾, S⁽⁰⁾) obtained with robust (to initialization) sparse BSS algorithm <u>GMCA^a</u>.
- **Iteration** k:
 - Update of A assuming S fixed,
 - Update of **S** assuming **A** fixed.

^aBobin et al, 2007

Sparse BSS from Poisson measurements

parse BSS with spectral variabilities

Conclusion

Update of **A** assuming **S** fixed

$$\min_{\mathbf{A}} \mathcal{L}_{\mu}(\mathbf{X} \mid \mathbf{AS}) + i_{C}(\mathbf{A}).$$
(9)

- $\mathcal{L}_{\mu}(\mathbf{X} \mid \mathbf{AS})$ is a differentiable function whose gradient is $\frac{\|\mathbf{S}^{T}\mathbf{S}\|_{2}}{\mu}$,
- $i_C(.)$ is an indicator function of a convex set, it is proximable.

Update of **A** at iteration (k)

$$\mathbf{A}^{(k+1)} \Leftarrow \mathsf{FISTA}^1(\mathbf{S}^{(k)}, \mathbf{A}^{(k)})$$

¹ Fast Iterative Shrinkage-Thresholding Algorithm, Beck et al 2009

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Update of **S** assuming **A** fixed

$$\min_{\mathbf{S}} \mathcal{L}_{\mu}(\mathbf{X} \mid \mathbf{AS}) + \parallel \Lambda \odot \mathbf{S} \Phi^{T} \parallel_{1} + i_{\geq 0}(\mathbf{S}).$$
(10)

- $\mathcal{L}_{\mu}(\mathbf{X} \mid \mathbf{AS})$ is a differentiable function whose gradient is $\frac{\|\mathbf{S}^{T}\mathbf{S}\|_{2}}{\mu}$,
- $\| \Lambda \odot \mathbf{S} \Phi^{\mathcal{T}} \|_{\ell_1}$ is the proximable ℓ_1 norm.
- $i_C(.)$ is an indicator function of a convex set, it is proximable.

Update of **S** at iteration (k)

 $\mathbf{S}^{(k+1)} \leftarrow \text{Generalized Forward Backward}^1(\mathbf{S}^{(k)}, \mathbf{A}^{(k)})$

Question: how to set the regularization parameter Λ ?

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities 000000000 Conclusion

Set-up of the threshold Gaussian noise

Let's consider the generic problem

$$min_X\frac{1}{2}\|Y-AX\|_F^2+\|\lambda \odot X\|_1,$$

with gaussian noise and X sparse in direct domain.

16/35

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Set-up of the threshold Gaussian noise

We want to **remove** gaussian noise and **keep** sparse signal coefficients (of X) with **their amplitudes**.

$$\mathcal{S}_{\lambda}(X+\mathcal{G})=Z \ s.t. \ \forall j \ Z_j=(|X_j+\mathcal{G}_j|-\lambda)_+.$$

- "3- σ rule": the probability that an amplitude higher than 3- σ corresponds only to Gaussian noise is 0.4%
- σ unknow but we have $\sigma_{\mathcal{G}} = 1.48 MAD(\mathcal{G})$

-
$$MAD(X + G) = MAD(G)$$

λ set up as a denoising threshold

$$\lambda = 1.48 k {\rm MAD}$$

where k = 3 for Gaussian noise

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Set-up of the threshold From Gaussian noise to Poisson noise

Histogram of the gradient of \mathcal{L}_{μ} with respect to **S** at the true input and their Gaussian best fit

$\lambda = 1.48 k \text{MAD}$

where $\underline{k = 1}$ for Poisson noise; and to limit biaises ^a:

$$\lambda_f = \frac{W}{W + \epsilon} \lambda$$

9

^aCandes et al, 2008

Université Paris-Saclay

Introduction

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Dataset

Realistic Chandra simulations

1.Synchrotron

2. Fe 1

3. Fe 2

Figure: Spectral (top line) and spatial (bottom line) distribution of the three components

State-of-the-Art algorithms compared to pGMCA

- Generalized Morphological Component Analysis: standard sparse BSS algorithm;
- Hierarchial Alternating Least Square algorithm: NMF algorithm with sequential updates ⁶;
- β **NMF**: NMF with Kullback-Leibler divergence (β =1)⁷;
- sparse NMF algorithm ⁸.

⁶ Gillis et al, 2012 ⁷ Mihoko et al, 2002

Le Roux et al, 2015

State-of-the-Art algorithms compared to pGMCA

Metric: $SAD = \frac{1}{n} \sum_{i=1}^{n} \arccos(\langle \mathbf{A}^{i} | \mathbf{A}_{\mathbf{g}}^{i} \rangle)$ with **A** the mixing matrix recovered with the proposed approach and $\mathbf{A}_{\mathbf{g}}$ the ground-truth mixing matrix.

