*modified gravity

Distinguishing standard and MG* cosmologies with machine learning

Austin Peel

Collaborators

Florian Lalande ENSAI / CosmoStat / ESA

Jean-Luc Starck CosmoStat / CEA Saclay

Carlo Giocoli DIFA Università di Bologna

Marco Baldi DIFA Università di Bologna

Valeria Pettorino CosmoStat / CEA Saclay

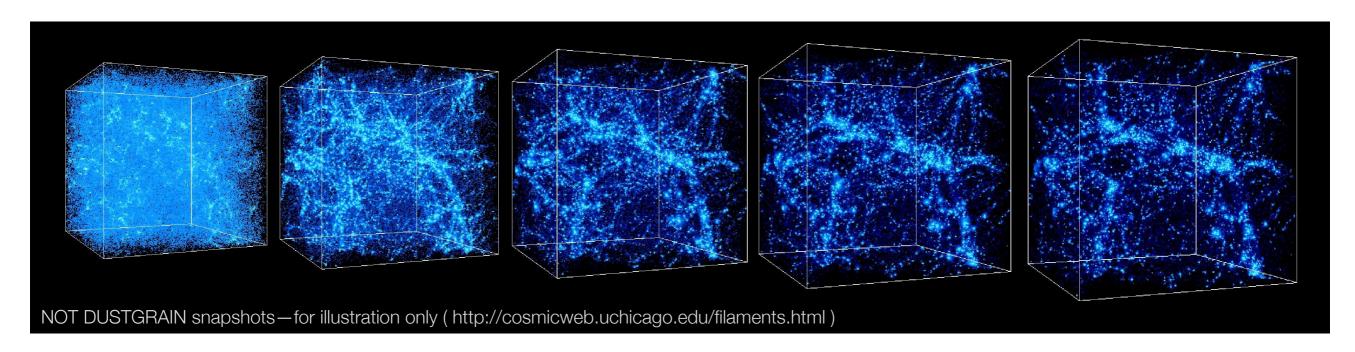
Massimo Meneghetti DIFA Università di Bologna

Peel et al. 2018 [arXiv:1810.11030]

Outline

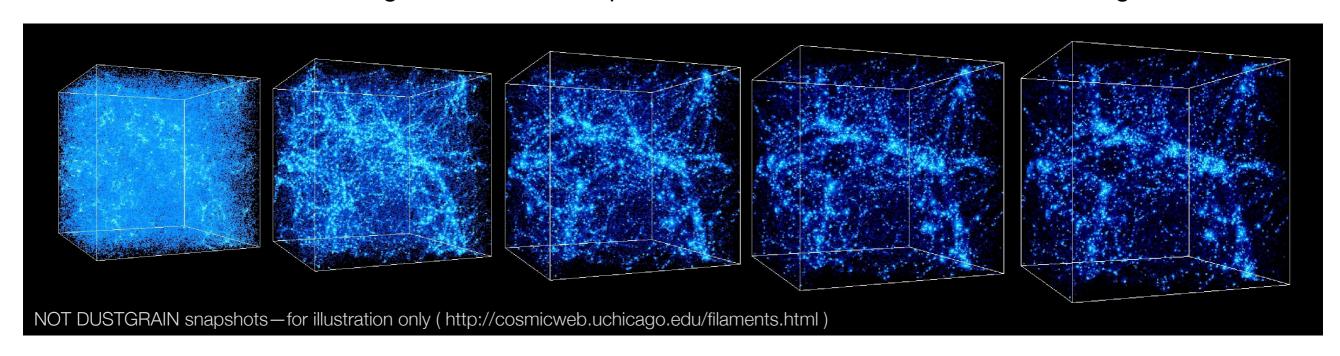
- 1. Modified gravity simulations
- 2. Data representations
- 3. ML network architecture
- 4. Classifying cosmological models
- 5. Summary

Outline


- 1. Modified gravity simulations
- 2. Data representations
- 3. ML network architecture
- 4. Classifying cosmological models
- 5. Summary

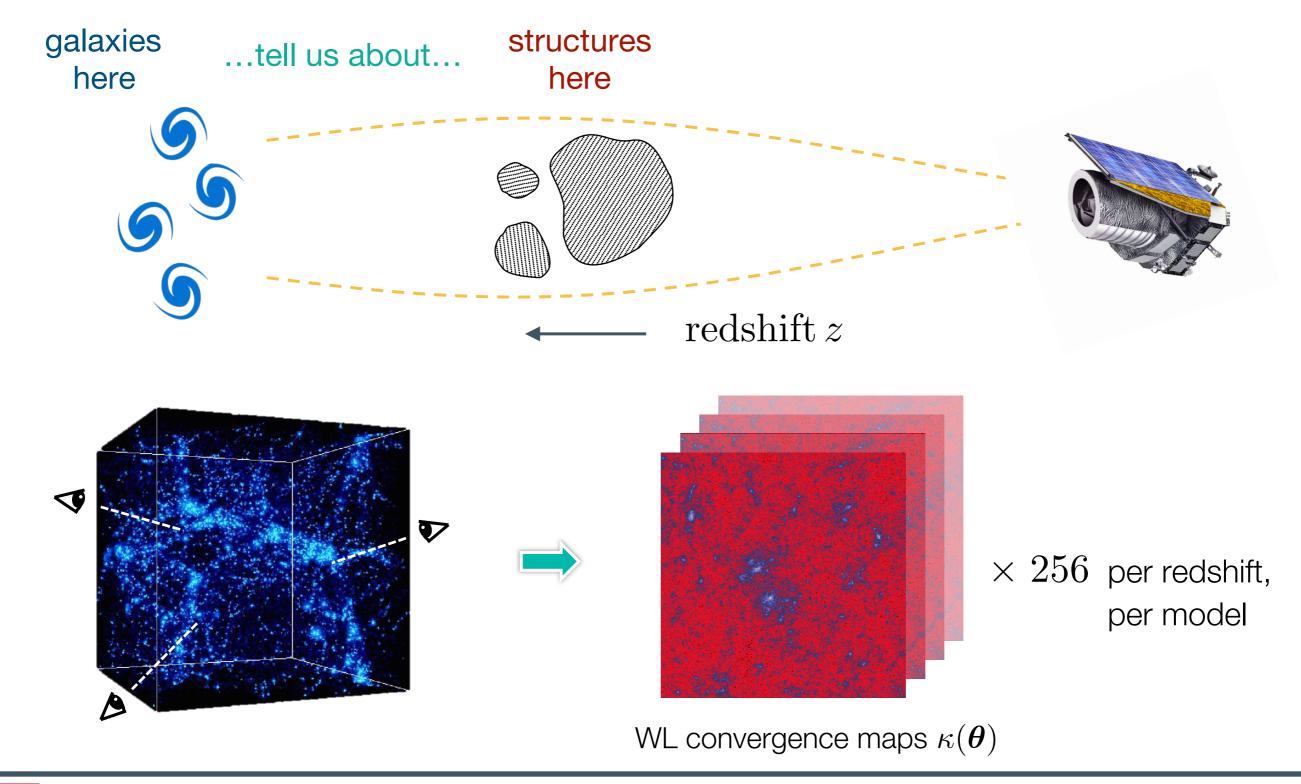
DUSTGRAIN-pathfinder simulations C. Giocoli et al. 2018 [arXiv:1806.04681]

