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Abstract—Photometric redshift estimation and the assessment

of the distance to an astronomic object plays a key role in

modern cosmology. We present in this article a new method

for photometric redshift estimation that relies on sparse linear

representations. The proposed algorithm is based on a sparse

decomposition for rest-frame spectra in a learned dictionary.

Additionally, it provides both an estimate for the redshift together

with the full resolution spectra from the observed photometry for

a given galaxy. This technique has been evaluated on realistic

simulated photometric measurements.

I. INTRODUCTION

Measuring the angular positions of galaxies to the required
cosmological precision is easily achievable with an optical
galaxy survey; measuring their radial positions, on the other
hand, is one of the most challenging problems in modern ob-
servational cosmology. The way we infer those radial distances
is based on their spectral energy distribution (SED): due to
the expansion of the Cosmos, galaxies are receding from us
and their light is consequently redshifted, similar to a Doppler
Effect. These redshifts are directly related to the galaxies’
distances, and by measuring it from the spectral characteristics
of the received light, we can reconstruct their positions.
Here two different approaches need to be distinguished, with
their own characteristics, advantages and challenges. Mea-
suring spectroscopic redshifts consists in observing the full
SED of a galaxy and identifying features that allow a secure
redshift determination. Galaxy spectra are a consequence of
a series of relatively well-understood physical phenomena,
mostly concerning the nuclear and chemical reactions inside
stars and the types and ages of stellar populations within the
galaxy in question (see [1] for a review). Atomic emission and
absorption lines give rise to very distinct peaks and troughs in a
galaxy SED, and the secure identification of the wavelength of
such a feature can easily be translated into a shift compared to
the known wavelength of such a transition observed in Earth’s
laboratories.
Photometric redshift measurements, on the other hand, try
to reconstruct the redshift value out of only a handful of
numbers representing the integrated flux in broadband filters .
This is an ill-posed severely underdetermined inverse problem
where both redshift and spectra needs be estimated from a
few photometric measurements. Degeneracies abound, making
results less precise and possibly biased, but they circumvent
the need of a spectrograph and can also reach fainter magni-

tudes, as light is integrated in broad wavelength ranges. While
spectroscopic redshifts are more accurate than photometric
redshifts, their acquisition is time consuming and limited to
only the brightest objects.
Most of the techniques for photometric redshift estimation
are based either on empirical machine learning approaches
or obtained through template-fitting methods [2]. Some of the
most popular codes take advantage of neural networks [3], [4],
regression trees [5] among others. Other information than flux
such as galaxy morphology, colors, etc can also be included in
their redshift estimation to improve their accuracy. However,
the major drawback of these methods is that they have to be
trained with of a huge amount of representative labelled data
for which the true redshift value needs to be perfectly known.
Another family of methods is based on template fitting. They
are based on matching physically meaningful redshifted rest-
frame templates (i.e. without redshift effects) to the observed
spectrum, to obtain both redshift and best fit template. These
template spectra are constructed from theoretical libraries.
The most widespread photometric redshift estimation template
fitting code is is LePHARE [6]. These techniques strongly rely
on a good template modelling and a deep understanding of
realistic galaxy SEDs.
The main contributions of this article are:

• A new algorithm for photometric redshift estimation
based on rest-frames templates learned from data using
sparse dictionary learning; the complete spectrum of the
galaxies is also recovered;

• The evaluation of the proposed scheme on realistic galaxy
photometric simulations.

II. METHODOLOGY

Let us first consider the problem of recovering the full
spectra of a galaxy, x 2 Rws , from photometric measurements,
y 2 Rwp , and the vectors’ dimensions satisfy w

p

<< w
s

.
Typical values for the spectra dimension are w

s

= 3000 or
w

s

= 4000 while only w
p

= 5 or w
p

= 10 bands are
commonly available. This can be formulated as an inverse
problem according to:

y = Hx+ n (1)

where x is the original spectroscopy. This signal has been
passed through some filters H 2 Rwp⇥ws , yielding a lower
resolution version y, that corresponds to the photometry and



n represents the noise. Hence, we seek to retrieve the original
signal x by solving this super-resolution task. This severly
underdetermined ill-posed inverse problem requires constraints
on the spectra x to be solved. We propose to model the spectra
as a sparse linear combination of a few learned templates then
redshifted to a tested redshift value ; the best approximation
of the photometric data giving the estimated redshift. In the
following, we first present how we build our learned rest-frame
representation for galaxy spectra using sparse dictionary learn-
ing, the sparse coding algorithm associated to the recovery of
the spectra, and finally how we estimate the redshift.

