
Overview of CFIS 
weak lensing
French-Chinese days on WL

CEA, 04/10/2018



Martin KilbingerCosmoStat WL group / 23

CosmoStat WL group

 2

κθ2

θ3

Martin Kilbinger   - WL data analysis, cross-correlations 
Florent Sureau    - pipeline architecture, shape measurement 
Jean-Luc Starck                        - mass mapping, PSF 
Sandrine Pires     - mass mapping 
Jérôme Bobin                            - machine learning, redshift estimation 
Jean-Charles Cuillandre           - Data analysis 
Sam Farrens     - PSF, pipeline architecture 
Arnau Pujol (left for Barcelona) - shear calibration, cross-correlations 
Austin Peel                                 - mass mapping, peak counts 
Axel Guinot     - CFIS data analysis, redshift estimation
Morgan Schmitz    - PSF 
Alexandre Bruckert                    - blended objects 

CEA

External collaborators

Mike Hudson (CFIS WL lead) 
Isaac Spitzer

Ludo van Waerbeke (UBC) 
Hendrik Hildebrandt (Bonn)  
Thomas Erben (Bonn) 
Catherine Heymans (Edinburgh)

Waterloo

Raphaël Gavazzi 
Henry McCracken 
Emmanuel Bertin

IAP WL group

CFIS, Euclid - but not only!

LenS team (DE/CA/UK)

EPFL (CH)
Marc Gentile 
Frédéric Courbin



The CFIS survey 

Figure 1. The CFISWIQD (red outline) and CFISLUAU (blue outline) with respect to other surveys on an equatorial projection of 

the entire sky. Points of interest are: galactic poles (NGP/SGP), ecliptic poles (NEP/SEP), etc. The CFHT semester boundaries are 

indicated at the top (based on the LST at midnight) as well as the areas that will be observed from the A and B semesters. This 

Mercator projection illustrates well the RA pressure of the survey but does not respect the relative areas vs. declination, areas near 

the equator being larger. For example, the LUAU total sky area in blue is double of the WIQD outlined in red. 

 

 

 

Figure 2. This LePhare simulation illustrates the gain in quality for Euclid photometric redshifts (groundbased Sloan bands + space 

VIS,Y,J,H bands) when adding the CFISLUAU shallow uband set (Us) to the nominal GRIZ set. The udeep (Ud) refers to an 

integration 3 times greater (limited gain at lowz). The left panel shows the median bias (circles and squares) and the dispersion 

(solid lines), the Euclid reference accuracy is shown by the dashed line. The right panel shows the catastrophic fractions, the 

Euclid requirement is ~10%. The UsGRI case shows the LUAU uband is however too shallow to compete with the nominal GRIZ 

case over the Euclid redshift range of interest (z<2). The CFIS aims at providing the pair UsR for the UsGRIZ case (black) which 

respects the Euclid requirement (0.05 dispersion).  

 

MegaCAM/CFHT, 2017 - 2019, u=24.5, r=24.1 (10s extended obj).



CFIS data status
http://www.cfht.hawaii.edu/Science/CFIS-DATA

http://www.cfht.hawaii.edu/Science/CFIS-DATA


CFIS + Pan-STARRS = 
Unions

Pan-STARRS: 2018 - 2022, existing grizy, new, deep i, y over CFIS footprint.



Pan-STARRS filters

– 11 –

Fig. 2.— Filter transmission of the six Pan-STARRS1 filters. gP1, rP1, iP1, zP1, yP1, and wP1

are shown as a function of field angle, in 0.15� steps to 1.65�, and the red curve shows the

area weighted average. Small field angles tend to have similar transmissions, allowing their

curves to be distinguished from large field angle.
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Pan-STARRS data



CFIS WL science

• Testing General Relativity 

• Dark-matter halo properties 

• Tidal stripping of satellite galaxies

CFIS is part of the Euclid survey. Ground-based optical bands for photo-z 
in Northern hemisphere, 
with Pan-STARRS, JST.

