
An	implementation	of	the		
COSEBI	in	the	frame	of	the	

Euclid	project
Numerical	technics	for	COSEBI	computation

Bertrand	Morin
bmorin@Cea.fr

WL	workshop	– IAP	– 21st Oct	2018

Outline

• Introduction
• Synopsis
• Incomplete	Gamma	function	
• Cnj coefficients	
• Roots	
• Normalization	factor
• Weight	filter	functions	T+(𝜃)	&	T-(𝜃)
• E,	B,	EB	modes
• Performance	and	future

2

Introduction
Synopsis

𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Normalization
T+(𝜃)	&	T-(𝜃)
E,B	modes

Performance

WL	workshop	– IAP	– 21st Oct	2018

Cosebi principle
Papers	

• The	ring	statistics	– how	to	separate	E- and	B-modes	of	cosmic	shear	correlation	function	on	a	finite	interval
P.Schneider and	M.	Kilbinger

• COSEBIs:	Extracting	the	full	E-/B-mode	information	from	cosmic	shear	correlation	functions
Peter	Schneider,	Tim	Eifler,	and	Elisabeth	Krause.	A&A	April	25,2018

• B-modes	in	cosmic	shear	from	source	redshift	clustering	
P.Schneider,	L.	van	Warerbeke,	Y.Mellier A&A	389,729-741	(2002)

Jx :	Bessel	functions	order	0	and	4

Weight	filter		functions	T+	and	T- :Goal	of	the	implementation	:

T+ =	0	for	𝜃	 > 𝜃 max 		𝑎𝑛𝑑	 		𝜃 < 𝜃 m𝑖𝑛 	

T- is	defined	on	[𝜃 m𝑖𝑛 	,	𝜃 max]	

(Eq.	1)
(Eq.	2)

3

Introduction

WL	workshop	– IAP	– 21st Oct	2018

Constraints	and	scaling	

(Eq.	4)

Interval	transformation	:	𝜃	 ∈ 𝜃	𝑚𝑖𝑛, 𝜃	𝑚𝑎𝑥 		 =>	x	∈ 1	, −1	 	; we	have	set	T+n(𝜃)	=	t+n(x)

(Eq.	16)

• First	constraint	is	derived	from	(Eq.1)	leading	to	the	following	relation	:

• Second	constraint	concerns		the	construction		of	a	set	of	weight	functions		polynomials	in	𝜃 and	orthonormal		:	

• Scaling	:	logarithmic	set	of	polynomial	filters	have	to	be	built		(polynomial	in	ln	𝜃)

Aim:	to	have	a	good	sampling	of	the	small	scale	of	the	shear	correlation	func𝑡𝑖𝑜𝑛	𝜉(𝜃)

4

Introduction

>	expect	of	𝜉(𝜃)		to	contain	more	structures	at	small	scales	than
large	scales

WL	workshop	– IAP	– 21st Oct	2018

Cosebi implementation	context

Context
• Mathematica	code	computing	20	modes	in	the	range	[1	to	400	arcmin]	is	included	in	the	paper	of	

COSEBI	P.Schneider,	T.Eifler and	E.Krause
Ø we	will	use	this	code	to	verify	our	implementation.

• Euclid	demands	to	use	either	C++	or	Python	language	and	the	available	libraries	coming	with	EDEN	*
Ø Mathematica	commercial	product	is	not	included	in	EDEN,		it	will	be	replaced	by	the		C++	for	its	speed.
Ø BOOST	library	available	in	EDEN	will	be	selected.

• Scientific	Euclid	requirements	specify	to	compute	E	and	B	log-COSEBI	with	10	modes	[3.4”,29”]
Ø we	will	use	the	parameters	of	the	COSEBI	paper	(20	modes)

• Scientific	Euclid	requirements	request	to	compute	for	each	mode	2	million	bins.
Ø our	implementation	has	to	be	quick

• Roots	and	normalization	computations	for	getting	a	polynomial	t+n have	to	be	solved	with	a	‘pretty	good’	precision.	The	COSEBI	paper	
recommends	40	digits	in	order	to	attain	0.1	(normally	zero)	in	the	formula	below

Ø We	need		to	find	mathematical	libraries	working	with	arbitrary	floating	precision	numbers
ü MBLAS	,	MLAPACK	based	on	GMP	?	
ü Needs:	Linear	algebra	solver,	non-linear	solver,	quadrature	(discrete	,	uniform),	Incomplete	Gamma-function,	…
ü Coupled	with	the	Boost	library,	we	will	develop	our	own	library	with	the	main	advantage	to	keep	control	on	it

*	:	Euclid	
Development	
ENvironment

5

Introduction

WL	workshop	– IAP	– 21st Oct	2018

Cosebi challenge	in	a	nutshell

Ø Need	to	use	an	arbitrary	precision	library	– COSEBI	paper	recommends	precisions	from	50	to	130	digits	for	the	computations.

