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Multivalued data analysis with BSS
Introduction to BSS

- Modelization of the data through the Linear Mixture Model
(LMM):

- Blind Source Separation (BSS) aims at disentangling mixed
components to retrieve spectral and spatial information.
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Multivalued data analysis with BSS
Introduction to BSS

minA,S‖X− AS‖2
F . (1)

Ill-posed problem requiring further assumptions:

- Statistical independence of the sources: Independent
Component Analysis 1,

- Non-negativity of the components: Non-negative Matrix
Factorization 2,

- Sparsity of the sources (possibly in a transformed domain):
sparse BSS e.g. Generalized Morphological Component
Analysis algorithm (GMCA 3).

1
Comon et al 2010

2
Lee et al 1999

3
Bobin et al 2007
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Multivalued data analysis with BSS
Goal and organization of the PhD

BSS has proven to be efficient in the detection of microwave
and infra-red rays, including the detection of
the oldest observable electromagnetic radiation of the Universe 4.

This PhD is aimed at extending BSS methods to high energy
data (detection of supernova remnants, blackholes...).

Supernova remnant Cassiopeia A seen by X-ray

telescope Chandra

CMB reconstruction with sparse BSS

4
Bobin et al 2013
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Multivalued data analysis with BSS
Goal and organization of the PhD

Challenges raised by high-energy imaging

1 Poisson noise: High-energy photon count is so low that we
cannot consider the noise gaussian. The modelisation
X = AS + N is no more valid.

Observation derived from Chandra simultations with gaussian noise and poissonian noise. Both of the noises have

the same level in terms of mean square error.

Poisson noise, unlike gaussian noise is data dependent.
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Multivalued data analysis with BSS
Goal and organization of the PhD

Challenges raised by high-energy imaging

2 Spectral variabilities:
spatially variant spectra are ubiquitious to X-ray imaging.
Their estimation is of great astrophysical interest
e.g. Fe line shifting allows to estimate the speed of supernovae
remnants for example.

Spectral distribution Spatial distribution of Fe1 Spatial distribution of Fe2

Necessity of a method fully accounting for spectral variabilities.
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Overview of the problem

Model X = AS + N not valid.

The noise corrupting high energy data follows shot noise statistics.

Poisson law

P(Xj [t] | [AS]j [t]) =
e−[AS]j [t][AS]j [t]Xj [t]

Xj [t]!
, (2)

where [AS]j [t] is the sample of the pure mixture AS located at the
j-th row and t-th column.
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Overview of the problem
Sparse BSS with Poisson measurements

P(Xj [t] | [AS]j [t]) =
e
−[AS]j [t]

[AS]j [t]
Xj [t]

Xj [t]!

Optimization function

min
A,S
L(X | AS)︸ ︷︷ ︸

antiloglikelihood

+ ‖ Λ� SΦT ‖1 +i.≥0(S)︸ ︷︷ ︸
constraints on S

+ iC (A)︸ ︷︷ ︸
constraints on A

, (3)

where L the antiloglikelihood of Poisson noise:

L(X | AS) =
∑
j ,t

[AS]j [t]− Xj [t] log([AS]j [t])

= AS− X� log(AS),

(4)

Λ contains the regularization parameters;
C = OB(m) ∩ K+.
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Overview of the problem
Sparse BSS with Poisson measurements

Optimization function

min
A,S
L(X | AS)︸ ︷︷ ︸

antiloglikelihood

+ ‖ Λ� SΦT ‖1 +i.≥0(S)︸ ︷︷ ︸
constraints on S

+ iC (A)︸ ︷︷ ︸
constraints on A

, (5)

Multiconvex problem =⇒ Block Coordinate Descent (BCD)
algorithm 5;

Smooth and differentiable likelihood required =⇒ replace it by
a smooth approximate.

L(X | AS) = AS− X� log(AS).

5
Tseng 2001
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Smooth approximation of the data-fidelity term

We propose an approximation of L based on Nesterov’s technique
Nesterov, 2005

Lµ(X | Y) = infU < Y,U > − L∗(X | U)︸ ︷︷ ︸
Fenchel dual of L

− µ‖U‖2
F︸ ︷︷ ︸

regularization function

,

(6)

where µ ∈ R+ is the smoothing parameter.

Lµ is differentiable and admits a 1
µ -Lipschitzian gradient.

The cost function we aim at minimizing becomes:

min
A,S
Lµ(X|AS)+ ‖ Λ� SΦT ‖1 +iC (A) + i.≥0(S), (7)
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Multiconvex problem
Block Coordinate Descent algorithm (BCD)

min
A,S
Lµ(X|AS)+ ‖ Λ� SΦT ‖1 +iC (A) + i.≥0(S), (8)

BCD: alternative estimation of the convex subproblems.