A. Dictionary learning for rest-frame galaxy spectra

The proposed method relies on learning linear representa-
tions on rest-frame training data and the spectra are approx-
imated by a sparse decomposition, x = D↵. In this context,
the dictionary D̂ 2 Rws⇥na with n

a

atoms is constructed from
a training set X 2 Rws⇥nt . This training set is composed of n

t

examples disposed in columns and the dictionary is obtained
by solving the joint minimization problem:

D̂, Â = argmin
D2D,A

||X�DA||2
F

s.t. 8i, ||↵
i

||0  ⌧ (2)

where Â 2 Rna⇥nt is the matrix of codes and each column
corresponds to the representation for each training example,
{↵

i

}. || · ||
F

denotes the Frobenius norm, || · ||0 counts the
number of non-zero entries of a vector and ⌧ is the targeted
sparsity degree, D designates the set of dictionaries with
atoms in the unit `2 ball. Among the different approaches to
solve (2), we use a technique based on the method of optimal
direction detailed in [7]. This procedure performs alternately
sparse coding by orthogonal matching pursuit and dictionary
updating. The sparsity degree specified in the sparse coding
stage and the number of atoms in the dictionary are free
parameters.

B. Sparse coding for rest-frame galaxy spectra

The original spectroscopic signal x is then retrieved from
the photometric signal y by imposing sparsity on the learned
representation ↵. In addition to the sparsity constraint, pos-
itivity on the reconstructed spectra can also be enforced for
a more constrained recovery. Although negative values of the
spectra may lead to a better photometry reconstruction, these
solutions are impossible. Therefore, we need to minimize:

↵̂ = argmin
↵

1

2
||y �HD↵||22 + � ||↵||1 + IC(D↵) (3)

where IC denotes the indicator function on the spectra set
C that enforces non-negativity for the galaxy emitted light.
The regularization parameter � controls the trade off between
the reconstruction error and the sparsity promoting term. The
value of � has been automatically set to be proportional to the
estimated noise level �̂ as detailed in [8].
To take into account the different constraints and the differ-
ential term in the cost function, the optimisation in (3) is

performed with the Generalized Forward-Backward Splitting
algorithm introduced in [9] and recalled in algorithm 1. The
prox operator associated to the `1 norm corresponds to soft-
thresholding operator; the one associated to the indicator
function has no closed-form expression but was computed with
an inner FISTA algorithm on the dual problem, as detailed in
[10].

Algorithm 1 Generalized Forward-Backward Splitting

Initialization : k = 0, t1 = 0, t2 = 0, ↵̂ = 0 and � = 3�̂2,
while Have not converged do

r = � 1
L

DHT (y �HDT ↵̂
k�1)

t1 = t1 + prox �
L ||·||1(2 ⇤ ↵̂k�1 � t1 �r)

t2 = t2 + prox
IC(·)(2 ⇤ ↵̂k�1 � t2 �r)

↵̂
k

= t1+t2
2

end while

return ↵̂

C. Photometric redshift algorithm

Similarly, we can decompose an observed spectrum x
z

, at a
certain redshift z, according to x

z

= D(z)↵(z). The value of
z is computed as the one providing the closest approximation
for the observed photometric signal y

z

.
More specifically, for every tested value of z, the dictionary
D originally built for rest-frame representations is redshifted
to D(z) and we solve an inverse problem as the one described
in (3). Accordingly, we can write for every value of z:

↵̂(z) =argmin
↵

1

2
||y �HD(z)↵(z)||22

+ � ||↵(z)||1 + IC(D
(z)↵(z)) (4)

and solve (4) with algorithm 1 described above. Ultimately,
the value of the redshift z is obtained as the solution of the
following equation:

