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Outline

1. Modified gravity simulations
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DUSTGRAIN-pathfinder simulations C. Giocoli et al. 2018 [ arXiv:1806.04681 |

Sample the joint parameter space of f (R) gravity and massive neutrino cosmologies

Performed with MG-Gadget code, which implements the exira fifth-force and screening

Simulation Name Gravity type JRro my, [eV]  Qcpm Q, mépym IMe/h]  mP [Mg/h]
ACDM GR R 0 0.31345 0 8.1 x 100 0
fR4 f(R) —1x 104 0 0.31345 0 8.1 x 1010 0
fR5 f(R) —1x107° 0 0.31345 0 8.1 x 1010 0
fR6 f(R) —1x 107 0 0.31345 0 8.1 x 1010 0
fR4-0.3eV f(R) —1x1074 0.3 0.30630 0.00715  7.92 x 10V 1.85 x 10?
fR5-0.15eV f(R) —1x 1075 0.15  0.30987 0.00358  8.01 x 10%° 9.25 x 108
fR5-0.1eV f(R) —1x107° 0.1 0.31107 0.00238  8.04 x 10'° 6.16 x 103
fR6-0.1eV f(R) —1x 107 0.1 0.31107 0.00238  8.04 x 10'° 6.16 x 103
fR6-0.06eV f(R) —1x107° 0.06  0.31202 0.00143  8.07 x 10%° 3.7 x 108
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DUSTGRAIN-pathfinder simulations C. Giocoli et al. 2018 [ arXiv:1806.04681 |

Sample the joint parameter space of f (R) gravity and massive neutrino cosmologies

Performed with MG-Gadget code, which implements the exira fifth-force and screening

Simulation Name Gravity type JRro my, [eV]  Qcpm Q, mépym IMe/h]  mP [Mg/h]
1) ACDM GR R 0 0.31345 0 8.1 x 100 0
2 fR5 f(R) —1x107° 0 0.31345 0 8.1 x 1010 0
@ fR5-0.15eV f(R) —1x 1075 0.15  0.30987 0.00358  8.01 x 10%° 9.25 x 108
(@)  fR5-0.1eV f(R) —1x 1073 0.1 0.31107 0.00238  8.04 x 10'° 6.16 x 103
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Weak lensing maps from ray tracing

galaxies tell us about. .. structures
here here

< redshitt z

X 200 per redshift,
per model

WL convergence maps ~(60)
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Outline

2. Data representations
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F Isotropic filter function

Aperture mass M, ,(6;9) = / d?0" Uy (|0" — 6|) (8"

implemented as a wavelet transform (starlet)

D3

original Kk map aperture size 95 =4.69 arcmin
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Aperture mass map at scale ] 5% 5 de g2

M, ,(model, ¥, z4) =
P( J ) 400 x 400 shown, but

2048 x 2048 in practice
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urce redshift z=2.0

e Distributions of observables
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Can a neural network do better ?

Let’s recall the data

X (256 maps per model )
X (4 source redshifts)
X (4 cosmological models)

4,194,304 pixels
per map
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Can a neural network do better ?

Let’s recall the data

X (256 maps per model )
X (4 source redshifts)
X (4 cosmological models)

a computational challenge

4,194,304 pixels
per map
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Wavelet scale

A patch of sky
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A dimensionally reduced data representation
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Outline

3. ML network architecture
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Network architecture

® Network architecture figure ®
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Network architecture

Input data Convl Conv2 Conv3 Conv4 Conv5s FC6 FC7 FC8
--------- 13x 13 X384 13x 13 x 384 7% 7 x 512
27X 27 X 256 class number
1000
55X 55 X 96
224 x 224 x 3 4096 4096

(the dream )
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condensed

iInput datacube
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Network architecture

Convolutional neural network (CNN) classification problem

Layer type

Output shape

Input layer
Conv 3D [2 x 3 x 10]
Conv 3D [2 x 3 x 10]
Max pooling [1 x 1 x 5]
Conv 3D [2 x 3 x 10]
Max pooling [1 x 1 X 2]
Dropout [0.3]
Flatten
Fully connected
Fully connected
Fully connected

1 x4x5x100
8 x4 x5 x100
8 x4 x5 x 100
8 x4 x5x20
8 x4 x5x20
8 x4 x5x10
8 x4 x5x10
1600

32

16

4
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Performance measures
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Performance measures
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4. Classifying cosmological models
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A warm up with only one redshift

Zs=0.5
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A warm up with only one redshift

- 0.8

0.6
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l

Simpler 2D problem

U WNH
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noise level /7 Single source redshift (z, = 2.0)

Zero Prediction
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noise level /7

Zero

Convolutional neural
network (2D)

Peak statistics
(best case)

< CosMoSTAT

Truth

Truth

Single source redshift (z; = 2.0)
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noise level | 7/

optimistic

Convolutional neural
network (2D)

Peak statistics
(best case)
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Truth
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noise level 7

pessimistic

Convolutional neural
network (2D)

Peak statistics
(best case)
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Back to the 3D problem
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noise level /7

Zero

Convolutional neural
network (2D)

Convolutional neural
network (3D)
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noise level Y

optimistic Prediction
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noise level 7

pessimistic Prediction
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Outline

5. Summary
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Breaking Degeneracies in MG with WL

To sum up

MG + neutrinos can mimic ACDM at the background and linear level
 Weak-lensing observations accessing can

be used to break degeneracies
* In particular, peak counts generally outperform higher (than second)

order moments of the aperture mass
 Machine learning can do even better, especially

In the presence of noise
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Breaking Degeneracies in MG with WL

To sum up

MG + neutrinos can mimic ACDM at the background and linear level

 Weak-lensing observations accessing can
be used to break degeneracies

* In particular, peak counts generally outperform higher (than second)
order moments of the aperture mass

 Machine learning can do even better, especially
In the presence of noise

Room for improvement

* The noise-free case still isn’t perfect
 May be worth including a separate denoising step
* Regression vs. classification

* Ultimately test on real data
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Thank you
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