Stand-alone science with CFIS:



Modified gravity
Friedmann-Lemaître-Robertson-Walker metric with perturbations:

Gravitational action on:
• non-relativistic objects (galaxies):  

Newtonian potential 𝝭

• relativistic objects (photons; light deflection):  
travel equal parts of space and time → sum 𝝭+𝚽

Review
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projected along the line of sight. The deformation of high-red-
shift galaxy images in random lines of sight therefore provides 
a measure of the large-scale structure (LSS) properties, which 
consists of a network of voids, filaments, and halos. The larger 
the amplitude of the inhomogeneity of this cosmic web is, the 
larger the deformations are. This technique of cosmic shear, or 
weak cosmological lensing is the topic of this review.

The typical distortions of high-redshift galaxies by the cos-
mic web are on the order of a few percent, much smaller than 
the width of the intrinsic shape and size distribution. Thus, for 
an individual galaxy, the lensing effect is not detectable, plac-
ing cosmic shear into the regime of weak gravitational lens-
ing. The presence of a tidal field acting as a gravitational lens 
results in a coherent alignment of galaxy image orientations. 
This alignment can be measured statistically as a correlation 
between galaxy shapes.

Cosmic shear is a very versatile probe of the LSS. It meas-
ures the clustering of the LSS from the highly non-linear, non-
Gaussian sub-megaparsec (Mpc) regime, out to very large, linear 
scales of more than a hundred Mpc. By measuring galaxy shape 
correlations between different redshifts, the evolution of the LSS 
can be traced, enabling us to detect the effect of dark energy 
on the growth of structure. Together with the ability to meas-
ure the geometry of the Universe, cosmic shear can potentially 
distinguish between dark energy and modified gravity theories  
(Hu 1999). Since gravitational lensing is not sensitive to the 
dynamical state of the intervening masses, it yields a direct meas-
ure of the total matter, dark plus luminous. By adding information 
about the distribution of galaxies, cosmic shear can shed light on 
the complex relationship between galaxies and dark matter.

Since the first detection over a few square degrees of sky 
area a decade and a half ago, cosmic shear has matured into an 
important tool for cosmology. Current surveys span hundreds 
of square degrees, and thousands of square degrees more to be 
observed in the near future. Cosmic shear is a major science 
driver of large imaging surveys from both ground and space.

Various past reviews of weak gravitational lensing 
have covered the topic of this review, e.g. Bartelmann and 
Schneider (2001), Schneider et al (2006), Hoekstra and Jain 
(2008), Munshi et al (2008) and Bartelmann (2010). Here, 
we will present derivations of much of the basics of weak 
cosmological lensing, then give an overview of the results of 
cosmic shear observations along with their implications for 
cosmology.

2. Cosmological background

This section provides a very brief overview of the cosmologi-
cal concepts and equations relevant for cosmic shear. Detailed 
derivations of the following equations can be found in stan-
dard cosmology textbooks, e.g. Peebles (1980), Coles and 
Lucchin (1996) and Dodelson (2003).

2.1. Standard cosmological model

In the standard cosmological model, the field equations  of 
General Relativity (GR) describe the relationship between 
space-time geometry and the matter-energy content of the 

Universe governed by gravity. A solution to these non-linear 
differential equations exists representing a homogeneous and 
isotropic universe.

To quantify gravitational lensing, however, we need to con-
sider light propagation in an inhomogeneous universe. For a 
general metric that describes an expanding universe including 
first-order perturbations, the line element sd  is given as
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where the scale factor a is a function of cosmic time t (we 
set a to unity at present time t   =   t0), and c is the speed of 
light. The spatial part of the metric is given by the comov-
ing coordinate l, which remains constant as the Universe 
expands. The two Bardeen gravitational potentials Ψ and Φ 
are considered to describe weak fields, Ψ Φ ≪ c, 2 . The poten-
tial of a lens with mass M and radius R can be approximated 
by = ( )( )GM R c R R/ /2 /2

S , where G is Newton’s gravitational 
constant and RS is the Schwarzschild radius. The weak-field 
condition is fulfilled for most mass distributions, excluding 
only those very compact objects whose extent R is comparable 
to their Schwarzschild radius.