Sample the joint parameter space of f(R) gravity and massive neutrino cosmologies Performed with MG-Gadget code, which implements the extra fifth-force and screening

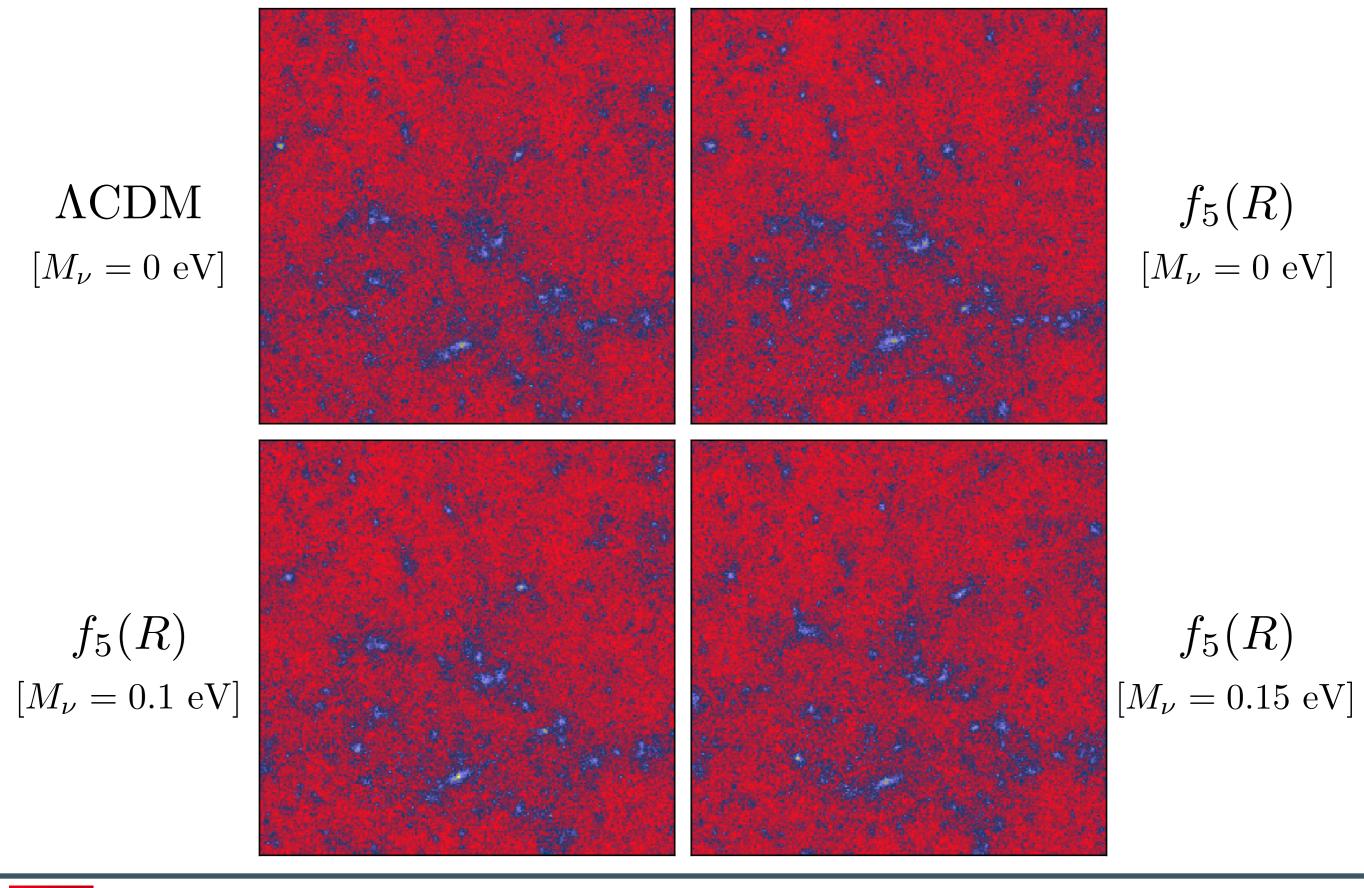

Simulation Name	Gravity type	f_{R0}	$m_{\nu} \; [\mathrm{eV}]$	Ω_{CDM}	$\Omega_{ u}$	$m_{\mathrm{CDM}}^p \; [\mathrm{M}_{\odot}/\mathrm{h}]$	$m_{\nu}^{p} [\mathrm{M}_{\odot}/\mathrm{h}]$
ΛCDM	GR	_	0	0.31345	0	8.1×10^{10}	0
fR4	f(R)	-1×10^{-4}	0	0.31345	0	8.1×10^{10}	0
fR5	f(R)	-1×10^{-5}	0	0.31345	0	8.1×10^{10}	0
fR6	f(R)	-1×10^{-6}	0	0.31345	0	8.1×10^{10}	0
fR4-0.3eV	f(R)	-1×10^{-4}	0.3	0.30630	0.00715	7.92×10^{10}	1.85×10^{9}
$\mathrm{fR}5\text{-}0.15\mathrm{eV}$	f(R)	-1×10^{-5}	0.15	0.30987	0.00358	8.01×10^{10}	9.25×10^{8}
fR5-0.1eV	f(R)	-1×10^{-5}	0.1	0.31107	0.00238	8.04×10^{10}	6.16×10^{8}
fR6-0.1eV	f(R)	-1×10^{-6}	0.1	0.31107	0.00238	8.04×10^{10}	6.16×10^{8}
$\mathrm{fR6}\text{-}0.06\mathrm{eV}$	f(R)	-1×10^{-6}	0.06	0.31202	0.00143	8.07×10^{10}	3.7×10^8