ẑ = argmin
z

||y �HD(z)↵(z)||22
||y||22

(5)

Solving problem (5) requires a fine sampling on the range of
tested redshifts, which would require solving many problems
(4) and would be computationnaly extremely costly. To avoid
this, we propose a coarse-to-fine strategy for redshift testing:
we evaluate the approximation error for a hierarchical grid of
z values. In other words, the whole interval that encompasses
all possible values of z 2 [z

min

, z
max

] has been uniformly
sampled with ten steps, and the minimum among this points,
ẑ1, is retained. Then, the explored interval is reduced around
this minimum. The new interval is evenly re-sampled at ten
points yielding a new minima. This process is repeated five
times allowing us to build a hierarchical grid for z. This
method reduces the computational time while keeping a good
resolution in terms of z and will be illustrated in the following
experimental section.



D. Comparison with LePHARE

In order to assess the performance of the proposed redshift
algorithm, the proposed algorithm is compared to LePHARE
code [6]. LePHARE is a template-based redshift estimation
method. It starts from a library of spectroscopic templates built
from a wide range of theoretical observations. It then applies
observational corrections to the spectra and integrates them
through the defined filter set. For each galaxy, LePHARE in-
tegrates all spectra in the library for several redshift test values
and finds the combination of a spectrum and a redshift value
that provide the best possible fit to the observed photometric
data. In this way, each galaxy is assigned a best-fit template
and a redshift value.

III. EXPERIMENTAL RESULTS

We present in this section the results obtained with galaxy
simulated spectroscopy for the training stage and simulated
photometry for testing the algorithms.

A. Simulations

In this section we present the data used in our studies. The
first step is to define a master catalog for the analyses. We
work with the COSMOSSNAP simulation pipeline [11] to
generate a data set of simulated galaxy SEDs and correspond-
ing photometric properties. The idea is to take real data as
a basis, thereby ensuring that realistic relationships between
galaxy type, color, size, redshift and SED are preserved.
COSMOSSNAP chooses the COSMOS photometric redshift
catalog [12], generated from a combination of 30 bands from
diverse astronomical surveys covering the full spectral range
from the UV (GALEX), through the optical (Subaru) and all
the way to infrared bands (CFHT, UKIRT, Spitzer). This data
set is matched to Hubble ACS imaging data, to provide re-
alistic size-magnitude distributions, employing weak-lensing-
quality shape measurements [13]. Based on these properties,
COSMOSSNAP chooses a spectral template from a predefined
library such that the integrated fluxes through the 30 broad-
band filters above provide the best-fit to the observations. Each
galaxy therefore has a “true” redshift and its associated SED,
and the distribution of types and redshifts follows the measured
distribution in the COSMOS field. This catalog is the basis for
all COSMOSSNAP simulations.

To generate realistic photometric properties, the first step
is to integrate the best-fit spectral template through a set of
broadband wavelength filters that will be used for a given
galaxy survey. In actuality, the full transmission curve includes
not only filter effects, but also atmospheric transmission (in
the case of ground observations), telescope optical effects and
more. The full transmission curve is commonly referred to as
filter throughput (even though it is not only due to the filter
itself). COSMOSSNAP takes a defined set of filter throughput
and calculates magnitudes and their corresponding errors for
each galaxy in the catalogue. For the purposes of our analysis,
we choose to reproduce closely the expected properties of the
Large Synoptic Survey Telescope [14] (LSST). Fig. 1 shows
the modelled throughputs [15] for our current band selection

represented by H in the problem formulation. Therefore, the
redshift value will need to be inferred only from these 6
available broadbands (commonly referred to as ’ugrizY’). At
the end of the generation procedure, we have a realistic master
galaxy catalogue with magnitudes, colors, shapes and redshifts
for 538 000 galaxies on an effective 1.24 deg2 region of the
sky down to an i-band magnitude of 26.5. To further match
the expected properties of the LSST Science sample, we limit
our catalog to galaxies brighter than 25.3 and with signal-to-
noise (S/N) > 10 in the i-band. Imposing these restrictions,
we obtain a galaxy catalog with a realistic set of photometric
properties, and best-fit spectral templates with realistic contin-
uum and emission line properties. We now need to forward-
model the observational process in the spectroscopic case in
a manner consistent with expected observational conditions.

