Exploring dark matter substructures with gravitational lensing

Ran Li (李 然) National astronomical Observatories of China

French-Chinese Days on Weak Lensing 5 Oct 2018

Structure formation in CDM universe

Merger Tree

Dark matter halo

Weak lensing of nearby clusters

• Okabe et al. 2014

Stacking

Li et al. 2013

Measuring subhalo mass of stacked satellite galaxies

Select satellites directly : Group finder

Yang, Mo and vdBosch 2007, using SDSS spectroscopic sample

I.A self-calibrated FOF method.

2. Assign all galaxies to groups.

2.Estimate group mass by abundance matching.

Catalogue	sky cov	redshift	galaxies	groups	groups(N=1)	groups(N=2)	groups(N=3)	groups(N>3)
Sample I	4514	0.01-0.20	362356	295992	266763	19522	4511	5196
Sample II	4514	0.01-0.20	369447	301237	271420	19868	4619	5330
Sample III	4514	0.01-0.20	408119	300049	250492	33537	7848	8172

Satellite lensing in CFHT/Stripe82 data

Lensing around satellites in groups with mass>5x10^13 solar mass

.03

CFHT/CS82 data + Cluster satellite

Li et al. 2016, 458, 2573

3.3 keV WDM, COCO simulations Bose et al. 2017 The power spectrum of this WDM model is also very similar to the "coldest" 7 kev sterile neutrino

Dark matter

COCO simulations Bose+ 2016

z = 6, WDM

z = 6, CDM

Li et al. 2016 arxiv 1512.06507

How to find small haloes? Most very small haloes don't form galaxy

Substructure detection in strong lenses

Li et al. 2016 arxiv 1512.06507

Perturbing Einstein ring

Perturber mass function

Li et al. 2016,2018

M_low=10^7 Msun Upper: N_lens=20 Lower: N_Lens=100

Forecast

Voronoi Source Reconstruction

PyAutoLens By Nightingale James

PyAutoLens By Nightingale James

Subhalo on Einstein ring

10⁸Msun

Vegetti et al. 2012

Not significant enough

Sensitivity function

Lenses in Vegetti et al. 2014

Globular clusters

- There are ~1000 of globular clusters in massive early galaxies.
- The GCs can dominate the subhaloes around the Einstein radius.

QHH, RL et al. 2018

Effects of Globular Clusters

2018) HH, RL et al

NFW

NFW fit GC

Strong lensing working group

- Member: Ran Li (NAOC), Nan Li (Nottingham), Dezi Liu (YNU), Guoliang Li (PMO), Xiaoyue Cao (NAOC), Ye Cao (NAOC), Yun Chen (NAOC), Yiping Shu (NAOC), Xin Wang (UCLA), Xiaolei Meng (Tsinghua), Dandan Xu (Tsinghua)....
- Email list <u>CSST_SLWG@googlegroups.com</u>
- Collaboration tool: https://tiangongslwg.slack.com/
- http://linan7788626.github.io/ TiangongSurveyStrongLensingWorkingGroup/
- Currently, aim to construct a set of strong lensing simulations and produce some forecast papers.

Expectation for CSS-OS

- ~150000 galaxy scale strong lens systems (currently ~400), Including ~1000 double lens system
- Hundreds of massive clusters with many multiple images
- Accurate photo-z for both lens and source.

Strong lensing science cases of CSS-OS

- Abundance of dark matter substructure and identity of dark matter
- Testing GR

.

- Inner density structure of galaxy clusters
- Galaxy mass and structure
- Dark matter fraction within galaxies and clusters
- Shape of dark matter haloes
- Evolution of Early type galaxies

Strong lensing science cases of CSS-OS

- Abundance of dark matter substructure and identity of dark matter
- Testing GR

.

- Density structure of galaxy clusters
- Galaxy mass and structure
- Dark matter fraction within galaxies and clusters
- Shape of dark matter haloes
- Evolution of Early type galaxies

MOCK data for CSS-OS

Some mock data

Summary

- Galaxy-galaxy lensing can be a powerful tool to measure subhalo mass for satellite galaxies in groups and clusters.
- Subhaloes detected from Einstein ring systems provide a promising way to distinguish WDM and CDM model.
- 20 lenses with M_low=1e7 Msun, or 100 lenses with M_low=1e8 Msun can put strong constraints on WDM
- LOS haloes dominate the total number of perturbers.
- Understanding the sensitivity function is very important for constraining the SHMF.

Globular clusters

- There are ~1000 of globular clusters in massive early galaxies.
- The GCs can dominate the subhaloes around the Einstein radius.

Effects of Globular Clusters

QHH, RL et al 2018

NFW

NFW fit GC

Lyman-alpha forest