Ø Need	to	assess	the	suitable	numerical	algorithms

Ø Need	to	design	and	to	code	a	set	of	efficient	numerical	algorithms	(manipulating	an	arbitrary	precision	number	is	not	very	fast)

Ø Need	to	process	numerous	shear	correlation	function	bins	quicker	as	possible

Ø Additional	challenge:	to	have	a	weak	coupling	with	the	arbitrary	precision	libraries

6

Introduction

WL	workshop	– IAP	– 21st Oct	2018

Synopsis

Compute	J	from	incomplete	
gamma	function	

Compute	cnj

n	=	nMax ?

Find	
roots

Find	
normalization	
coefficient	N

Compute	t+ Compute	an2,	an4,	dnm

Compute	t+(𝜃)Compute	t-(𝜃) Read	𝜉
+	
, 𝜉

−
, 𝜉x

Compute	En Compute	Bn Compute	EBn

n =	n	+	1

Linear	solve

Solve

Integrate

7

Introduction
Synopsis

WL	workshop	– IAP	– 21st Oct	2018

Synopsis

Compute	J	from	incomplete	
gamma	function	

Compute	cnj

n	=	nMax ?

Find	
roots

Find	
normalization	
coefficient	N

Compute	t+ Compute	an2,	an4,	dnm

Compute	t+(𝜃)Compute	t-(𝜃) Read	𝜉
+	
, 𝜉

−
, 𝜉x

Compute	En Compute	Bn Compute	EBn

n =	n	+	1

Linear	solve

Solve

Integrate

8

Introduction
Synopsis

WL	workshop	– IAP	– 21st Oct	2018

1st Step	:	J	&	incomplete	Gamma	function

• Boost	library	implements	many	𝛾 functions,	but	not	this	one	:

• The	following	recursive	method	has	been	implemented	:

Digital	precision	used	:	130	digits

• The	first	step	consist	to	create	a	set	of	coefficients	J	from	the	computation	of	the	𝛾 function	:

9

Introduction
Synopsis

𝑱	&	𝜸	𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏

WL	workshop	– IAP	– 21st Oct	2018

2nd step	:	cUnj computation

ü Constraints	(Eq.	4)	become	:

ü Orthogonality	conditions	:

Ø We	can	compute	
immediately	:

Ø We	need	to	solve	a	set	of	
linear	algebra	systems.

Error	propagation:	each	cnj coefficient	depends	
on	the	cnj coefficients	computed		previously.

Ø One	more	reason	to	compute	in	high	
precision	to	mitigate	the	error	propagation	
to	the	high	polynomial	order.

(Eq.	34)

(Eq.	33)

10

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

WL	workshop	– IAP	– 21st Oct	2018

2nd step	:	cUnj computation	in	detail

n =	0:

n =	1:

n =	2:

From	Eq.	34

From	Eq.	33

11

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

WL	workshop	– IAP	– 21st Oct	2018

2nd step	:	cUnj computation	in	detail

n =	3:

12

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

WL	workshop	– IAP	– 21st Oct	2018

2nd step:	algebra	linear	solver

13

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

• Linear	algebra	solver	has	to	solve	systems	such	as	AX	=	B
• Two	candidate	methods	have	been	considered:

• Gauss-Jordan	solver
• LU	decomposition

• First	method	implemented	:	Gauss-Jordan	Solver.
• The	main	difficulty	of	this	method	is	to	manage	the	ill-conditioned	system.		

