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Optimal Transport metric

Wasserstein distance −→ Useful to compare histograms and point
clouds. (Typical scenario in machine learning tasks)

Entropic regularization −→ Allows fast calculation of an approximate
solution.

Examples:

- Bag of Features.

- Color histograms.

- Barycenter calculation.

- Measures with non overlapping
support.

- Generative models.

And for signal processing tasks?
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Optimal Transport metric

First obstacle −→ Signals are in general signed.

Objective −→ Extend the Wasserstein distance to signed measures.

Direct applications:

- Blind Source Separation

- Dictionary Learning

More to explore..
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Measures

Positive Radon Measures µ on a set X

Continuous Discrete

dµ(x) = mµ(x)dx µ =
∑
i

µiδxi

Measure of sets A ⊂ X :

µ(A) =

∫
A

dµ(x) ∈ R µ(A) =
∑
i

µiδxi (A) ∈ R

Integration against continuous functions:∫
X
g dµ =

∫
X
g(x)mµ(x)dx ∈ R

∫
X
g dµ =

∑
i

µig(xi ) ∈ R

Probability measures: µ(X ) =
∫
X

dµ(x) = 1

Continuous
density: mµ(x)

Discrete density
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Norms and Strong Topologies

Some norms induce the strong topology on the space X .

Some examples on the densities

The Lp norms:

‖mα −mβ‖Lp :=

(∫
X

(mα(x)−mβ(x))p dx

)1/p

.

Csiszar divergences:

Dϕ(α|β) :=

∫
X

ϕ

(
dα

dβ

)
dβ+ϕ

′

∞α
⊥(X ),

(
dα

dx
↔ dβ

dx

)
−→

(
dα

dβ
↔ 1

)

X 2 : ϕ(s) = |s − 1|2

TV norm : ϕ(s) = |s − 1|

Hellinger : ϕ(s) = |s − 1|2

KL : ϕ(s) = s log(s)

Generalized KL : ϕ(s) = s log(s)− s + 1

Tob́ıas Liaudat CREST, ENSAE ParisTech



9/38

Introduction Notions on Optimal Transport From Unbalanced to Signed OT

Norms and Strong Topologies

Idea: Norms inducing strong
topologies compare vertical
values (same support).

Not useful to compare measures
with disjoint support.

‖m −md‖Lp = cst 6= f (d)
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Norms and Weak Topologies

Instead, norms inducing weak topologies can overcome disjoint supports.
They metrize the weak convergence.

Weak convergence of Radon measures

Radon measure:

∫
A
f dµ

On a compact domain X , ∀ continuous
function f :∫

A
f dµn

n→∞−→
∫
A
f dµ

Convergence in law of random vectors

Random vector: P(X ∈ A)

∀ set A:
P(Xn ∈ A)

n→∞−→ P(X ∈ A)

The Wasserstein distance metrizes
the weak convergence.

Wp (δa, δb) = d(a, b) = d
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Monge’s Formulation

Monge’s transport (1784)

Let c(x , y) be a cost function defined for points (x , y) ∈ X × Y and
T : X → Y a map so that:

min
ν=T#µ

∫
X

c (x ,T (x)) dν(x)

The condition ν = T#µ ensures that all the mass from µ is transported
to ν by the map T and T# is the push-forward operator.

Problems:

- Non-uniqueness

- Non-existence
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Kantorovitch’s Formulation - Relaxation

Discrete problem:

µ =
∑
i

µiδxi , ν =
∑
j

νjδyj , Ci,j = c(xi , yj) ≥ 0.

Broaden the feasible maps.

Couplings - Kantorovitch’s relaxation

U(µ, ν) :=
{
T ∈ Rn×m

+ : T1m = µ , TT
1n = ν

}

Kantorovitch’s formulation

LC (µ, ν) = min
T∈U(µ,ν)

∑
i, j

Ti, jCi, j

If the cost is chosen as a distance
then LDp (µ, ν) = W p

p (µ, ν), the
Wasserstein distance.

Image credits: [Peyré&Cuturi18]
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Kantorovitch’s Formulation

The 3 settings:

Image credits: [Peyré&Cuturi18]
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Entropic Regularization

Regularized OT [Cuturi13]

LεC (µ, ν) = min
T∈U(µ,ν)

∑
i, j

Ti, jCi, j − εH(T ),

where H is the entropy:

H(T ) := −
∑
i, j

Ti, j log(Ti, j)− Ti, j .

Main implications:

- Approximate solution −→ Regulated by ε

- Fast solver −→ Sinkhorn’s algorithm

- Easier to differentiate −→ Use as a loss

Tob́ıas Liaudat CREST, ENSAE ParisTech
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Entropic Regularization

Image credits: [Peyré&Cuturi18]
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Sinkhorn’s Algorithm

Reformulation of regularized OT

The problem can be rewritten as:
min

T∈U(µ,ν)
KL(T |K ) , where K = e−D

p/ε

Property [Cuturi13][Sinkhorn&Knopp67]

Given the regularized OT problem, one has unique vectors a, b so that:
T = diag(a)Kdiag(b) , with T ∈ U(µ, ν)

Row constraint: T1m = µ⇐⇒ a� (Kb) = µ
Column constraint: TT

1n = ν ⇐⇒ b � (KTa) = ν

Sinkhorn’s iterations:

- a← µ
Kb

- b ← ν
KT a

Interpretation: Iterative projections.
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Unbalanced OT Formulation

Generalized Sinkhorn formulation [Peyré&Cuturi18][Chizat...17]

Generalize the regularized formulation by relaxing the constraints:

W ε
c (µ, ν) := min

T∈Rn×m
+

∑
i, j

Ti, jCi, j − εH(T ) + F1(T1m|µ) + F2(TT
1n|ν).