DUSTGRAIN-pathfinder simulations C. Giocoli et al. 2018 [arXiv:1806.04681]

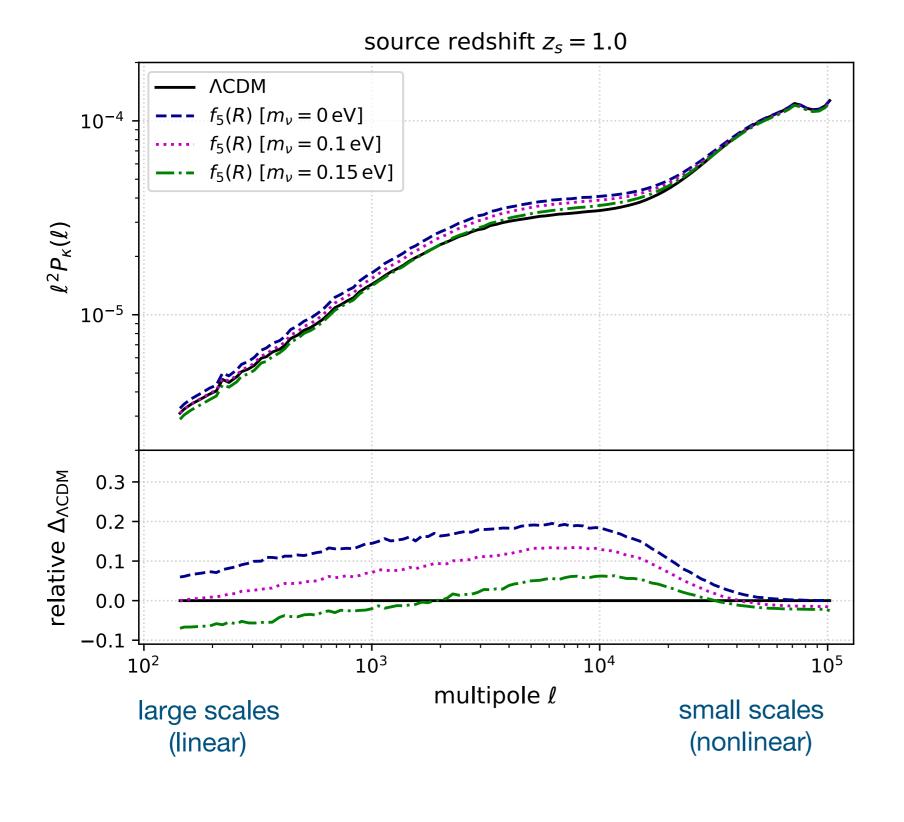
Sample the joint parameter space of f(R) gravity and massive neutrino cosmologies Performed with MG-Gadget code, which implements the extra fifth-force and screening



	Simulation Name	Gravity type	f_{R0}	$m_{\nu} \; [\mathrm{eV}]$	Ω_{CDM}	$\Omega_{ u}$	$m_{\mathrm{CDM}}^p \; [\mathrm{M}_{\odot}/\mathrm{h}]$	$m_{\nu}^{p} \left[\mathrm{M}_{\odot} / \mathrm{h} \right]$
1	$\Lambda \mathrm{CDM}$	GR	_	0	0.31345	0	8.1×10^{10}	0
	fR4	f(R)			0.31345		8.1×10^{10}	
2	fR5	f(R)	-1×10^{-5}	0	0.31345	0	8.1×10^{10}	0
	fR6	f(R)			0.31345		8.1×10^{10}	
	fR4-0.3eV	f(R)		0.3	0.30630	0.00715	7.92×10^{10}	1.85×10^9
3	$\mathrm{fR}5\text{-}0.15\mathrm{eV}$	f(R)	-1×10^{-5}	0.15	0.30987	0.00358	8.01×10^{10}	9.25×10^{8}
4	fR5-0.1eV	f(R)	-1×10^{-5}	0.1	0.31107	0.00238	8.04×10^{10}	6.16×10^{8}
	fR6-0.1eV	f(R)		0.1	0.31107	0.00238	8.04×10^{10}	6.16×10^{8}
	fR6-0.06eV	f(R)	-1×10^{-6}	0.06	0.31202	0.00143	8.07×10^{10}	3.7×10^{8}



