
Space-base Detection of 
Gravitational Waves

Jean-Baptiste Bayle 
CosmoStat – CEA Saclay 2019

Opening the Low-Frequency Part of the Spectrum



Let me walk you through…
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Gravitational  
Waves, the Recap’

Detecting  
Gravitational Waves

Space-based 
Detection with LISA
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GRAVITATIONAL WAVES, 
A (BRIEF) RECAP’



From General Relativity…
• Einstein’s theory of General Relativity describes 

gravity as manifestation of curved spacetime
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From General Relativity…
• Affects the geometry of spacetime, aka. how we 

measure distances and durations
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From General Relativity…
• Affects the geometry of spacetime, aka. how we 

measure distances and durations 

• This is described by the metric tensor, related to 
mass-energy content by Einstein’s equation:
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Curvature of 
spacetime

Mass-energy 
content



From General Relativity…
• Free-falling particles move along geodesics, which 

are the “lines of shortest path” in curved spacetime
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… to gravitational waves
• Analytical solutions are notoriously hard to find 

• Linearization of Einstein’s equation for small 
deformations (                      ) of the metric 
tensor yields a propagation equation: 

• This is the rise of gravitational waves moving 
through spacetime at the velocity of light
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Velocity: c 

Type: transverse 

Polarisation: two 

modes h+ and hx 

Transport: energy  

Amplitude: very small 

Produced by: 

quadrupole moment 

of stress-enery tensor 

Interaction with 

matter: very small 
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Gravitational 

Wave

HARD TO DETECT!

GOOD 
MESSENGER
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DETECTING 
GRAVITATIONAL WAVES



Effect of gravitational waves
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Effect of gravitational waves
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h+ hx



Optical interferometry
• Optical interferometry is today’s only proofed 

technique for gravitational wave detection (          )
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• Light travel times along the arms changing 
according to TT-view while mirror positions fixed 

• Power at photodetector proportional to relative 
optical phase change: 

• For monochromatic incident gravitational wave,

Interferometric Detection
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• 2 American detectors LIGO in Livingston and 
Hanford, third run of observation started this year 

• One French-Italian detector Virgo, near Pisa 

• German detector GEO600 under upgrade to full 
sensitivity, and will be part of the world-wide network 
of gravitational detectors, along with: 

1. INDIGO, or LIGO-India 
2. KAGRA in Japan

Ground-based detectors
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Ground-based detectors
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Ground-based detectors



Ground-based detectors
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l = 4 km 
Δl = 10-18 m 

h = 10-22 

Ground-based detectors



• First direct detection of gravitational waves 
announced last February by ground-based detector 
collaboration LIGO and Virgo

GW150915
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Strain from GW150914 as measured 
by LIGO on September, 14 2015 

Physical Review Letters



GW150915
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First LIGO-Virgo detections
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LIGO-Virgo Collaboration



• Seismic noise limits sensitivity to high frequencies

Limits in low-frequency range
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mirror motion due to 
ground vibrations, 
earthquakes, winds, ocean 
waves, human activities



Gravitational Spectrum
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M87*
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SPACE-BASED 
GRAVITATIONAL DETECTION



The LISA Mission
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LISA Consortium (2017). Laser Interferometer Space Antenna.
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Equal-Arm Interferometry
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Unequal-Arm Interferometry
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L1

L2
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Noise Budget
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Requirements for gravitational wave strain

Laser noise in interferometric signal
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Time-Delay Interferometry

𝝉
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Time-Delay Interferometry

𝝉
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Time-Delay Interferometry
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Michelson Combinations

• Synthesize three Michelson-like interferometric measurements 
X, Y and Z, out of which only two are independent 

• First-generation X combination assumes constant armlengths 
(very wrong), and reads 

• Second generation senses each arm twice,  
which reduces linear changes of  
armlengths to first order

x1′� + D2′�x3 + D2′ �D2x1 − D2′�D2D3x2′ �
−(x1 + D3x2′� + D3D3′�x1′� + D3D3′�D2′�x3)

X1 =



• Model latest optical design, with various high-level 
instrumental noises (laser frequency noise, readout 
noise, optical path length noise, test-mass 
acceleration noise) 

• Propagation of beams between spacecraft using 
Lagrange interpolating polynomials, linearly-varying 
or realistic Keplerian orbits 

• Levels of residual laser noise not understood 
although cross-checked with legacy LISACode 

Simulation with
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Flexing-Filtering Coupling [Bayle+19]
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Conclusion

• Long way from interferometric signals to science-
worthy data, with many pre-processing steps 

• TDI and pre-processing algorithms’ performance 
directly impacts instrumental design decisions and 
data analysis pipelines

L0

Calibrations 
(TBD)

Clock Sync 
and Ranging

S/C Jitter 
Correction

Reduction to 
3 Lasers

Reduction of 
Laser Noise

Clock Noise 
Calibration

L1



Impact on Science

 39

LISA Mission Proposal, 2017.
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Thank you.