In GR, and in the absence of anisotropic stress which is the 
case on large scales, the two potentials are equal, Ψ = Φ. If the 
perturbations vanish, (1) reduces to the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric.

The spatial line element ld 2 can be separated into a radial 
and angular part, χ χ ω= + ( )l fd d dK

2 2 2 . Here, χ is the comov-
ing coordinate and f K is the the comoving angular distance, 
the functional form of which is given for the three distinct 
cases of three-dimensional space with curvature K as
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 (2)
that are characterised by their corresponding equation-of-state 
relation between pressure p  and density ρ, given by the param-
eter w as

ρ=p w c .2 (3)

The present-day density of each species is further 
scaled by the present-day critical density of the Universe 
ρ π= ( )H G3 / 8c,0 0

2 , for which the Universe has a flat geometry. 
The Hubble constant = ( = ) = ( ) ==H H a a a h1 ˙/ 100t t0 0  km 
s−1 Mpc−1 denotes the present-day value of the Hubble param-
eter H, and the parameter ∼h 0.7  characterizes the uncertainty 
in our knowledge of H0. The density parameter of non-rela-
tivistic matter is ρ ρΩ = /m m,0 crit,0, which consists of cold dark 
matter (CDM), baryonic matter, and possibly heavy neutri-
nos as Ω = Ω + Ω + Ωνm c b

1. Relativistic matter (Ωr) con-
sists of photons, with the main contributors being the cosmic 
microwave background (CMB) radiation, and light neutrinos. 

1 Unless written as function of a, density parameters are interpreted at 
present time; the subscript ‘0’ is omitted. 

Rep. Prog. Phys. 78 (2015) 086901

time dilation spatial curvature

GR: 𝝭 = 𝚽 , but 𝝭 ≠ 𝚽 in most MoG! 
Density 𝛿 related to potentials with Poisson equation.  
Observable is density power-spectrum P𝛿 = <𝛿𝛿> or related. 



Modified gravity
• Measure different types of power spectra to measure differences 

between 𝝭 and 𝚽. 

• Galaxy clustering measures 𝝭 and bias b:     <𝛿g𝛿g> ∝ b2 P𝝭 

• Galaxy-galaxy lensing measures 𝝭+𝚽:           <𝛿g𝛿m>∝ b P𝝭+𝚽 

• Take ratios to minimize sensitivity to cosmological parameters. 

• Need another observable to eliminate (linear) bias. 

• RSD anisotropy parameter   � =
1

b

d lnD+

d ln a

growth factor

Zhang et al. (2007)



weak gravitational lensing from  
photometric survey (e.g. Euclid)

galaxy

relativistic particles

gravitational action on

redshift

observer

light deflection

peculiar velocities

gravitational action on

non−relativistic objects

dark−matter halo

galaxy clustering from  
spectroscopic survey (e.g. DESI)

Measuring gravitational action on light and galaxies:  
Equal in General Relativity, different in modified gravity theories.  

Modified gravity affects differently mass (galaxy clustering, non relativistic)  
and light (weak lensing, relativistic), measuring the difference with  
both probes will test GR.

Testing General Relativity on cosmological scales



(Reyes et al. 2010)SDSS
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linearly related by the galaxy bias14, but the value of the bias itself is poorly constrained. 

Moreover, galaxy-galaxy lensing and galaxy clustering depend on the amplitude of the 

matter perturbations A, which we also do not know a priori. However, the combination 

of these quantities inEG is such that both nuisance parameters cancel out. Thus, unlike 

in previous analyses15, we do not require additional observations and assumptions to 

estimate the galaxy bias, and are able to obtain more robust results.  

