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A Physical Model for Biomedical Assays (Modeling I)
Relevant quantities for the assay are
I A density of bound particles d(x , y , t) ≥ 0, where the image

will be dobs(x , y) = d(x , y ,T ), which evolves coupled to

I the 3D density of free particles c(x , y , z , t) ≥ 0 on z ≥ 0, and
to

I the source density rate of new particles s(x , y , t) ≥ 0, that is
spatially sparse and reveals the cell locations and secretion
over time.
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An Observation Model for Biomedical Assays (I) (Modeling II)
We consider the image observation dobs ∈ D+, with D = L2 (R2)
and prove that

dobs(x , y) =
∫ σmax

0
(gσ(x̄ , ȳ) ∗ a(x̄ , ȳ , σ)) (x , y) dσ ,

with a ∈ A+ and A ⊂ L2 (R2 × R+
)

a space of functions with
bounded spatial support, σmax =

√
2DT , and

I a(x , y , σ) is an equivalent of s(x , y , t) where the effect of
adsorption and desorption have been summarized.

a(x , y , σ) = σ

D

∫ T

σ2
2D

s(x , y ,T − η)ϕ
(
σ2

2D , η

)
dη .

I a(x , y , σ) preserves all the spatial information in s(x , y , t).
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An Observation Model for Biomedical Assays (II) (Modeling II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

How?
I Independence of Brownian motion in x , y and z .

I Adsorption (κa) and desorption (κd) only regulated by
z-movement.

I x - and y -movements only depend on τ , total time in
Brownian motion. In particular, according to Green function
for 2D diffusion, g√2Dτ (x , y).

I ϕ(τ, t) summarizes the effect of adsorption and desorption
onto the time in free motion τ for each time of final
adsorption t.

I Change variables to those significative to x - and y -movement,
σ =
√

2Dτ .
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An Observation Model for Biomedical Assays (III) (Modeling
II)
The modeling result: The image dobs ∈ D+ can be expressed as

dobs =
∫ σmax

0
Gσaσdσ .

Consequences

Real observation (section) Simulated observation (section)

I Synthetic data

I An inverse problem
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Functional Inverse Diffusion (Optimization I)
We have dobs ∈ D+ and want to recover a ∈ A+. We propose the
(non-smooth, constrained) convex problem

min
a∈A

‖Aa − dobs‖2
D + δA+ (a)︸ ︷︷ ︸

non-negative

+λ
∫
R2

(∫ σmax

0
a2(x , y , σ) dσ

) 1
2

dxdy︸ ︷︷ ︸
group-sparsity

 ,

Proximal Optimization

I How do we solve this optimization problem? Can it be solved?
I Three terms, two non-smooth (with known prox), one smooth

(with non-trivial but manageable gradient). Convex problem,
but existance and unicity not given (function spaces).

I Do we need forward-backward primal-dual splitting?
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Proximal Optimization

I Do we need forward-backward primal-dual splitting? No. Not
if we can find the prox of the sum of the two non-smooth
terms. It is faster (Pustelnik and Condat, 2017).

I We showed that the prox of the non-negative group-sparsity
regularizer is

pr = [ar]+

(
1− γλ∥∥[ar]+

∥∥
L2([0,σmax])

)
+

.



Functional Inverse Diffusion - APG algorithm (Optimization II)
Require: Initial a(0) ∈ A+, image observation dobs ∈ D+
Ensure: A solution aopt ∈ A+

1: b(0) ← a(0), i ← 0
2: repeat
3: i ← i + 1, α← t(i−1)−1

t(i)

4: a(i) ← b(i−1) − σ−1
maxA∗

(
Ab(i−1) − dobs

)
5: for all r ∈ R2 do

6: a(i)
r ←

[
a(i)

r
]

+

1− (2σmax)−1λ∥∥∥∥[a(i)
r
]

+

∥∥∥∥
L2([0,σmax])


+

7: end for
8: b(i) ← a(i) + α

(
a(i) − a(i−1))

9: until convergence
10: aopt ← a(i)

Sequences of t(i) can be chosen as (Bech and Teboulle, 2009) or
as (Chambolle and Dossal, 2015).



Discretization

supp (µ)

sensor’s grid

[0, σmax]
ℵ ℵcnm

k

x

σ̃

y

I Spatial grid given by camera
sensor

I σ-grid with different levels of
detail

I Inner approximation paradigm
(step-constant functions)

I Choice of normalization in
restriction and extension
operators

I Resulting algorithm can be
reasoned as discrete APG

I The typical size of the
variable a[m, n, k] to recover
will be 20482 × 6 = 25 · 106

I Different kernel
approximations are considered
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Evaluation on Synthetic Data
Besides thorough human testing on real data, we can evaluate our
approach on synthetic data. To evaluate the location accuracy, we
run 10000 iterations of the algorithm, find spatial maxima and
threshold them optimally, and, defining a tolerance of ∆ = 3 pix
we compute the detection metrics

pre = TP
TP + FP , rec = TP

TP + FN , and F1 = 2 pre · rec
pre + rec .

Example

×
××
×

×: Real cells

+ ++ +

+: Detections
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Results on Synthetic Data (I)

Nc250 750 1250

0.40

0.50

0.60

0.70

0.80

0.90

F1-Scores (λ : 0.50, Noise Level: 3, λd : 0.00)

.

.
.

.

.
..

.
..

.

.

.

.

.

⊕

⊕

⊕

gbr3
k gbr1

k noise-free noisy deconvolution human

512× 512 noisy images with noise equivalent to 6-bit quantization.



Results on Synthetic Data (II)

True positions (or-
ange triangles) and
detections (yellow
circles).

Pixels’ contr. to
the regularizer, i.e.,√∫

a2(x , y , σ)dσ.



Results on Real Data

Detection results (yellow circles) and human labeling (orange squares).
F1-Score relative to human, 0.9 (whole image).



SpotNet - Learned iterations for faster inverse problems
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Results for SpotNet with L = 3 and smaller kernels
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I Evaluation of SpotNet and a generic ConvNet on MSE{â}.
I Trained on 7 images with 1250 cells.



Results for SpotNet with L = 3 and smaller kernels

SpotNet ConvNet

0.75

0.80

0.85

0.90

0.95

1.00
(a) 250 cells

SpotNet ConvNet

(b) 750 cells

SpotNet ConvNet

(c) 1250 cells

SpotNet / ConvNet

0%

1%

2%

3%

(d) F1-Score ratio

Human expert (1 image) Means
Medians 10th and 90th percentiles
Extreme points

I Evaluation of SpotNet and a generic ConvNet on F1 score as
above.

I Trained on 7 images with 1250 cells.
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