In	order	to	overtake	it,	three	mechanisms	have	been	coded:
Line	permutation,	column	permutation,	discrepancy	mitigation	from	recursive	solving	operations

Ø The	method	given	suitable	results,	the	other	linear	solver	methods	have	not	been	really	explored	
(except	LU	where	a	basic	decomposition	has	been	coded)

• Second	method		LU	decomposition	:
1. We	write	A	=	LU	such	as	L	is	Lower	triangular	(top	coefs=0)	and	U	is	upper	triangular	(top	coefs≠0)	,
2. thus	we	can	rewrite	our	system	AX=B	=	(LU)x		=	L(Ux)	=	B	,
3. we	apply	a	forward	substitution	to	find	y	such	as	L	y	=	B	,
4. then	a	backward	substitution	to	solve	x	with	U	x	=	y.
Ø Main	advantage	of	the	method	,	we	can	re-use	our	LU	decomposition	with	different	B	
Ø We	can	increase	the	stability	of	the	linear	solver	when	we	introduce	the	permutations	(P):

1. We	have	PA	=	LU	,	thus	the	lower	triangular	system	to	solve	becomes	Ly	=	Pb for	y,
2. while	the	upper	triangular	system	stays	unchanged	Ux =	y	for	x	

WL	workshop	– IAP	– 21st Oct	2018

Gauss-Jordan	method

Principle :	we	take	successively	each	line	as	a	pivot,	in	our	case	
we	will	have	four	iterations.
At	each	iteration	we	replace	the	element	aii by	1	and	all	elements	
of	the	column	aji with	j	<>	i by	0.	Example	with	the	first	line:

1.We	divide	the	first	line	by	a11
2.We	remove	at	the	second	line	the	first	line*a21 :	
3.We	remove	at	the	third	line	the	first	line*a31 :	
4.We	remove	at	the	fourth	line	the	first	line*a41	:	

Our	linear	system	to	solve	: At	the	fourth	iteration,	we	have	solved	the	system	:

Problem :	As	we	can	see,	we		divide	the	lines	by	coefficients	(a11 ,	then	a'22,	...)	the	value	of	which	is	unknown	
(since	this	value	changes	at	each	iteration).	When	the	coefficient	is	close	to	zero,
the	result	of	the	division	can	be	wrong	due	to	the	precision	type	used	(i.e.	double)	
and	the	error	will	be	propagated	to	the	other	calculation at	each	iteration.

First	improvement:	
We	swap	the	lines	in	order	to	have	the	biggest	coefficient	in	aii of	the	pivot	line.
We	swap	the	columns	in	order	to	have	the	biggest	coefficient	in	aii of	the	pivot	line.

Residual	problem:	rounding	errors	are	due	to	an	ill-conditioned	system.	
The	smallest	error	produces	a	result	having	potentially	a	big	divergence	with	the	true	solution.
How	to	mitigate	the	errors:
The	true	solution	is	A	X	=	Y	and	we	get	an	approximation:	A* X* =	Y	since	we	have	computed	X*
that	is	a	wrong	X	in	relationship	with	a	coefficient	matrix	A*.	In	fact	the	solution	is	exact	
when	A*A	=	I	or	(A*)-1 =	A.	Cosebi implementation	contains	the	following	algorithm:
1.	We	start	to	compute	X*
2.	We	compute	A	X* =	Y*
3.	|	Y* - Y	|	<	epsilon	->	system	is	solved.
4.	We	define	∆X	=	X	- X* and	∆Y	=	Y-Y*

5.	We	solve	A	∆X	=	∆Y	in	order	to	have	∆X
6.	We	compute	a	more	precise	value	of	X	=	X* +	∆X
7.	We	revert	to	step	2	where	X	becomes	our	new	X*

After	the	first	iteration	we	get	:

14

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

WL	workshop	– IAP	– 21st Oct	2018

3rd step	:	Solving	the	roots

15

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Polynomial’s	roots	rni to	be	solved	in	:

Start	point	:
• we	only	have	real	roots
• we	do	not	have	identical	roots

Principle	of	the	roots	finding	method	implemented	:	
1. Since	the	polynomial	of	degree	n	means	n	roots,	the	Bisection	method	is	used	to	isolate	all	the	roots	in	a	set	of	n	ranges.
2. Each	range	containing	one	root,		we	apply	the	dichotomy	method		on	each	range	to	approximate	the	result	till	|xn-xn-1|	<	𝜀𝑏	
3. We	apply	the	secant	method	to	refine	the	roots	till	|xn-xn-1|	<	𝜀𝑠		