Structure of pGMCA algorithm

Initialization: (A(0),S(0)) obtained with robust (to
initialization) sparse BSS algorithm GMCAa.

Iteration k:

- Update of A assuming S fixed,
- Update of S assuming A fixed.

a
Bobin et al, 2007
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Update of A assuming S fixed

min
A
Lµ(X | AS) + iC (A). (9)

- Lµ(X | AS) is a differentiable function whose gradient is
‖ST S‖2

µ ,

- iC (.) is an indicator function of a convex set, it is proximable.

Update of A at iteration (k)

A(k+1) ⇐ FISTA1(S(k),A(k))

1 Fast Iterative Shrinkage-Thresholding Algorithm, Beck et al 2009
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Update of S assuming A fixed

min
S
Lµ(X | AS)+ ‖ Λ� SΦT ‖1 +i.≥0(S). (10)

- Lµ(X | AS) is a differentiable function whose gradient is
‖ST S‖2

µ ,

- ‖ Λ� SΦT ‖`1 is the proximable `1 norm.

- iC (.) is an indicator function of a convex set, it is proximable.

Update of S at iteration (k)

S(k+1) ⇐ Generalized Forward Backward1(S(k),A(k))

Question: how to set the regularization parameter Λ?

1 Raguet et al, 2013
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Set-up of the threshold
Gaussian noise

Let’s consider the generic problem

minX
1

2
‖Y − AX‖2

F+‖λ� X‖1,

with gaussian noise and X sparse in direct domain.

•At iteration (k) of a proximal algorithm (e.g GFB), we have
X (k+1) = Sλ( X (k)︸︷︷︸

sparse contribution

+ ∇X‖Y − AX‖2
F )︸ ︷︷ ︸

G: gaussian noise contribution

.

X + G (blue) and X (red).
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Set-up of the threshold
Gaussian noise

We want to remove gaussian noise and keep sparse signal
coefficients (of X) with their amplitudes.

Sλ(X + G) = Z s.t. ∀j Zj = (|Xj + Gj | − λ)+.

- ”3-σ rule”: the probability that an amplitude higher than 3-σ
corresponds only to Gaussian noise is 0.4%

- σ unknow but we have σG = 1.48MAD(G)

- MAD(X + G) = MAD(G)

λ set up as a denoising threshold

λ = 1.48kMAD

where k = 3 for Gaussian noise

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Set-up of the threshold
From Gaussian noise to Poisson noise

Histogram of the gradient of Lµ with respect to S at the true input and their Gaussian best fit

λ = 1.48kMAD

where k = 1 for Poisson noise; and to limit biaises a:

λf =
w

w + ε
λ

a
Candes et al, 2008
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Dataset

Realistic Chandra simulations

1.Synchrotron 2. Fe 1 3. Fe 2

Figure: Spectral (top line) and spatial (bottom line) distribution of the three components
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State-of-the-Art algorithms compared to pGMCA

Generalized Morphological Component Analysis: standard
sparse BSS algorithm;

Hierarchial Alternating Least Square algorithm: NMF
algorithm with sequential updates 6;

β NMF: NMF with Kullback-Leibler divergence (β=1) 7;

sparse NMF algorithm 8.

6
Gillis et al, 2012

7
Mihoko et al, 2002

8
Le Roux et al, 2015
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State-of-the-Art algorithms compared to pGMCA

Metric: SAD = 1
n

∑n
i=1 arccos(< Ai | Ag

i >) with A the mixing
matrix recovered with the proposed approach and Ag the
ground-truth mixing matrix.
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Overview of the problem

The mixing matrix is pixelwise dependent:

∀ sample k X[k] =
n∑

i=1

Ai [k]Si [k] + N[k], (11)

State-of-the-Art model: Perturbed Linear Mixture Model (PLMM)
a

a
Thouvenin et al, 2016

X = ĀS + ∆AS

Applied to hyperspectral terrestrial images.

sum-to-one assumption
∑

i Si = 1: the sources are not
independent,

pure pixel assumption ∀i , ∃k ′/X[k ′] = Ai .
Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Overview of the problem
Linearization and angular variability

Inspired by Perturbated Linear Mixture Model (PLMM), we
linearise A

∀i , j , k Ai
j [k] = Āi

j + ∆i
j [k]

Angular variability:

‖∆i [k]‖2 = 2sin(
θi [k]

2
) ' θi [k]�‖Āi‖2;

since A ∈ OB(m) in the sparsity framework.