Weak lensing maps from ray tracing



Convergence power spectra

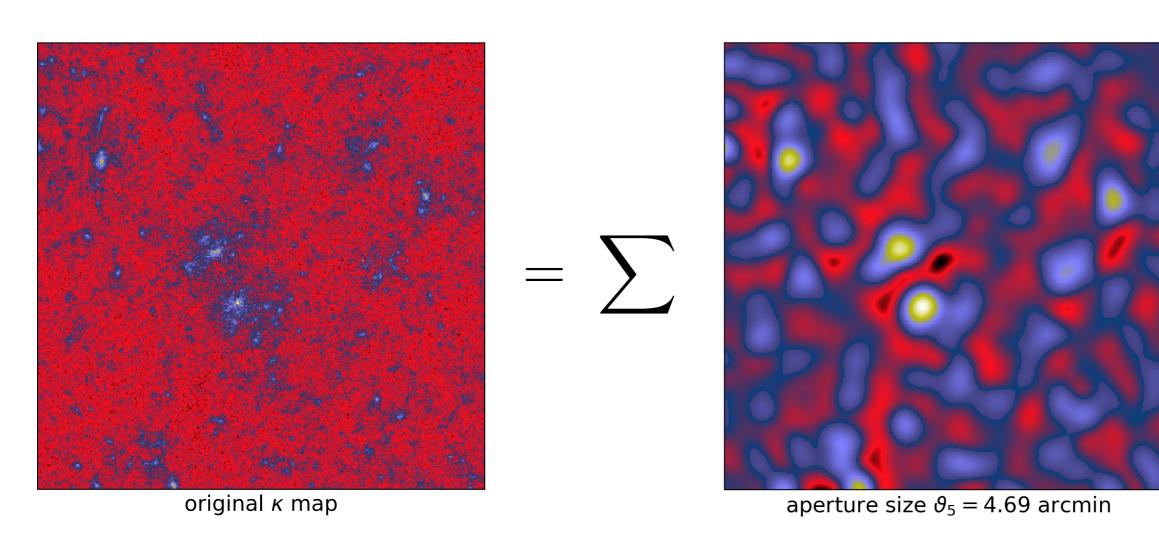
 $M_{\nu}[\mathrm{eV}]$

- 0 farther from Λ CDM
- 0.1 intermediate
- 0.15 closer to Λ CDM

neutrinos suppress the growth of structure

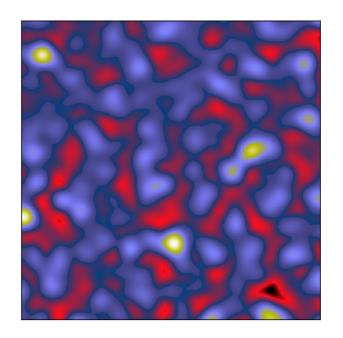
Outline

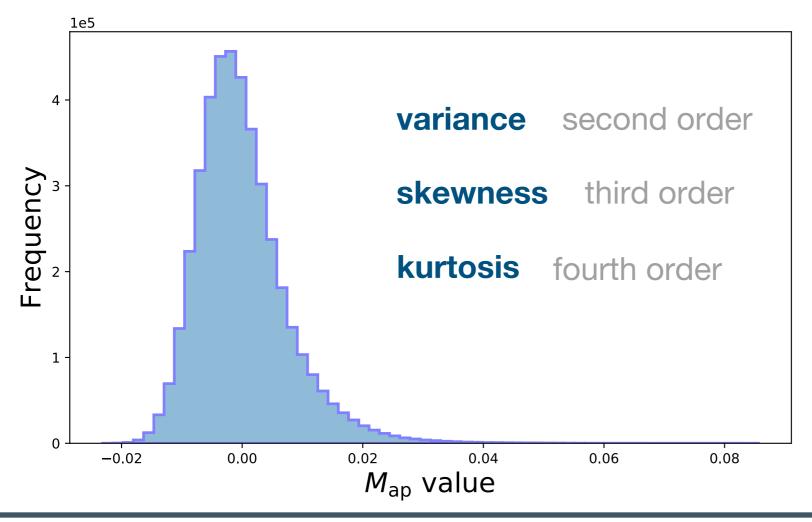
- 1. Modified gravity simulations
- 2. Data representations
- 3. ML network architecture
- 4. Classifying cosmological models
- 5. Summary

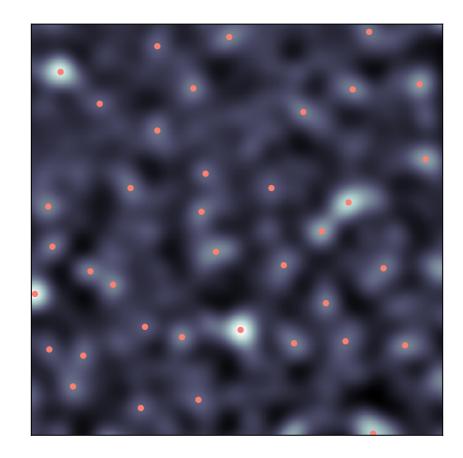


Aperture mass

isotropic filter function
$$M_{\rm ap}({\bm \theta};\vartheta) = \int \, \mathrm{d}^2 \theta' \, {\bm U}_{\vartheta}(|{\bm \theta}'-{\bm \theta}|) \, {\bm \kappa}({\bm \theta}')$$
 convergence map

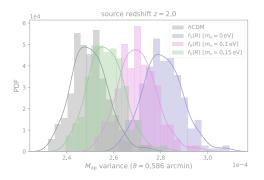

implemented as a wavelet transform (starlet)