• Idea: Use a “strong” norm for the constraints.

• Not necessary that ‖µ‖ = ‖ν‖.
• The functions F (·) penalizes the not transported mass.

• Fast calculation with a Sinkhorn’s algorithm adaptation.

• Not a distance.

Examples: F (·|p) = i{=}(·|p) , F (·|p) = λKL(·|p) , F (·|p) = λTV(·|p).
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Generalized Wasserstein Distance

Generalized Wasserstein distance [Piccoli&Rossi14]

The formulation is a distance for unbalanced measures:

W (a,b)
p (µ, ν) :=

 inf
µ̃,ν̃∈M(Rd )
‖µ̃‖=‖ν̃‖

ap (‖µ− µ̃‖1 + ‖ν − ν̃‖1)p + bpW p
p (µ̃, ν̃)


1/p

Verify the properties of a distance [Piccoli&Rossi14]:

• Triangle inequality: W
(a,b)
p (µ, η) ≤W

(a,b)
p (µ, ν) + W

(a,b)
p (ν, η).

• Symmetric: W
(a,b)
p (µ, ν) = W

(a,b)
p (ν, µ).

• W
(a,b)
p (µ, ν) = 0⇐⇒ µ = ν.

• The infimum is always attained.

• b (resp. a) parametrizes the ease of transport (resp.
creation/cancellation) of mass.

−→ Hard to calculate.
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Signed Formulation

Idea: Re-use the unbalanced formulation and adapt is to signed values.

Define a decomposition:

µ = µ+ − µ− ∈ Rn, where µ+, µ− ∈ Rn
+

ν = ν+ − ν− ∈ Rm, where ν+, ν− ∈ Rm
+

where the Jordan’s decomposition is the one such that for µ (resp. ν)
supp(µ+) ∩ supp(µ−) = {∅} .
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Signed Formulation

Interactions between the signed parts?

µ+ −→ ν+ , µ− −→ ν− Transportation

Tob́ıas Liaudat CREST, ENSAE ParisTech
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Signed Formulation

Interactions between the signed parts?

µ+ −→ν+ , µ− −→ ν− Transportation

µ+ −→µ− , ν+ −→ ν− Cancellation

Tob́ıas Liaudat CREST, ENSAE ParisTech



26/38

Introduction Notions on Optimal Transport From Unbalanced to Signed OT

Signed Formulation

Define the signed transport in terms of classic optimal transport [Mainini12]

Wp(µ, ν) = Wp(µ+ + ν−, µ− + ν+)

Actions taking place:

- Transport between same sign
measures. Ex: µ0,+ → ν0,+

- Cancellation between different
sign measures. Ex: µ1,+ → µ1,−

→ Only works if the decomposition is
balanced.
→ Which decomposition to use?
→ Properties?

Tob́ıas Liaudat CREST, ENSAE ParisTech
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Signed Formulation

Use the unbalanced formulation with TV regularization.

Signed optimal transport

W(a,b)
p (µ, ν) = W (a,b)

p (µ+ + ν−, µ− + ν+),

where:(
W (a,b)

p

)p
(µ, ν) := inf

µ̃,ν̃∈M(Rd )
‖µ̃‖=‖ν̃‖

ap (‖µ− µ̃‖1 + ‖ν − ν̃‖1)p + bpW p
p (µ̃, ν̃).

→ Only works if the decomposition is balanced.
→ Which decomposition to use?
→ Properties?
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Signed Formulation

Signed optimal transport

µ+ = µ+
0 + µ+

1 + µ̃+ , ν+ = ν+
0 + ν+

1 + ν̃+ ,

µ− = µ−0 + µ−1 + µ̃− , ν− = ν−0 + ν−1 + ν̃− ,

where µ̃+, µ̃− ∈ Rn and ν̃+, ν̃− ∈ Rm .

Actions taking place:

- Transport between same sign measures. Ex:
µ0,+ → ν0,+

- Cancellation between different sign measures.
Ex: µ1,+ → µ1,−

- Creation / Destruction To manage the
unbalance scenario.. Ex: µ̃+ ↔ µ+

→ Only works if the decomposition is balanced.
→ Which decomposition to use?
→ Properties?
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Signed Formulation

→ Only works if the decomposition is balanced.
→ Which decomposition to use?

Proof of Prop.1 [Piccoli&Rossi18]

W1(µ, ν) does not depends on the decomposition.
Based on the Lemma 4.