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Overview of the problem
Linearization and spatial regularization

∀i , j , k Ai
j [k] = Āi

j + ∆i
j [k] with ‖∆i [k]‖2 = θi [k].

Optimization function:

min
A,S

1

2

∥∥∥∥∥(X−
∑
i

AiSi )

∥∥∥∥∥
2

F

+ ‖Λ� S‖1

Underdetermined and (very) ill-posed problem → constraint on
spectral variabilities (SV) required.

Spatial regularization of the SV:

∀i‖γ � θi ΨT‖1 =‖γ�‖Ai − Āi‖2 ΨT‖1

'‖γ � (Ai − Āi )ΨT‖2,1.
(12)
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Optimization function

min
A,S

1

2

∥∥∥∥∥(X−
∑
i

AiSi )

∥∥∥∥∥
2

F

+‖Λ� S‖1+
n∑

i=0

∥∥∥γ � (Ai − Āi )ΨT
∥∥∥

2,1
+iC (A)

(13)
where

Λ (resp γ) contains the regularization parameters and weights
for the source matrix and resp. the spectral variabilities,

C = OB(m) ∩ K+.

For these preliminary tests, we do not enforce sparsity of the
sources.

Multiconvex problem 99K BCD algorithm.

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Initialization and update of S

Initialization

GMCA per patch algorithm: GMCA on blocks + filtering. a

a
Bobin et al, 2013

Update of S assuming A is fixed

min
S

1

2

∥∥∥∥∥(X−
∑
i

AiSi )

∥∥∥∥∥
2

F

.

Moore-Penrose pseudo-inverse : S(l) = A(l)†X .

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Update of A

Update of A assuming S is fixed

min
A

1

2

∥∥∥∥∥(X−
∑
i

AiSi )

∥∥∥∥∥
2

F

+
n∑

i=0

∥∥∥γ � (Ai − Āi )ΨT
∥∥∥

2,1
+ ιC (A).

The proximal operator of the positivity and the oblique
constraint is their composition,

The proximal operator of the `2,1 norm in transformed domain
is analytical...

... but there is no proximal operator for all three constraint.

We use a Generalized Forward Backward (GFB) algorithm.

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Update of A
prox of `2,1

min
A

1

2
‖(X− AS)‖2

F+
n∑

i=0

∥∥∥γ � (Ai − Āi )ΨT
∥∥∥

2,1
+ι.≥0(A)+ι‖.‖2=1(A).

At iteration (k + 1),γ acts as a threshold applied to
‖A(k) − Ā + 1

LA
(X−A(k) � S)ST‖2 (χ distribution). Following the

previous reasonning (applied to a χ distribution), we have:

∀i , λi ' 1.5 k MAD(‖(A(k) − Ā +
1

LA
(X− A(k) � S)ST )i‖2)

To allievates biases errors:

∀i , ∀k , γi [k] = λi
wi [k]

wi [k] + ε

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay



30/35

Introduction Sparse BSS from Poisson measurements Sparse BSS with spectral variabilities Conclusion

Numerical experiments
Dataset

2 sources, 1500 samples and 5 observations,
sources generated from Generalized Gaussian distribution with
ρ = 0.3,
Spectral variabilities exactly sparse in DCT domain (2
activated coefficients for each source) and low frequency,
Maximal amplitude of θ

6 ,
comparison with GMCA and GMCA per patch.

Projection of the two first sources onto the slice defined

by the two first observations of the hypersphere Sm−1

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Numerical experiments

Figure: Spectral variabilities in the sample domain

θ = π
6 θ = π

8 θ = π
12

svGMCA 9.97× 10−5 1.11× 10−4 7.13× 10−5

GMCA per patch 8.69× 10−3 3.26× 10−4 1.57× 10−4

GMCA 9.63× 10−3 4.07× 10−4 9.31× 10−3

Table: GMSE for various angles

Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay



33/35

Introduction Sparse BSS from Poisson measurements Sparse BSS with spectral variabilities Conclusion

Conclusion
First half of the PhD

pGMCA
pGMCA has been presented in iTwist’19 conference
Journal papier on pGMCA submitted on IEEE journal
pGMCA is being currently applied to Chandra data by

F.Acero9.

svGMCA

Preliminary results
svGMCA submitted to SPARS conference

9Département d’ Astrophysique, CEA
Université Paris-Saclay Laboratoire Cosmostat, CEA Paris-Saclay
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Conclusion
Second half of the PhD

svGMCA
Encouraging preliminary results on SVs.
Work on progress: leverage morphological diversity between
the sources and the spectral variabilities
Preparation of a journal article with focus on the introduced
methodology
Application to high-energy astronomical data

spectral variabilities with shape information
Methodology and applications to come.
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