Outline

Introduction

- 2 Sparse BSS from Poisson measurements
 - Overview of the problem
 - Full description of the pGMCA algorithm
 - Applications in astrophysics
- 3 Sparse BSS with spectral variabilities
 - Overview of the problem
 - Proposed algorithm
 - Preliminary results

Conclusion

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities •••••• Conclusion

Overview of the problem

The mixing matrix is pixelwise dependent:

$$\forall \text{ sample } k \mathbf{X}[k] = \sum_{i=1}^{n} \mathbf{A}^{i}[k]\mathbf{S}_{i}[k] + \mathbf{N}[k], \qquad (11)$$

State-of-the-Art model: Perturbed Linear Mixture Model (PLMM) $_{a}$

^a Thouvenin et al, 2016

$$\mathbf{X} = \bar{\mathbf{A}}\mathbf{S} + \Delta \mathbf{A}\mathbf{S}$$

- Applied to hyperspectral terrestrial images.
- sum-to-one assumption $\sum_{i} \mathbf{S}_{i} = 1$: the sources are not independent,

• pure pixel assumption
$$\forall i, \exists k' / \mathbf{X}[k'] = A^i$$
.

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities 00000000 Conclusion

Overview of the problem Linearization and angular variability

Inspired by Perturbated Linear Mixture Model (PLMM), we linearise ${\bf A}$

$$orall i, j, k \; \mathbf{A}^i_j[k] = ar{\mathbf{A}}^i_j + \Delta^i_j[k]$$

Angular variability:

$$\|\Delta^{i}[k]\|_{2} = 2\operatorname{sin}(\frac{\theta^{i}[k]}{2}) \simeq \theta^{i}[k] \ll \|\bar{\mathbf{A}}^{i}\|_{2};$$

since $\mathbf{A} \in OB(m)$ in the sparsity framework.

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Overview of the problem Linearization and spatial regularization

$$\forall i, j, k \; \mathbf{A}_{j}^{i}[k] = \bar{\mathbf{A}}_{j}^{i} + \Delta_{j}^{i}[k] \text{ with } \|\Delta^{i}[k]\|_{2} = \theta^{i}[k].$$

Optimization function:

$$\min_{\mathbf{A},\mathbf{S}} \frac{1}{2} \left\| (\mathbf{X} - \sum_{i} \mathbf{A}^{i} \mathbf{S}_{i}) \right\|_{\mathrm{F}}^{2} + \left\| \mathbf{\Lambda} \odot \mathbf{S} \right\|_{1}$$

Underdetermined and (very) ill-posed problem \rightarrow constraint on spectral variabilities (SV) required.

Spatial regularization of the SV:

$$\forall i \| \gamma \odot \theta^{i} \Psi^{T} \|_{1} = \| \gamma \odot \| \mathbf{A}^{i} - \bar{\mathbf{A}}^{i} \|_{2} \Psi^{T} \|_{1}$$

$$\simeq \| \gamma \odot (\mathbf{A}^{i} - \bar{\mathbf{A}}^{i}) \Psi^{T} \|_{2,1}.$$
(12)

parse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Optimization function

$$\min_{\mathbf{A},\mathbf{S}} \frac{1}{2} \left\| \left(\mathbf{X} - \sum_{i} \mathbf{A}^{i} \mathbf{S}_{i} \right) \right\|_{\mathrm{F}}^{2} + \left\| \Lambda \odot \mathbf{S} \right\|_{1} + \sum_{i=0}^{n} \left\| \gamma \odot \left(\mathbf{A}^{i} - \bar{\mathbf{A}}^{i} \right) \Psi^{T} \right\|_{2,1} + i_{C}(\mathbf{A})$$
(13)

where

 Λ (resp γ) contains the regularization parameters and weights for the source matrix and resp. the spectral variabilities,

•
$$C = OB(m) \cap K^+$$
.

For these preliminary tests, we do not enforce sparsity of the sources.

```
Multiconvex problem --+ BCD algorithm.
```


Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Initialization and update of S

Initialization

GMCA per patch algorithm: GMCA on blocks + filtering. ^a

^aBobin et al, 2013

Update of **S** assuming **A** is fixed

$$\min_{\mathbf{S}} \frac{1}{2} \left\| \left(\mathbf{X} - \sum_{i} \mathbf{A}^{i} \mathbf{S}_{i} \right) \right\|_{\mathrm{F}}^{2}$$

Moore-Penrose pseudo-inverse : $\mathbf{S}^{(l)} = \mathbf{A}^{(l)\dagger} X$.

