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Let me walk you through...

lautations)






From General Relativity...

instein’s theory of General Relativity describes
gravity as manifestation of curved spacetime




From General Relativity...

o Affects the geometry of spacetime, aka. how we
measure distances and durations
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From General Relativity...

o Affects the geometry of spacetime, aka. how we
measure distances and durations

e [his s described by the metric tensor, related to
mass-energy content by Einstein’s equation:




From General Relativity...

e Free-falling particles move along geodesics, which
are the “lines of shortest path’ in curved spacetime




... to gravitational waves

e Analytical solutions are notoriously hard to find

e Linearization of Einstein’'s equation for small
deformations (Guy = Nuw = Nuw) of the metric
tensor yields a propagation equation:










Effect of gravitational waves




Effect of gravitational waves

1.2



Optical interferometry

e Optical interferometry is today's only proofed N

technique for gravitational wave detection (h = —




Interferometric Detection

e Light travel times along t
according to 1 T-view wh

1€ arms C

le mirror

nanging
nositions fixed

e Power at photodetector proportional to relative
optical phase change:




Ground-based detectors

e 2 American detectors LIGO in Livingston and
Hanford, third run of observation started this year

e One French-ltalian detector Virgo, near Pisa

e German detector GEO600 under upgrade to full
~ sensitivity, and will be part of the world-wide network
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GW150915

e First direct detection of gravitational waves
announced last February by ground-based detector
collaboration LIGO and Virgo

Strain from GW150914 as measured

— |1 observed by LIGO on September, 14 2015
I H1 observed (shifted, inverted) Physical Review Letters
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GW150915




First LIGO-Virgo detections
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Limits in low-frequency range

e Seismic noise limits sensitivity to high frequencies

N
I
-
~
F
d
£
.
P
L
)

=== Quantum noise
== Seismic noise
== Gravity Gradients
=== Suspension thermal noise
=== Coating Brownian noise
Coating Thermo-optic noise EETE
Substrate Brownian noise b
Excess Gas

w—— Total noise

2

mirror motion due to
ground vibrations,
earthquakes, winds, ocean
waves, human activities
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The LISA Mission

/.
19-23° 600

1 AU (150 million km)

Sun

LISA Consortium (2017). Laser Interferometer Space Antenna.
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Equal-Arm Interferometry




Unequal-Arm Interferometry




Noise Budget

PSD [/HZ]

—— Laser Noise in s;

Noise Requirement

Laser noise in interferometric signal
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From LISANode simulations, using MRD noise levels




Time-Delay Interferometry




Time-Delay Interferometry
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Time-Delay Interferometry
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Michelson Combinations

e Synthesize three Michelson-like interferometric measurements
X, Y and Z, out of which only two are independent

e First-generation X combination assumes constant armlengths
(very wrong), and reads




ST EC R0 LISA INGRE

e Model |latest optical design, with various high-level

nstrumental
noise, optica
acceleration

noises (
path le

noise)

ngth

aser frequency noise, readout

nolise, test-mass

e Propagation of beams between spacecraft using




Flexing-Filtering Coupling |Bayle+19]

LISACode simulation (causal FIR)
LISANode simulation (causal FIR)
LISANode simulation (non-causal FIR)
Analytic model (causal FIR)

Analytic model (non-causal FIR)
Secondary noises
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1072
Frequency [Hz]

From LISACode and LISANode simulations, TDI X, using MRD noise levels




Conclusion

e |L.ong way from interferometric signals to science-
worthy data, with many pre-processing steps

e [ DI and pre-processing algorithms’ performance
directly impacts instrumental design decisions and
data analysis pipelines

| Calibrations Clock Sync
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Impact on Science
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