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Background

Cosmology

• Dark matter does not interact electromagnetically, it only interacts gravitationally. 
• How can we work out how much dark matter there is in the Universe?

Evolution of the Universe Content of the Universe

Deep Learning for Blended Source Identification in Galaxy Survey Data
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Background

Dark Matter

• Galaxies and gas are tracers of dark matter haloes, but with significant biases. 
• The shapes of background galaxies provide a more reliable tracer.

Cosmic Web Galaxy Cluster
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Background

Gravitational Lensing

• Background galaxies are distorted by foreground dark matter. 
• Strongly lensed systems can be seen by eye, but weak lensings is a 1% effect.

Gravitational Lensing Strong Gravitational Lens
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Background

Galaxy Shapes
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Background
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Background

Deconvolution and Deblending of Galaxy Survey Images -  S.Farrens

Deblending
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Background

Deconvolution and Deblending of Galaxy Survey Images -  S.Farrens

Deblending
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2 Objects
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Background

Euclid Mission

http://www.euclid-ec.org/

• 6-year space mission designed to measure galaxy 
shapes to highest possible accuracy. 

• The Euclid consortium consists of >1500 members 
from 16 countries!

Deep Learning for Blended Source Identification in Galaxy Survey Data
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Background

CFIS Survey

http://www.cfht.hawaii.edu/Science/CFIS/

Deep Learning for Blended Source Identification in Galaxy Survey Data

• u=23.6 
• r=24.1



Input Images Mask Generation
- Bright stars 
- Spikes 
- Haloes 
- (Cosmic Rays)

Source Extraction
- SExtractor

Star-Galaxy 
Separation

- FWHM vs Magnitude cut

PSF Modelling

- PSFEx 
- Vignettes from PSF model

Shape  
Measurement

- KSB 
- GFit

Calibration

- Meta-calibration

WL Catalogue Cosmological 
Analysis

- Mass mapping 
- Shear bias

ShapePipe overview
Presentation of ShapePipe and its first use on CFIS data, preliminary results on the W3 field

UNIONS CFIS/Pan-STARRS Collaboration Meeting 6-8 juin 2018Guinot Axel

Sh
ap

eP
ip

e 
ov

er
vi

ew
Pr

es
en

ta
tio

n 
of

 S
ha

pe
Pi

pe
 a

nd
 it

s f
irs

t u
se

 o
n 

CF
IS

 d
at

a,
 p

re
lim

in
ar

y 
re

su
lts

 o
n 

th
e 

W
3 

fie
ld

UN
IO

N
S 

CF
IS

/P
an

-S
TA

RR
S 

Co
lla

bo
ra

tio
n 

M
ee

tin
g 

6-
8 

ju
in

 2
01

8
G

ui
no

t A
xe

l

ShapePipe overview
Presentation of ShapePipe and its first use on CFIS data, preliminary results on the W3 field

UNIONS CFIS/Pan-STARRS Collaboration Meeting 6-8 juin 2018 Guinot Axel

ShapePipe overview
Presentation of ShapePipe and its first use on CFIS data, preliminary results on the W3 field

UNIONS CFIS/Pan-STARRS Collaboration Meeting 6-8 juin 2018 Guinot Axel

ShapePipe overview
Presentation of ShapePipe and its first use on CFIS data, preliminary results on the W3 field

UNIONS CFIS/Pan-STARRS Collaboration Meeting 6-8 juin 2018 Guinot Axel

ShapePipe overview
Presentation of ShapePipe and its first use on CFIS data, preliminary results on the W3 field

UNIONS CFIS/Pan-STARRS Collaboration Meeting 6-8 juin 2018 Guinot Axel

Background

CFIS Pipeline
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Deep Learning

Alexandre Bruckert

Identification of blended sources in CFIS images.

Deep Learning for Blended Source Identification in Galaxy Survey Data
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Unlabelled Data

Deep Learning
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Unlabelled Data

Blended?

Deep Learning
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Simulations

Deep Learning

• Galaxy images simulated using GalSim (Rowe et al. 2015) 
• Mimic the properties of CFIS r-band.
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Deep Learning

• Large variety of simulated galaxy images. 
• Artificially blended half of the sample and added noise.  
• Created training, validation and testing sets. 
• Transfer learning.

Simulations

Mandelbaum et al. (2015)
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Deep Learning

• Community standard for source extraction. 
• Performs star-galaxy separation. 
• Includes deblending system that identifies blends using fixed thresholds.

SExtractor

Bertin & Arnouts (1996)
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Deep Learning

Siamese Network

• Finds similarities between two images. 
• Shared weights means fewer parameters to train. 
• Usually most robust to imbalance. 
• Does not require huge number of labelled training images.

Rao et al. (2016)
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Deep Learning

Siamese Network

• Finds similarities between two images. 
• Shared weights means fewer parameters to train. 
• Usually most robust to imbalance. 
• Does not require huge number of labelled training images.

Same Weights

Rao et al. (2016)
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Deep Learning

One-Class Classification

• Trained to find one particular class. 
• Robust to transfer learning. 
• Does not require huge number of 

labelled training images.

Perera & Patel (2018)
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Deep Learning

VGG-16

• Pre-trained network (e.g. using                    ) 
• Simple architecture.

Simonyan & Zisserman (2018)
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Deep Learning

VGG-16

• Pre-trained network (e.g. using                    ) 
• Simple architecture.

Simonyan & Zisserman (2018)
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Results

Results - Noiseless simulations

Sextractor 56.52 %

VGG16 99.31 %

Siamese 
Networks

66.94 %

One-Class 79.44 %

Noise-less Simulations



 22Deep Learning for Blended Source Identification in Galaxy Survey Data

Results

Noisy Simulations
Results - Noisy simulations

Sextractor 32.41 %

VGG16 95.87 %

Siamese 
Networks

63.45 %

One-Class 77.06 %
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Results

CFIS SimulationsResults - CFIS-like Images

Sextractor 45.31 %

VGG16 74.85 %

Siamese 
Networks

55.23 %

One-Class 61.07 %



 24Deep Learning for Blended Source Identification in Galaxy Survey Data

Results

Future Work

• Build deblending module into CFIS pipeline. 
• Investigate how blends identified with VGG-16 impact 

science. 
• Add multi-class classification. 
• Investigate benefits of segmentation of identified 

blends.