𝜀𝑏	and	𝜀𝑠	are	given	by	the	user	to	reach	the	accuracy	required	by	the	COSEBI

Method	coded	and	eventually	put	a	side	:	
Bairstow’s method

Pn(x)	is	divided	by	a	polynomial	of	degree	2	:																														=>	
We	find	the	coefficients	p	and	q	in	such	way	the	Remain	is	zero.	
This	method	is	able	to	solve	complex		type	roots.
Raphson-Newton	algorithm	is	used	to	solve	the	Remain,	the	initial	point	is	crucial	to	find	roots	with	accuracy.
We	need	to	add	a	‘Stabilizing	bairstow’s method’	

How	to	localize	the	roots	?

xMin x2																											x1																									x4																											xMax

Principle	adopted:	
1. Apply	the	dichotomy	method.
2. Avoid	as	much	as	possible	the	computation	of	f(x).
3. Identify	the	roots	when	the	sign	of	f(x)	changes.	
4. Stop	the	process	when	the	number	of	roots	reaches	the	degree	of	the	polynomial.

Problem	:	
We	use	Polynomial	from	degree	1	to	degree	20	in	high	precision	(130	digits),

consequence:	the	computation	time	of	p(x)	has	a	high	cost.
Advantage	:
Roots	are	real and	unique.
The	degree	of	our	polynomial	gives	us	the	number	of	roots	to	find.

16

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

WL	workshop	– IAP	– 21st Oct	2018

Bisection	method	

Algorithm
1. x0 =	xmin ;	f0 =	f(x0)
2. x1 =	xmax ;	f1 =	f(x1)
3. While	(root	not	found):
4. x2 =	(x0+x1)/2	;	f2 =	f(x2)
5. If	|	f2|	<	epsilon	then

->	x2 is	a	root	,	we	can	refine	with	the	secant	method
6. If		(f0*f2)	>	0	then

x0 =	x2 ;	f0 =	f2 (case	I.)
else	

x1 =	x2	;	f1 =	f2 (case	II.)

Principle	of	the	bisection	method :		
The	interval	is	successively	divided	by	2

Once	we	have	all	the	ranges	(each	one	containing	a	root),		we	work	with	each	of	them	to	solve	the	roots.
The	first	method	applied	is	the	bisection	method,	the	second	one	is	the	secant	method	useful	to	refine	the	results.

x0	=	xMin I.		x0	=		x2																																												II. x1	=	x2																			x1=	xMax

17

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

WL	workshop	– IAP	– 21st Oct	2018

Newton-Raphson	method	

Algorithm
1. y =	f(x0)	+	f’(x)	(x-x0)
2. 0		=	f(x0)	+	f’(x)	(x1-x0)	
3. x1 =	x0 – f(x0)/f’(x0)
4. …..
5. x2 =	x1 – f(x1)/f’(x1)
6. …

Principle	of	the	Newton-Raphson	method :		
• We	start	with	an	arbitrary	abscissa	inside	our	interval.
• With	the	tangent	equation	computed	at	this	abscissa,	we		solve

the	new	abscissa	where	the	tangent	is	zero.
• We	continue	this	process	till	precision	on	the	root	is	satisfactory.

An	interesting	method	(very	easy	to	implement)	is	the	method	of	the	tangent.		
We can	reach	high	precision	when	we	have	one	root	inside	an	interval.

x0																																	x2																					x1

We	stop	when	|xn+1 – xn|	<	epsilon

18

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

WL	workshop	– IAP	– 21st Oct	2018

Secant	method	

We	get	:

Principle	of	the	secant	method :		
We	apply	the	Thales’s	theorem	in	order	to	get	xn+1 from	xn-1 and	xn :

The	method	is	a	mix	between	bisection	and	Newton-Raphson	methods.
Advantage	:	We	do	not	need	to	compute	the	derivative	of	the	function.
Disadvantage	:	the	convergence	is	slower		than	the	Newton-Raphson	method.	
Used	after	the	bisection	method,	we	need	to	ingest	a	smaller	epsilon	than	the	one	used	previously.

xn-1 xn+1	 xR xn

We	stop	when	|xn+1 – xn|	<	epsilon

(xn-1 +	xn)/2CASE	I
CASE	I	:	xn-1 and	xn surround	xR

(1)

19

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

WL	workshop	– IAP	– 21st Oct	2018

Secant	method	(Newton	convergence)	

Taking	the	finite	difference	:

xn-1 xn xR xn+1

(xn-1 +	xn)/2CASE	II

CASE	II	:	xn-1 and	xn are	on	the	same	side	:	xR is	not	in	the	interval	[xn-1 ,	xn]

We	can	replace	in	the	Newton	Raphson	formula	:	

