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MR image reconstruction

Retrieve the image from its Fourier coefficients (noisy, potentially
undersampled, potentially non-uniform).

Figure: The goal of MR image reconstruction: going from some points in the
Fourier space (k-space) to a reconstructed weighted contrast image
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General ill-posed inverse problems formulation

argmin
x∈Kn

1

2
‖Ax − y‖2 + λ‖ψx‖1 (1)

K is generally R or C
A is the forward operator

y is the observed data

‖ · ‖ is an appropriate norm

ψ is an operator projecting x in a basis where it has a sparse
representation

the last norm can be either 0 or 1
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Model-based approaches

To solve this problem we have 2 main classes of algorithms:

Primal-dual approaches, e.g. Condat-Vu , Primal Dual Hybrid
Gradient, ADMM . They can’t be easily accelerated.

Proximal methods, e.g. FISTA , POGM . When the regularisation
term is not “simple”, they need an inner loop to compute its
proximity operator.

A similarity between the 2 classes is that they will both make use of the
proximity operator of the regularisation term and the gradient of the data
fidelity term.
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Data-driven approaches

In this case we want to consider the problem as supervised learning
problem. Keeping notation consistent with 1:

argmin
θ

EX ,Y [L(fθ(Y ),X )] “simplified” in argmin
θ

N∑
i=1

L(fθ(Yi ),Xi )

fθ is our learned reconstruction function. For neural networks, θ are
the network’s weights.

L is our loss function.

(Yi ,Xi ) is our N-size training set, composed of respectively k-space
data points and ground truth MR images.
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Mixed approaches

One of the main problems with data-driven approaches: going from local
to global. In neural networks, this amounts to having dense layers (for a
512× 512 image, 6.9× 1010 parameters).

Jonas Adler et al. address this problem in their work by learning the
proximity operators involved in the Primal Dual Hybrid Gradient.
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