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Studying brain activity through electromagnetic signals

I Brain (electrical) activity produces an electromagnetic field.
I This can be measured with EEG or MEG.

2/35



Goal: Study Oscillation in Neural Data

Oscillations are believed to play an important role in cognitive functions.

Many studies rely on Fourier or wavelet analyses:

I Easy interpretation,

I Standard analysis e.g. canonical bands alpha, beta or theta.
[Buzsaki, 2006]

3/35



Goal: Study Oscillation in Neural Data

However, some brain rhythms are not sinusoidal, e.g.mu-waves [Hari, 2006]

and filtering degrades waveforms

⇒ Can we do better with data-driven approach?
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Extracting shift invariant patterns

Key idea: decouple the localization of the patterns and their shape

Convolutional
Dictionary Learning:
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Shift-invariant Patterns in images

Images also have shift-invariant patterns that we might want to detect.
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Convolutional Dictionary Learning

Convolutional Dictionary Learning (CDL) [Grosse et al., 2007]
For a set of N univariate signals xn, solve

min
dk ,zn

k

N∑
n=1

1
2
‖xn −

K∑
k=1

zn
k ∗ dk‖22 + λ

K∑
k=1

‖zn
k ‖1 (1)

Hypothesis: patterns dk are not present everywhere in the signal. They are
localized in time.

⇒ Sparse activation signals z

Extra hypothesis: the patterns are in the `2-ball: ‖dk‖22 ≤ 1.
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Optimization strategy

The problem 1 is not jointly convex in zn
k , and dk it is convex in each block

of coordinate.

Alternate minimization (a.k.a. Bloc Coordinate Descent):

I Z-step: given a fixed estimate of the atom, compute the activation
signal zn

k associated to each signal X n.

I D-step: given a fixed estimate of the activation, update the atoms in
the dictionary dk .
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Convolutional Sparse Coding with Locally Greedy
Coordinate Descent (LGCD)

References

I Moreau, T., Oudre, L., and Vayatis, N. (2018). DICOD: Distributed
Convolutional Sparse Coding. In International Conference on Machine
Learning (ICML), pages 3626–3634, Stockohlm, Sweden. PMLR (80)
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Convolutional Sparse Coding

N independent problem such that

min
zn
k

E (zn) =
1
2

∥∥∥∥∥xn −
K∑

k=1

zn
k ∗ dk

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖zn
k ‖1 .

This problem is convex in zk and can be solved with different techniques:
I Greedy CD [Kavukcuoglu et al., 2010]

I Fista [Chalasani et al., 2013]

I ADMM [Bristow et al., 2013]

I L-BFGS [Jas et al., 2017]

⇒ These methods can be slow for long signals as the complexity of
each iteration is at least linear in the length of the signal.
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Greedy coordinate descent (GCD) [Kavukcuoglu et al., 2010]

For the Greedy Coordinate Descent, only 1 coordinate is updated at each
iteration:

1. The coordinate zk0 [t0] is updated to its optimal value z ′k0 [t0] when all
other coordinate are fixed:

z ′k [t] = max

(
βk [t]− λ
‖dk‖22

, 0
)
,

with βk [t] =
[(

X −
∑K

l=1 zl ∗ dl + zk [t]et ∗ dk

)
∗ d�k

]
[t]

2. Greedy coordinate selection:

(k , t) = argmax
(k,t)

|zk [t]− z ′k [t]|
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Locally greedy coordinate descent (LGCD) [Moreau et al., 2018]

We introduced the LGCD method which is an extension of GCD.

coordinates of Z

C1 C2 C3

coordinates of Z

GCD has O(KT ) computational complexity.

With a partition Cm of the signal domain J1,KK× J0,T K,

Cm = J1,KK× J
(m − 1)T̃

M
,
mT̃
M

K

The coordinate to update is chosen greedily on a sub-domain Cm

O(Coordinate selection) = O(Coordinate Update)

The overall iteration complexity is O(KL) instead of O(KT ).

⇒ Efficient for sparse Z
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Fast optimization

Comparison of the coordinate selection strategy for CD on simulated signals
We set K = 10, L = 150, λ = 0.1λmax
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Distributed optimization for CSC

References

I Moreau, T. and Gramfort, A. (2019). Distributed Convolutional Dictionary
Learning (DiCoDiLe): Pattern Discovery in Large Images and Signals. preprint
ArXiv (to be submitted)
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Weak dependence of the coordinate updates

The update of the W coordinates (kw , ωw )W
w=1 with additive update

∆Zkw [ωw ] changes the cost by:

∆E =

iterative steps︷ ︸︸ ︷
W∑
i=1

∆Ew −
∑

w 6=w ′

(dkw ∗ d�kw ′ )[ωw ′ − ωw ]∆Zkw [ωw ]∆Zkw ′ [ωw ′ ]︸ ︷︷ ︸
interference

,

⇒ If the updates are far enough, they can be considered as
independent.
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Distributed Convolutional Coordinate Descent (DICOD)

2L− 1

coordinates of Z

S1 S2

I Split the coordinates in continuous sub-segment Sw =
[

(w−1)T
W , wT

W

[
.

I Use Greedy updates in parallel in each sub-segment.

I Notify neighbor workers when the update is on the border of Sw .

This algorithm converges to the solution of the CSC for 1D signals but not
for higher dimension signals such as images.
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Distributed Convolutional Dictionary Learning (DiCoDiLe-Z)

I Extension of DICOD for high dimensional signals.

I Use LGCD locally in each workers (better iteration complexity).