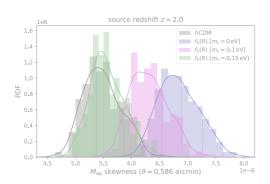

Aperture mass map at scale j

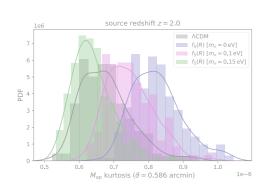

$$M_{\rm ap}({\rm model}, \vartheta_j, z_s) =$$

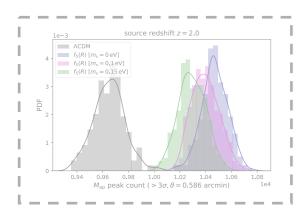
$$5 \times 5 \, \mathrm{deg}^2$$

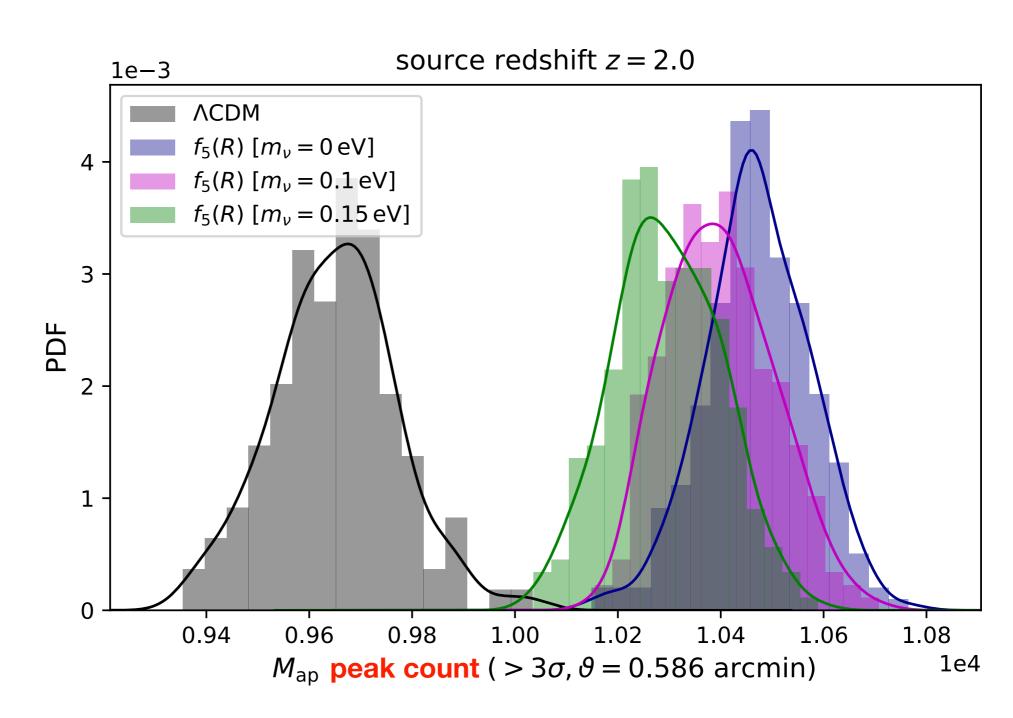
 400×400 shown, but 2048×2048 in practice



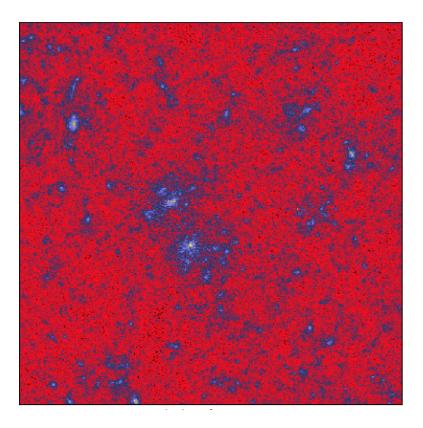



peak count





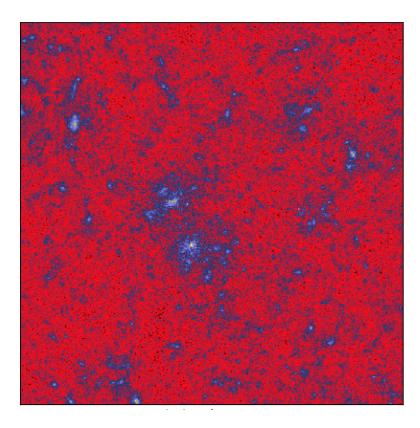
Distributions of observables



Can a neural network do better?

Let's recall the data

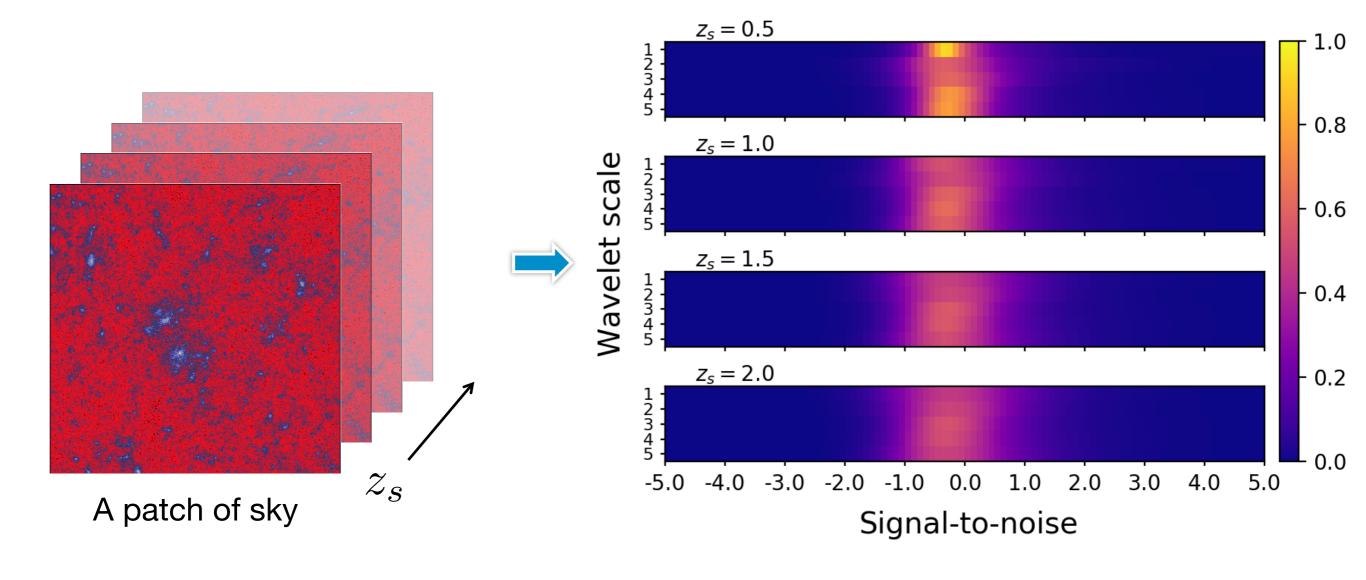
4,194,304 pixels per map


- x (256 maps per model)
- x (4 source redshifts)
- x (4 cosmological models)

=

Can a neural network do better?

