Higher Order Weak Lensing Statistics (Howl's)

Kick-off telecon - October 9th

HOWL'S Project

- Joint project:
 - WP Mass Mapping (Sandrine Pires, Nicolas Martinet)
 - WP Higher Order Statistics (Vincenzo Cardone, Ismael Tereno)
 - Simulations (Carlo Giocoli)
- Goals:
 - Compare different HOS of the mass maps: e.g. peaks, minkowski functionals, ...
 - Quantify the effects of the reconstruction on these statistics
 - ➤Common set of mass maps!

Simulations

- DUSTGRAIN-pathfinder simulations (Giocoli et al. 2018)
- Parameters:

N. part	Box-size	М
768 ³	750 Mpc/h	$8.1 \times 10^{10} M^{sun}/h$

 LCDM + f(R) modified gravity + various neutrino masses

First step: input

- LCDM simulations
- 256 noiseless convergence maps
 - Input convergence map from simulations
 - 5° x 5°
 - 2048 x 2048
 - Redshift distribution : z_s = 2
- 256 noisy convergence maps
 - n_g = 30 gal/arcmin2, sigma_e/component = 0.3
 - Gaussian noise with zero mean and sigma_kappa = sigma_e/sqrt(n_g*pixel_area)

First step: output

- Data vectors for every statistics
- How correlated are the different statistics?
- Answer at the WL+GC SWG meeting in Milan (3-6 Dec)

Joint peaks/2pcf correlation matrix for KiDS-450 simulations (Martinet et al. 2018)

Next steps

- Use reconstructed convergence maps (KS93, inpainting, Map,...)
- Compare data vectors for various cosmologies
- Propagate to cosmological constraints
- Test various mass map reconstruction effects (masks, boundaries)
- Allow participants to test there own reconstruction

Estimators (add your name)

Peaks: Sandrine, Austin, Dipak

Minkowski functionals: Martina, Dipak

HO moments: Sandrine, Martina, Austin, Dipak

Shear 2pcf: Martin

Convergence 2pcf: Sandrine, Carolina, Dipak

Kappa power spectrum and bispectrum - halo model : Matteo Rizzato, Dipak, Fabien

Machine Learning: Austin, Julian

- 18 project members
- 9 participants
- 7 statistics

Do we need to include galaxies below Euclid VIS detection limit in the calibration simulations?

Martinet, Schrabback, Hoekstra, Tewes, Herbonnet, Schneider, Hernandez, et al. to be revised by OU-SHE/SWG-WL

Simulations without noise

Bright gal (mag<24.5) & faint gal (24.5<mag<29)

Bright gal (mag<24.5)

Simulations with noise

Defining Euclid-like simulations (see also Tewes et al. 2018)

Galaxies flux:

$$F^{\text{ADU}} = \frac{t_{\text{exp}}}{gain} 10^{-(mag-ZP)/2.5}$$

Gaussian noise:

$$F_{\text{sky}}^{\text{e}^{-}/\text{pixel}} = l^{2} t_{\text{exp}} 10^{-(sky_{\text{bkg}}-ZP)/2.5}$$

$$\sigma_{\text{bkg}}^{\text{e}^{-}/\text{pixel}} = \sqrt{F_{\text{sky}}^{\text{e}^{-}/\text{pixel}} + \sigma_{\text{readout}}^{2}}$$
Sky background CCD readout noise noise

ZP adatpted so that a galaxy with mag=24.5 has a SNR of 10 (Cropper et al. 2016)

ZP = 24.0

 $t_{exp} = 3 \times 565 \text{ s}$ (Laureijs et al. 2011) l = 0.1 arcsec (Laureijs et al. 2011) $gain = 3.1 \text{ electrons.ADU}^{-1}$ (Niemi et al. 2015)

 sky_{bkg} = 22.35 mag.arcsec⁻² (Refregier et al. 2010)

 $\sigma_{\mathrm{readout}}$ = 4.2 electrons (Cropper et al. 2016)

PSF and galaxy properties

PSF

 Sum of three Airy PSF (diameter=1.2m, obscuration=0.3m), with λ=[600nm, 700nm, 800nm]

NUMBER OF GALAXIES

• $N = \left(\frac{\sigma_{\varepsilon}}{|g| * \sigma_{\mu}}\right)^2$

GALAXIES

- Galaxy properties and clustering measured on UDF data (12 arcmin²)
- Single Sersic profiles
- Bright galaxies 20.5<mag<24.5, faint galaxies 24.5<mag<29
- Galaxy patch size: 6.4"x6.4"

- $\sigma_{\epsilon}=0.26$, |g|=0.03, $\sigma_{\mu}=2x10^{-4} \rightarrow 1.9x10^{9}$ galaxies
- A few 10ms/galaxy -> a few 10 000 hours (+ shape measurement)
- Some tricks to reduce the number of galaxies (shape noise and sky noise cancellation)

Observed galaxy properties (UDF)

Results for 20 million shear estimates

• $<\gamma^{obs}>-\gamma^{true}=\mu\times\gamma^{true}+c$

- Every method is affected by galaxies below the detection limit
- Up to which magnitude do we need to include these galaxies?

Results for random faint galaxy positions

• Effect of a few 10⁻³ up to magnitude ~26.5-27

• Affects all shape measurement algorithms!

Results with clustering of faint galaxies

- Effect of clustering quite dramatic: ~10⁻² up to mag 27-28
- Mostly driven by faint galaxies with mag < 26.5
- Affects all shape measurement algorithms
- Need to accurately include faint galaxy clustering in simulations

Conclusions

- Galaxies below the detection limit must be included in the Euclid calibration simulations
- Bias of ~10-3 with random faint galaxy position
- Bias of ~10-2 with clustering of faint galaxies
- Most of the effect due to galaxies with 24.5 < mag < 26.5
- Test with clustering up to mag 26 and random position for fainter galaxies gives similar results as full clustering (at 1-5x10⁻⁴) -> possibility to use positions from Flagship for clustered population but cosmology dependence of the calibration
- Magnification effects negligible
- Dependence on the deblending strategy but faint galaxy clustering always significant
- Possible statistical bias due to the small observed area with magnitude depth of 29

Bypass SIM-SHE

Production of simulated images with observational artifacts

Reduction of the simulated images

SHE

Galaxy shear measurement on VIS reduced images

- Faster interaction between SIM and SHE for validation
- Possibility to switch on/off particular biases

Bypass:

Production of simulated images tailored for specific SHE measurements

- Maybe direct simulation of corrected biases (e.g. CTI)