We	find	again	the	formula	(1)	:		

20

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

WL	workshop	– IAP	– 21st Oct	2018

4th step	:	to	compute	the	normalization	

• Normalization	coefficients	Nn renders	our	T+,T- as	a	set	of	polynomial	orthonormal
• This	normalization	needs	numerical	integration

• Two	main	families	of	integration	methods	exist	:
• Those	using	regular	intervals
• Those	using	remarkable	abscissae	(non-uniform	mesh)

• Regular	interval’s	methods	coded
• Trapezium
• Simpson
• Romberg’s	method		(based	on	the	Richardson	extrapolation)

• Encapsulate	the	method	such	as	Trapezium	and	Simpson

• Irregular	interval’s	method	coded	(but	not	used)
• Gauss	n	points	integration	also	called	Gauss-Legendre	n	point	rule)

• Integration	limits	[-1,1]	,	weight	function	w(x)	=	1

• Many	other	non-uniform	mesh	spacing	integration	methods	exist	such	as	
• Gauss	Laguerre	

• Integration	limits	[0,∞[,	weight	function	w(x)	=	𝑒]^

• Gauss-Chebychev
• Integration	limits	[-1,1]	,	weight	function	=	w(x)	=	1 1 − 𝑥_�⁄

21

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Normalization

WL	workshop	– IAP	– 21st Oct	2018

Trapezium’s	rule

Principle:	
1. Support	of	f(x)	is	divided	by	a	set	of	n	intervals	having	the	same	length	:	f[a,b]	:	Δx =	b-a/n.
2. In	each	interval	we	replace	f(x)	by	a	line	joining	two	end	points	[xi,f(xi)]	and	[xi+1,f(xi+1)].
3. We	compute	the	weight	related	to	the	line	given	the	surface	of	f[xi,xi+1]	if	we	multiply	by	the	

support	length.
4. We	sum	all	of	these	elementary	surfaces	in	order	to	obtain	the	surface	of	f(x)	in	[a,b].

In	one	interval,	we	have	:

With	all	intervals	(also	called	composite	trapezium's	rule)	

With	a	taylor's development	where	we	ignore	the	terms	greater	
than	the	second	order	the	error	is		:

22

Cnj coefficients
Roots

Normalization

WL	workshop	– IAP	– 21st Oct	2018

Simpson’s	rule

Principle :	we	replace	f(x)	by	a	set	of	polynomials	of	degree	2.	In	each	interval,	the	parabola	takes	the	same	value	as	f{x)
at	the	end	points	xi,xi+1 and	the	mid-point		m	=	(xi-xi+1)/2.

In	one	interval,	we	have	:

Composite	Simpson’s	rule)	

From	a	taylor's development	or	a	Lagrange	interpolation	,	we	have	:

with

Error is	:	

Applicability	:	 this	method	is	exact	with	a	polynomial	of	degree	3

23

Cnj coefficients
Roots

Normalization

WL	workshop	– IAP	– 21st Oct	2018

Romberg’s	method

Overview:	This	method	is	based	on	the	Richardson	extrapolation.	Romberg	method	encapsulates	other	methods	such	as
trapezium	or	Simpson’s	rule	in	order	to	refine	their	result.	The	goal	of	this	method	is	to	go	beyond	the	accuracy	given	by	the	underlying	integration	method.

Advantage:	Quick	convergence,	better	precision	than	the	underlying	integration	methods

Principle	:		we	can	write	the	integral	of	f(x)	as	follow	:

c2,	c4,	c6	depends	on	f(x)	and	its	derivative	functions	only	(not	of	∆).	
T(∆x)	is	the	result	of	the	integration	got	with	a	method		such	as	trapezium.

For	a	better	accuracy,	we	can	divide	the	integration	step	by	2:
and	we	continue	𝑤𝑖𝑡ℎ	∆x/4	,	∆x/8,	….	.
We	can	also	compute	the	subtraction	of	I	– I	T(h)	related	to		∆x	and	∆x/2.
In	this	case,	we	write	h	=	∆x,	qh =	∆x/2	,q= f

_g
,	p	=	1,	I	T(h)	being	an	approximation	of	I.