Let's recall the data

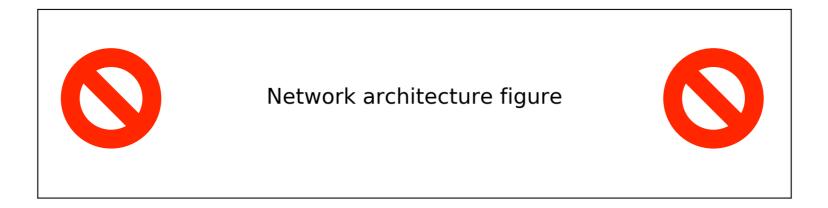


4,194,304 pixels per map

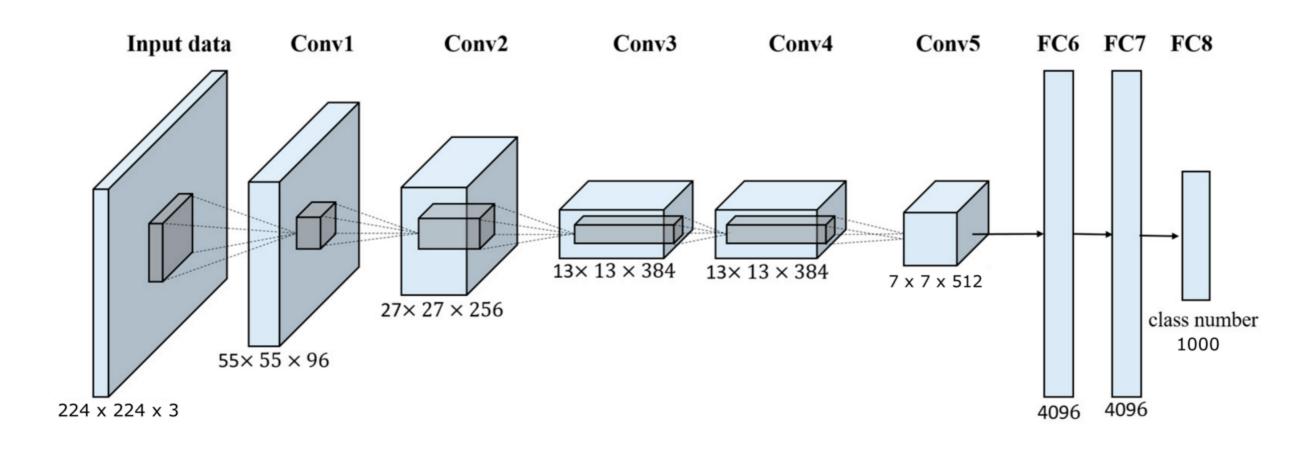
- x (256 maps per model)
- x (4 source redshifts)
- x (4 cosmological models)
- = a computational challenge

A dimensionally reduced data representation

reduction factor of ~8400


Outline

- 1. Modified gravity simulations
- 2. Data representations
- 3. ML network architecture
- 4. Classifying cosmological models
- 5. Summary


Network architecture

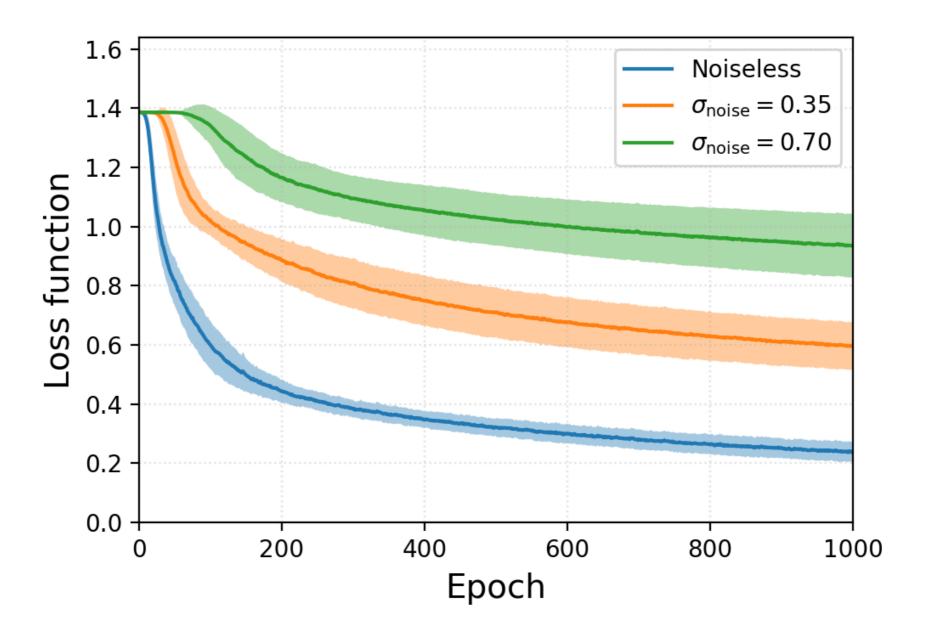
Network architecture

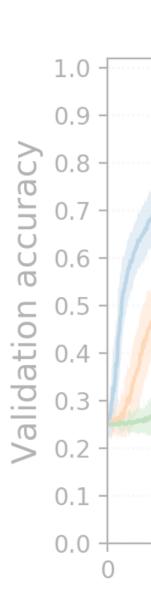

(the dream)