Fig. 1: LSST filter throughputs for the considered photometric
scenario.

For obtaining realistic spectral templates, we need to re-
sample and integrate the best-fit SEDs. As given by the
simulations, these SEDs are pure functional forms. At the end
of the observational process, what we obtain is an integrated
flux in logarithmic wavelength bins at a resolution of R. From
the simulation run described above, we select two random
subsets.

B. Dictionary Learning

Fig. 2: Example of the subtraction of high-frequency features
for rest-frame spectra. The original spectra is represented by
a blue solid line and the retained information after emission
lines subtraction is displayed with black circles.



Fig. 3: Example of five atoms learned using dictionary learning
and imposing a sparsity degree of 3 on rest-frame spectra.

Firstly, we chose a subset of noiseless low-redshift galaxies
that have been blueshifted to z = 0 in order to form the train-
ing set. Hence, the X is composed of n

t

= 10000 clean rest-
frame example spectra covering the range [1250Å, 10499Å]
and w

s

= 4258. Moreover, high frequency information from
these rest-frame spectra has been removed through wavelet
filtering retaining four scales and keeping the baseline as
illustrated in Fig. 2. Finally, the dictionary D is learned by
specifying the desired sparsity degree ⌧ = 3 and the number
of atoms of the dictionary n

a

= 40. The code developed
in C++ was iterated for 100 repetitions which allowed for
convergence in the dictionary estimation measured as the
averaged approximation error variations through iterations.
Fig. 3 displays five atoms from the adapted dictionary used
from now on.

C. Redshift estimation

Secondly, the testing is performed on a different randomly
selected subset. We have evaluated the algorithm on n = 1000
galaxies lying in a redshift range of z 2 [0, 1] and including
only w

p

= 6 photometric measures for each galaxy.
Let us now discuss the results obtained for redshift estima-

tion in the simulated catalogue.
The considered strategy of building a hierarchical grid mesh
for testing the different z values is illustrated in Fig. 4. The
grid search starts by exploring the whole z 2 [0, 1] interval
and the approximation error as a function of the tested redshift
is depicted in Fig. 4 (a). Hence, the minimum is chosen and
the considered interval is reduced in Fig. 4 (b). We repeat
the process five times to achieve the desired resolution in z.
The smoothness of the approximation curves as a function of
redshift allows to attain the same minima with this hierarchical
approach as the one obtained with a one level grid with a much
finer resolution as shown in Fig. 5, although the computational
time is significantly lower, which justifies the choice of our
approach.

Fig. 6 displays the estimated redshift for all the galaxies
in the test set with respect to their true redshift value. The
performance of the method is quantified through the bias over
the entire test set h�

z

i = hz
est

� z
true

i = �0.004, and the
68th percentile scatter �68 = 0.0475. Then, one can define

the number of catastrophic failures as those galaxies falling
outside 3�68, yielding ⌫ = 53.

Finally, Fig. 7 shows the results of the simulated catalogue
with LePHARE photometric estimation. The corresponding
bias is h�

z

i = 0.0421, the 68th percentile scatter �68 = 0.0708
and the number of catastrophic failures ⌫ = 22.

It is important to point out two main differences with our
algorithm. On one hand, the templates used in the LePHARE
code are theoretical while ours are derived directly from
the data. Moreover, while LePHARE is based on template
fitting, the proposed method allows for a linear combination
of more than one template leading to greater flexibility and
representational capacity.

IV. CONCLUSION

We have introduced a new method to compute redshift from
photometric data. The proposed algorithm allows to recover
the full-spectra of the galaxies from broad-band photometry
solving a super-resolution problem. This estimation scheme
has been analyzed on simulated galaxies’ spectra and com-
pared to classical LePHARE code.

Further developments will explore other representation ap-
proaches where the emission lines are included. The per-
formances will be compared to other photometric redshift
estimation based on machine learning as ANNz2 [4]. Finally,
we aim to investigate the performance of this algorithm on
real photometric data.
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