At	‘p’	stage,	we	get	the	following	recurrence	formula	:

Algorithm:

Disadvantage:	Romberg	is	based	on	a	regular	abscissas	and	need	to	have	an	analytical	form	of	f(x).	Discrete	integration	is	not	possible.

q:Trapezium estimation

p:
Ex
tr
ap

ol
at
ed

es
tim

at
io
n

Stop	condition:

Tp,q :	|Tn-1,1-Tn,1 |	<	𝜺

24

Cnj coefficients
Roots

Normalization

WL	workshop	– IAP	– 21st Oct	2018

5th step	:	to	compute	t+(z)	and	t-(z)			1/2

• Polynomial	t+	coefficients	are	computed	from	the	roots	and	the	normalization.

• Scientific	requirement	(RSD)	requests	to	work	with	2	million	bins.

• The	time	to	integrate	these	bins	with	arbitrary	precision	numbers		is	done	in	5	days	~	when	we	have	one	processor.	
Ø We	have	decided	to	do	the	computations	in	double	precision.		Should	be	possible	since	the	roots	and	normalization	

factors	of	the	orthogonal	filters	have	been	computed	with	a	high	precision.

• We	need	to	do	a	discrete	integration	of	t+(z)	and	t-(z),	so	we	cannot	use	Romberg’s	method.

z	=	log(𝜃/𝜃min)	is	computed	from	
discrete	angle	values	found	in	the	2PCF	
product.
r =	is	the	roots
N	=	is	the		normalization	factor

25

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Normalization
T+(𝜽)	&	T-(𝜽)
E,B	modes

Performance

WL	workshop	– IAP	– 21st Oct	2018

5th step	:	to	compute	t+(z)	and	t-(z)				2/2

• For	a	given	n	,	t- can	be	computed	from	:

and

Remark:	other	formulas	can	be	found	in	the	COSEBI	paper.	In	order	to	evaluate	the	performance	of	these	formulas,	a	cubic	
spline	interpolation	method	based	on	the	continuity	of	the	first	and	second	derivate	has	been	coded,	then	used	for	the	
integration.	Each	cubic	spline	(degree	3)	needs	to	solve	a	band	matrix.			The	methods	above	were	the	most	quick	and	
accurate	so	cubic	spline	has	been	dropped.	

26

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Normalization
T+(𝜽)	&	T-(𝜽)
E,B	modes

Performance

WL	workshop	– IAP	– 21st Oct	2018

Last	step:	computing	E,	B	and	EB	modes

• In	spite	of	that,	discrete	integrations	from	several	methods	have	been	coded	in	order	to	show	the	impact	of	the	
method	on	E	and	B	:

• Discrete	sum	(possible	since	we	have	2	million	bins	on	a	small	theta	angle	interval	[1',400’]	
• Trapezoidal	integration
• Simpson	integration
• Spline	interpolation	could	be	added

The	input	𝜉	shear	correlation	functions	are	known	for	2	million	bins	and	we	do	not	known	the	
underlying	parametric	function (no	assumption	has	to	be	done).

27

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Normalization
T+(𝜃)	&	T-(𝜃)
E,B	modes

Performance

WL	workshop	– IAP	– 21st Oct	2018

Performance	and	future

• 50	seconds	to	compute	cnj,	the	roots,	the	norm,	t+,	t-,	E,	B	and	EB	with	20	modes	and	2	million	bins	
on	a	range	=	[1,400]	arcmin

• Relative	accuracies	reached	on	the	roots	and	the	norm	(comparison	done	with	Mathematica):
• J	:	[e-17,	e-18]					[min,max]	=	minimal	and	maximal	accuracies	found	among	the	modes	(20)	computed	.
• Cnj :	[e-17,e-18]
• Roots	:	[e-8,	e-10]
• Norm	[e-11,e-17]

What’s	next	?
• Integration	into	LODEEN	2.0	(Euclid	Environment)
• Technical	validation	from	a	cross-checking	where	E	,	B	and	EB	modes	can	be	unknown.
• Realistic	checking	in	order	to	assess	the	accuracy	reached:	

• Process	at	CC-IN2P3	with	mock	catalogs	containing	500	millions	galaxies	where	E	and	B	modes	are	well	known

28

Introduction
Synopsis

𝐽	&	𝛾	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Cnj coefficients

Roots

Normalization
T+(𝜃)	&	T-(𝜃)
E,B	modes

Performance

WL	workshop	– IAP	– 21st Oct	2018

Thanks	for	your	attention

29WL	workshop	– IAP	– 21st Oct	2018

Thanks	for	your	attention

30WL	workshop	– IAP	– 21st Oct	2018