Update of **A**

Update of **A** assuming **S** is fixed

$$\min_{\mathbf{A}} \frac{1}{2} \left\| (\mathbf{X} - \sum_{i} \mathbf{A}^{i} \mathbf{S}_{i}) \right\|_{\mathrm{F}}^{2} + \sum_{i=0}^{n} \left\| \gamma \odot (\mathbf{A}^{i} - \bar{\mathbf{A}}^{i}) \Psi^{T} \right\|_{2,1} + \iota_{C}(\mathbf{A}).$$

- The proximal operator of the positivity and the oblique constraint is their composition,
- The proximal operator of the $\ell_{2,1}$ norm in transformed domain is analytical...
- ... but there is no proximal operator for all three constraint.

We use a Generalized Forward Backward (GFB) algorithm.

parse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Update of **A** prox of $\ell_{2,1}$

$$\min_{\mathbf{A}} \frac{1}{2} \left\| (\mathbf{X} - \mathbf{AS}) \right\|_{\mathrm{F}}^{2} + \sum_{i=0}^{n} \left\| \gamma \odot (\mathbf{A}^{i} - \bar{\mathbf{A}}^{i}) \Psi^{T} \right\|_{2,1} + \iota_{\geq 0}(\mathbf{A}) + \iota_{\|\cdot\|_{2}=1}(\mathbf{A}).$$

At iteration (k + 1), γ acts as a threshold applied to $\|\mathbf{A}^{(k)} - \bar{\mathbf{A}} + \frac{1}{L_{\mathbf{A}}} (\mathbf{X} - \mathbf{A}^{(k)} \odot \mathbf{S}) \mathbf{S}^{\mathsf{T}} \|_2$ (χ distribution). Following the previous reasonning (applied to a χ distribution), we have:

$$\forall i, \ \lambda_i \simeq 1.5 \ k \ \mathrm{MAD}(\|(\mathbf{A}^{(k)} - \bar{\mathbf{A}} + \frac{1}{L_{\mathbf{A}}} (\mathbf{X} - \mathbf{A}^{(k)} \odot \mathbf{S}) \mathbf{S}^{\mathsf{T}})_i\|_2)$$

To allievates biases errors:

$$\forall i, \forall k, \gamma_i[k] = \lambda_i \frac{w_i[k]}{w_i[k] + \epsilon}$$

29/35

Sparse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Numerical experiments Dataset

- 2 sources, 1500 samples and 5 observations,
- sources generated from Generalized Gaussian distribution with $\rho = 0.3$,
- Spectral variabilities exactly sparse in DCT domain (2 activated coefficients for each source) and low frequency,
- Maximal amplitude of $\frac{\theta}{6}$,
- comparison with GMCA and GMCA per patch.

Projection of the two first sources onto the slice defined

by the two first observations of the hypersphere \mathcal{S}^{m-1}

9

parse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Numerical experiments

Figure: Spectral variabilities in the sample domain

	$\theta = \frac{\pi}{6}$	$\theta = \frac{\pi}{8}$	$\theta = \frac{\pi}{12}$
svGMCA		$1.11 imes10^{-4}$	
GMCA per patch	$8.69 imes10^{-3}$	$3.26 imes10^{-4}$	$1.57 imes10^{-4}$
GMCA	$9.63 imes 10^{-3}$	$4.07 imes 10^{-4}$	$9.31 imes10^{-3}$

Laboratoire Cosmostat, CEA Paris-Saclay

31/35

Outline

Introduction

- 2 Sparse BSS from Poisson measurements
 - Overview of the problem
 - Full description of the pGMCA algorithm
 - Applications in astrophysics
- Sparse BSS with spectral variabilities
 - Overview of the problem
 - Proposed algorithm
 - Preliminary results

4 Conclusion

parse BSS from Poisson measurements

Sparse BSS with spectral variabilities

Conclusion

Conclusion First half of the PhD

pGMCA

- pGMCA has been presented in iTwist'19 conference
- Journal papier on pGMCA submitted on IEEE journal
- pGMCA is being <u>currently applied</u> to Chandra data by F.Acero⁹.

svGMCA

- Preliminary results
- svGMCA submitted to SPARS conference

⁹Département d' Astrophysique, CEA

oarse BSS from Poisson measurements 00000000000 Sparse BSS with spectral variabilities

Conclusion Second half of the PhD

svGMCA

- Encouraging preliminary results on SVs.
- Work on progress: leverage morphological diversity between the sources and the spectral variabilities
- Preparation of a journal article with focus on the introduced methodology
- Application to high-energy astronomical data

• spectral variabilities with shape information

• Methodology and applications to come.

parse BSS from Poisson measurements 00000000000 Sparse BSS with spectral variabilities

Conclusion

Acknowledgement

This work is supported by the European Community through the grant LENA (ERC StG - contract no. 678282).