I Use Soft-locks to avoid interference (ensure convergence).
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Distributed Convolutional Dictionary Learning (DiCoDiLe-Z)

I Update candidate ω0
is independent of
other workers as

V(ω0) ⊂ Sw

Sw
Sw−1 Sw+1

Sw−W1−1 Sw−W1 Sw−W1+1

Sw+W1 Sw+W1+1

T/W2

T/W1
L L

ω0
·

ω1
·
k1, ω1,∆Zk1 [ω1]

ω2
·

k2, ω2,∆Zk2 [ω2]

Sw V(ωi) BL(Sw) EΘ(Sw)

Soft-lock area

18/35



Distributed Convolutional Dictionary Learning (DiCoDiLe-Z)

I Update candidate ω1
impacts Sw+1

V(ω1) 6⊂ Sw

I It is accepted only is
no better update is
possible in the
"soft-locked" area.

I Need to notify Sw+1.
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Distributed Convolutional Dictionary Learning (DiCoDiLe-Z)

I Updates in ω2 need
to notify worker w to
maintain consistent
estimate in the border
zone BL(Sw ).

I Low communication:
decentralized and
below 1ko.

Sw
Sw−1 Sw+1

Sw−W1−1 Sw−W1 Sw−W1+1

Sw+W1 Sw+W1+1

T/W2

T/W1
L L

ω0
·

ω1
·
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ω2
·
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Numerical speed-up
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Rank-1 Constrained Convolutional Dictionary Learning

References

I Dupré la Tour, T., Moreau, T., Jas, M., and Gramfort, A. (2018).
Multivariate Convolutional Sparse Coding for Electromagnetic Brain Signals.
In Advances in Neural Information Processing Systems (NeurIPS), pages
3296–3306, Montreal, Canada

20/35



D-step: solving for the atoms

The dictionary update is performed by minimizing

min
‖dk‖2≤1

E ({dk}k)
∆
=

N∑
n=1

1
2
‖X n −

K∑
k=1

zn
k ∗ dk‖22 . (2)

Computing ∇dkE ({dk}k) can be done efficiently

∇dkE ({dk}k) =
N∑

n=1

(zn
k )� ∗

(
xn −

K∑
l=1

zn
l ∗ dl

)
= Φk −

K∑
l=1

Ψk,l ∗ dl ,

⇒ Save with Projected Gradient Descent (PGD) with an Armijo
backtracking line-search for the d-step [Wright and Nocedal, 1999].
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How to extend CSC to multivariate signals?

We can just use multivariate convolution,

X [t]︸︷︷︸
∈RP

=
K∑

k=1

(zk ∗DDDk) [t] =
K∑

k=1

L∑
τ=1

zk [t − τ ]DDDk [τ ]︸ ︷︷ ︸
∈RP

with:
I X a multivariate signal of length T in RP

I DDDk a multivariate signal of length L in RP

I zk a univariate activation signal of length T̃ = T − L + 1

However, this model does not account for the physics of the problem.
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EM wave diffusion

I Recording here with 8 sensors

I EM activity in the brain
I The electric field is spread linearly and instantaneously over all

sensors (Maxwell equations)
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Multivariate CSC with rank-1 constraint

Idea: Impose a rank-1 constraint on the dictionary atoms Dk

To make the problem tractable, we decided to use auxiliary variables uk and
vk s.t. Dk = ukvk>.

min
uk ,vk ,zn

k

N∑
n=1

1
2

∥∥∥∥∥X n −
K∑

k=1

zn
k ∗ (ukv>k )

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖zn
k ‖1 ,

s.t. ‖uk‖22 ≤ 1 , ‖vk‖22 ≤ 1 and zn
k ≥ 0 .

(3)

Here,
I uk ∈ RP is the spatial pattern of our atom
I vk ∈ RL is the temporal pattern of our atom
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Update in uk and vk

The problem is not jointly convex in uk and vk .

Use an alternate minimization on these two blocks.

The gradient can also be computed using sufficient statistics φ and ψ:

∇ukE ({uk}k , {vk}k) = ∇DkE ({uk}k , {vk}k)vk ∈ RP ,

∇vkE ({uk}k , {vk}k) = u>k ∇DkE ({uk}k , {vk}k) ∈ RL ,
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Fast optimization

Comparison with multivariate methods on somato dataset with
T = 134, 700, K = 8, P = 5 and L = 128

λ= 0.3 λ= 1.0 λ= 3.0 λ= 10.0

103

Ti
m

e 
(s

)

Wohlberg (2016) Proposed (multivariate) Proposed (rank-1)
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Pattern recovery

Patterns recovered with P = 1 and P = 5. The signals were generated with
the two simulated temporal patterns and with σ = 10−3.

0 10 20 30 40 50 60
Times

0.3
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0.1

0.0
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s
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Pattern recovery

Evolution of the recovery loss with σ for different values of P . Using more
channels improves the recovery of the original patterns.
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Experiments on REal Data

Good time to wake-up if you got lost in the previous section!
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MNE somatosensory data

A selection of temporal waveforms of the atoms learned on the MNE sample
dataset.
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MNE somatosensory data

Atoms revealed using the MNE somatosensory data. Note the non-sinusoidal
comb shape of the mu rhythm.
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Encoding HST images with CDL

Atoms 32× 32 learned
with DiCoDiLe on image
STScI-H-2016-39-a
(resolution 6000× 3664).

The atoms are order with
‖Zk‖1.
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Conclusion

LGCD and DiCoDile: Efficient algorithm to scale Convolutional
Dictionary Learning to large signals.

Rank-1 constraints: Adapt the constraints to the type of patterns
researched.

Ahead of us:

I Scale invariant atoms?

I Pattern detection with extra prior:
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Thanks!

Code available online:

alphacsc : alphacsc.github.io

DICOD (& DiCoDiLe soon) : github.com/tommoral/dicod

Slides are on my web page:

tommoral.github.io @tomamoral
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