Lemma 4 [Piccoli&Rossi18]

Property of the Generalized Wasserstein Distance:

W
(a,b)
1 (µ+ η, ν + η) = W

(a,b)
1 (µ, ν)

Strategy → Use the Jordan decomposition.
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Signed Formulation

→ Only works if the decomposition is balanced.
→ Which decomposition to use?
→ Properties?

Prop.1 [Piccoli&Rossi18]

W1(µ, ν) is a distance on the space M(Rd) of signed measures with
finite mass.

Lemma 5 [Piccoli&Rossi18]

- W(a,b)
1 (µ, ν) = 0⇐⇒ µ = ν,

- W(a,b)
1 (µ+ η, ν + η) = W(a,b)

1 (µ, ν),

- W(a,b)
1 (µ1 + µ2, ν1 + ν2) ≤W(a,b)

1 (µ1, ν1) + W(a,b)
1 (µ2, ν2).
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Signed Formulation

→ Only works if the decomposition is balanced.
→ Which decomposition to use?
→ Properties?

→ Hard to calculate.

Use the entropic regularization → Easier to compute.

Signed regularized optimal transport

W(λ,ε)
1 (µ, ν) = W

(λ,ε)
1 (µ+ + ν−, µ− + ν+),

where:

W
(λ,ε)
1 (µ, ν) := min

µ̃,ν̃∈M(Rd )
‖µ̃‖=‖ν̃‖

λ (‖µ− µ̃‖1 + ‖ν − ν̃‖1) + W ε
1 (µ̃, ν̃).
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Primal formulation

W
(λ,ε)
1 (µ, ν) := min

µ̃,ν̃∈M(Rd )
‖µ̃‖=‖ν̃‖

λ (‖µ− µ̃‖1 + ‖ν − ν̃‖1) + W ε
1 (µ̃, ν̃).

W
(λ,ε)
1 (µ, ν) := min

T∈Rn×m
+

λ
(
‖µ− T1m‖1 + ‖ν − TT

1m‖1

)
+〈T ,D1〉−εH(T ).

Primal formulation

W
(λ,ε)
1 (µ, ν) = min

T∈Rn×m
+

F1 (T1m) + F2

(
TT

1m

)
+ εKL(T |K )

where (K )i,j = e(D1)i,j/ε.

Remember:

T (x , y) = a(x)K (x , y)b(y) , (a, b) :=
(
e−u/ε, e−v/ε

)
.
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Dual formulation

Fenchel-Rockafellar Theorem

f and g being lower semi-continuous and proper convex functions defined
in E and F resp. Let A be a linear operator and A∗ its adjoint. It holds:

sup
x∈E
−f (−x)− g(Ax) = min

y∗∈F∗
f ∗(A∗y∗) + g∗(y∗).

Dual formulation

max
u,v
−F ∗1 (u)− F ∗2 (v)− ε

〈
e−u/ε,Ke−v/ε

〉
Block coordinate relaxation

u(l+1) = arg max
u
−F ∗1 (u)− ε

〈
e−u/ε,Ke−v

(l)/ε
〉

(Pu)

v (l+1) = arg max
v
−F ∗2 (v)− ε

〈
e−u

(l+1)/ε,Ke−v/ε
〉

(Pv )
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Solving the dual formulation

Observation: Use the Fenchel-Rockafellar theorem again.

sup
u
−F ∗1 (u)− ε

〈
e−u/ε,Ke−v (l)/ε

〉
= min

s
F1(s) + εKL(s|Kev

(l)/ε)

The minimizer of the right part s? belongs to the subdiferential of

u 7→
〈
e−u/ε,Ke−v (l)/ε

〉
at the point u?, the maximizer of the left part.

s? = eu
?/ε(Kev

(l)/ε)

The right part looks like a proximal operator!

ProxKL
F1/ε(t) := arg min

r
F1(r) + εKL(r |t)

We can rewrite:

(s? =) ProxKL
F1/ε(Kev

(l)/ε) = eu
?/ε(Kev

(l)/ε)

eu
?/ε =

ProxKL
F1/ε

(Kev
(l)/ε)

(Kev (l)/ε)

Tob́ıas Liaudat CREST, ENSAE ParisTech



36/38

Introduction Notions on Optimal Transport From Unbalanced to Signed OT

Solving the dual formulation

Rewrite the iterations using the Prox operation in terms of
(a, b) =

(
e−u/ε, e−v/ε

)
:

Algorithm iterations [Chizat..16]

a(l+1) =
proxKL

F1/ε
(Kb(l))

Kb(l)
(Pu)

b(l+1) =
proxKL

F2/ε
(KTa(l+1))

KTa(l+1)
(Pv )

Explicit formulas for the prox operators!

Reconstruction after convergence

T ?(x , y) = a?(x)K (x , y)b?(y)

Direct calculation of the distance with T ?.

Tob́ıas Liaudat CREST, ENSAE ParisTech
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Conclusion & To-Do List

Some conclusions:

- We formulate an approximation to an optimal transport distance to
signed measures.

- A fast algorithm for its calculation.

To-Do list:

- Use as a loss function.

- Analyze its differentiability.

- Extend applications to work with signed measures.

- Analyze theoretical properties of the signed regularized formulation.
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