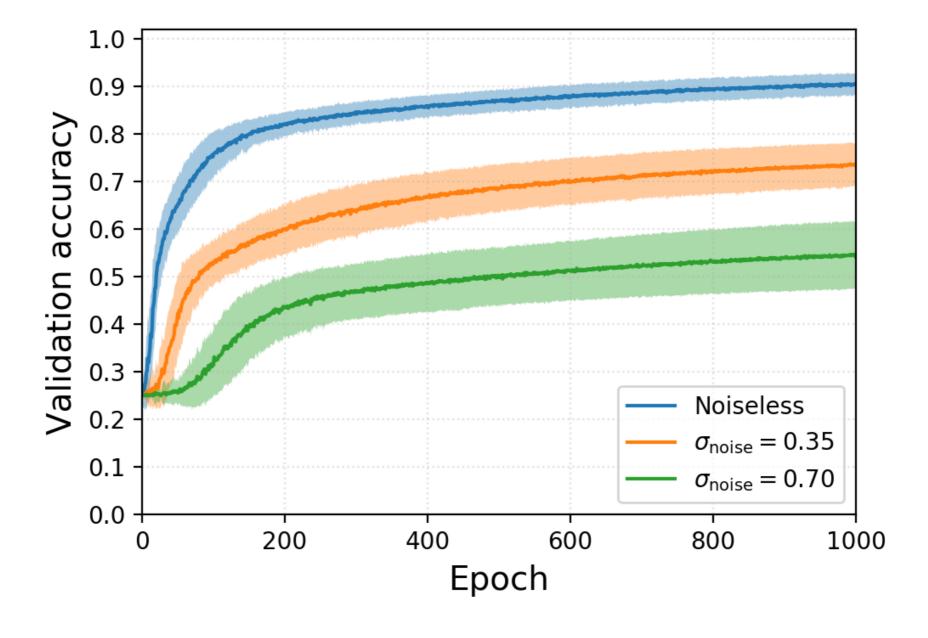
Network architecture

Convolutional neural network (CNN) classification problem

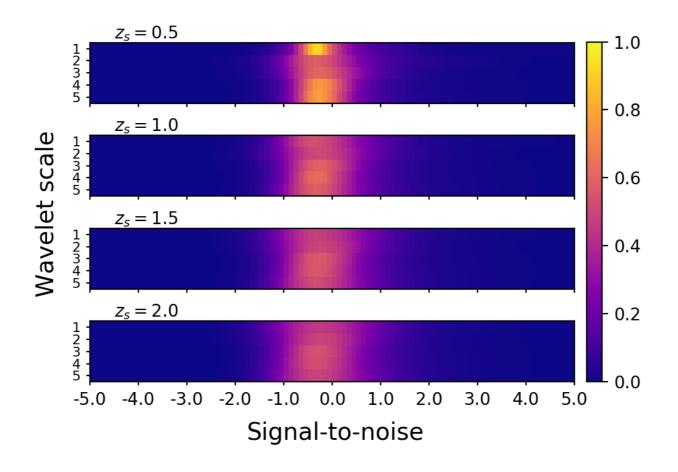



Layer type	Output shape	# params
Input layer	$1 \times 4 \times 5 \times 100$	0
Conv 3D $[2 \times 3 \times 10]$	$8 \times 4 \times 5 \times 100$	448
Conv 3D $[2 \times 3 \times 10]$	$8 \times 4 \times 5 \times 100$	3848
Max pooling $[1 \times 1 \times 5]$	$8\times4\times5\times20$	0
Conv 3D $[2 \times 3 \times 10]$	$8\times4\times5\times20$	3848
Max pooling $[1 \times 1 \times 2]$	$8 \times 4 \times 5 \times 10$	0
Dropout $[0.3]$	$8 \times 4 \times 5 \times 10$	0
Flatten	1600	0
Fully connected	32	51232
Fully connected	16	528
Fully connected	4	68

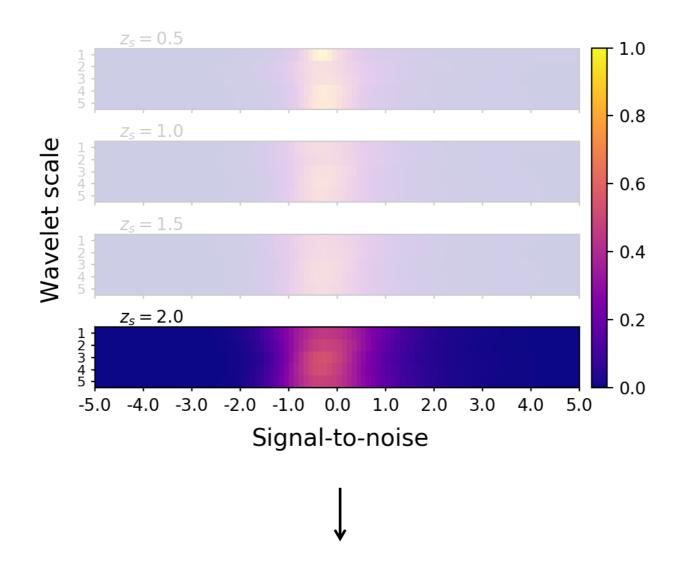
Performance measures



Performance measures


Outline

- 1. Modified gravity simulations
- 2. Data representations
- 3. ML network architecture
- 4. Classifying cosmological models
- 5. Summary


A warm up with only one redshift

A warm up with only one redshift

Single source redshift ($z_s = 2.0$)

Prediction

Convolutional neural network (2D)

	$\sigma_{noise} = 0$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Iruth	ΛCDM	0.98	0.00	0.00	0.02
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.83	0.17	0.00
	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	0.00	0.19	0.72	0.09
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.01	0.00	0.08	0.90

Prediction

	$\sigma_{noise} = 0$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_v = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	1.00	0.00	0.00	0.00
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.49	0.42	0.09
	$f_5(R) \ M_{\nu} = 0.1 \text{ eV}$	0.00	0.33	0.45	0.22
	$f_5(R)$ $M_v = 0.15 \text{ eV}$	0.00	0.09	0.25	0.66

Single source redshift ($z_s = 2.0$)

Prediction

Convolutional neural network (2D)

	$\sigma_{noise} = 0$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_v = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$	
Iruth	ΛCDM	0.98	0.00	0.00	0.02	
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.83	0.17	0.00	
	$f_5(R) \ M_{\nu} = 0.1 \text{ eV}$	0.00	0.19	0.72	0.09	
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.01	0.00	0.08	0.90	

Prediction

	$\sigma_{noise} = 0$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_v = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	1.00	0.00	0.00	0.00
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.49	0.42	0.09
	$f_5(R) \ M_{\nu} = 0.1 \text{ eV}$	0.00	0.33	0.45	0.22
	$f_5(R)$ $M_v = 0.15 \text{ eV}$	0.00	0.09	0.25	0.66

Single source redshift ($z_s = 2.0$)

Prediction

Convolutional neural network (2D)

		r rediction					
	$\sigma_{noise} = 0.35$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$		
Iruth	ΛCDM	0.79	0.00	0.03	0.18		
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.76	0.22	0.01		
	$f_5(R) \ M_{\nu} = 0.1 \text{ eV}$	0.02	0.26	0.54	0.17		
	$f_5(R)$ $M_v = 0.15 \text{ eV}$	0.22	0.01	0.18	0.59		

Prediction

	$\sigma_{noise} = 0.35$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.30	0.11	0.30	0.29
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.11	0.38	0.37	0.14
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.19	0.28	0.33	0.21
	$f_5(R)$ $M_v = 0.15 \text{ eV}$	0.29	0.14	0.29	0.28

noise level pessimistic

Single source redshift ($z_s = 2.0$)

Prediction

Convolutional neural network (2D)

	$\sigma_{noise} = 0.7$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$	
Iruth	ΛCDM	0.44	0.02	0.18	0.36	
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.02	0.69	0.24	0.04	
	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	0.12	0.31	0.39	0.18	
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.32	0.02	0.19	0.47	

Prediction

	$\sigma_{ m noise} = 0.7$	ΛCDM	$f_5(R)$ $M_{\nu} = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.25	0.25	0.25	0.25
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.25	0.25	0.25	0.25
	$f_5(R) \ M_{\nu} = 0.1 \text{ eV}$	0.25	0.25	0.25	0.25
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.25	0.25	0.25	0.25

Back to the 3D problem

Convolutional neural network (2D)

$f_{\varepsilon}(R)$

	$\sigma_{noise} = 0$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_v = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.98	0.00	0.00	0.02
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.83	0.17	0.00
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.00	0.19	0.72	0.09
	$f_5(R)$ $M_v = 0.15 \text{ eV}$	0.01	0.00	0.08	0.90

Prediction

Prediction

	$\sigma_{noise} = 0$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_v = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	1.00	0.00	0.00	0.00
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.86	0.14	0.00
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.00	0.15	0.80	0.05
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.00	0.00	0.04	0.96

Convolutional neural network (3D)

Convolutional neural network (2D)

Prediction

	$\sigma_{noise} = 0.35$	ΛCDM	$f_5(R)$ $M_{\nu} = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.79	0.00	0.03	0.18
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.76	0.22	0.01
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.02	0.26	0.54	0.17
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.22	0.01	0.18	0.59

Prediction

	$\sigma_{noise} = 0.35$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.87	0.00	0.02	0.11
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.00	0.76	0.23	0.01
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.03	0.23	0.58	0.16
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.11	0.00	0.15	0.73

Convolutional neural network (3D)

noise level pessimistic

Convolutional neural network (2D)

Prediction

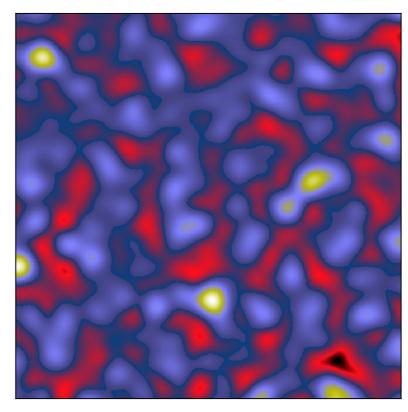
	$\sigma_{noise} = 0.7$	ΛCDM	$f_5(R)$ $M_{\nu} = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.44	0.02	0.18	0.36
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.02	0.69	0.24	0.04
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.12	0.31	0.39	0.18
	$f_5(R)$ $M_v = 0.15 \text{ eV}$	0.32	0.02	0.19	0.47

Prediction

	$\sigma_{noise} = 0.7$	ΛCDM	$f_5(R)$ $M_v = 0 \text{ eV}$	$f_5(R)$ $M_{\nu} = 0.1 \text{ eV}$	$f_5(R)$ $M_v = 0.15 \text{ eV}$
Truth	ΛCDM	0.50	0.02	0.18	0.30
	$f_5(R)$ $M_v = 0 \text{ eV}$	0.02	0.70	0.25	0.03
	$f_5(R)$ $M_v = 0.1 \text{ eV}$	0.15	0.28	0.42	0.15
	$f_5(R)$ $M_{\nu} = 0.15 \text{ eV}$	0.28	0.02	0.15	0.55

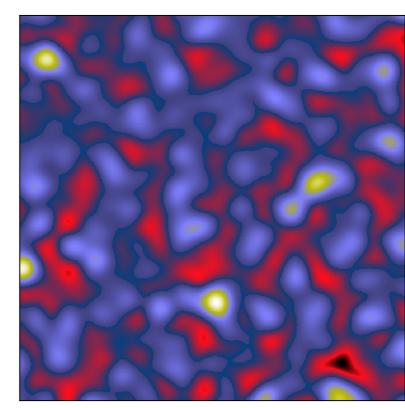
Convolutional neural network (3D)

Outline


- 1. Modified gravity simulations
- 2. Data representations
- 3. ML network architecture
- 4. Classifying cosmological models
- 5. Summary

To sum up

- MG + neutrinos can mimic ΛCDM at the background and linear level
- Weak-lensing observations accessing non-Gaussian information can be used to break degeneracies
- In particular, peak counts generally outperform higher (than second)
 order moments of the aperture mass
- Machine learning can do even better, especially in the presence of noise



To sum up

- MG + neutrinos can mimic ΛCDM at the background and linear level
- Weak-lensing observations accessing non-Gaussian information can be used to break degeneracies
- In particular, peak counts generally outperform higher (than second)
 order moments of the aperture mass
- Machine learning can do even better, especially in the presence of noise

Room for improvement

- The noise-free case still isn't perfect
- May be worth including a separate denoising step
- Regression vs. classification
- Ultimately test on real data

Thank you