We use a sample of 70,205 luminous red galaxies16 (LRGs) from the Sloan Digital 

Sky Survey (SDSS)17, a homogeneous dataset ideal for the study of large-scale 

structure. The galaxies have been selected according to the same criteria as in Eisenstein 

et al.18 They cover an area of 5215 sq. degrees and a range of redshifts z = 0.16 − 0.47. 

The redshift z = λmeas/λemis - 1 of the radiation emitted by a distant galaxy is a measure 

of the time of emission. The redshift of our galaxy sample, z = 0.32, corresponds to a 

lookback time of 3.5 billion years, when the universe was about 77 per cent of its 

current size, and is already well into the accelerated phase of the cosmic expansion. The 

sample also spans a large comoving volume, 1.02h-3 Gpc3, where the Hubble constant 

H0 = 100h km s-1 Mpc-1, and 1 Gpc (giga-parsec) = 1000 Mpc (mega-parsec) = 3.086 × 

1025 m. 

Tegmark et al.19 measured the anisotropy in the power spectra of an equally 

selected sample of LRGs to determine the redshift distortion parameter β ≡ f(z)/b, where 

f (z) is the logarithmic linear growth rate of structure at redshift z. Their analysis found 

β = 0.309 ± 0.035 on large scales and at z = 0.32. In this work, we use this result forβ , 

together with new measurements of the galaxy-galaxy lensing and galaxy clustering 

signals of the full LRG sample, to determine EG at mega-parsec scales and effective 

redshift of z = 0.32. 

from SDSS galaxy clustering  
(redshift-space distortions)  
Tegmark et al. (2006)
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Figure 1 | Probes of large-scale structure measured from ~70,000 

luminous red galaxies (LRGs).  Observed radial profiles for two 

complementary probes, galaxy-galaxy lensing (a) and galaxy clustering (b) are 

shown for scales R = 1.5 – 47h-1 Mpc (open circles). The 1σ error bars (s.d.) are 

estimated from jackknife resampling of 34 equal-area regions in the sky. 

Profiles measured from mock galaxy catalogues are also shown (solid curves). 
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Testing General Relativity on cosmological scales



Reyes et al. (2010; Nature), SDSS

Blake et al. (2015), 
CFHTLenS+RCSLens, WiggleZ+BOSS 
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Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1σ error bars (s.d.) including the statistical error on the measurement19 of β 

(filled circles). The grey shaded region indicates the 1σ  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+ΛCDM model, EG = Ωm,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+ΛCDM 

(EG = 0.408 ± 0.029(1σ ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001− 0.1 

(EG = 0.328 − 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

0.16 < z < 0.47

RCSLenS: gravitational physics through cross-correlation 17

Figure 14. The annular differential surface density statistic for the galaxy-mass cross-correlation, Υgm(R,R0), measured for the different
combinations of lens-source datasets assuming R0 = 1.5h−1 Mpc. We also plot the best-fitting model for each cross-correlation using
both the wp(R) and ∆Σ(R) measurements. The errors are based on measurements for a set of 374 mock catalogues. The horizontal
dotted line marks Υgm = 0.

Figure 15. EG(R) measurements in two independent redshift bins 0.15 < z < 0.43 and 0.43 < z < 0.7, after combining the results
from the different cross-correlations. In the former case, the measurements of Reyes et al. (2010) are plotted as the open circles for
comparison. The horizontal solid lines are the prediction of standard gravity, EG = Ωm/f , for our fiducial model Ωm = 0.27. The
horizontal dotted lines indicate the 1-σ variation that would result given ∆Ωm = 0.02, which is indicative of both the WMAP and
Planck error in determining this parameter. We note that the data points are correlated, with a covariance matrix displayed in Figure
16.

RCSLenS producing the most and least accurate determi-
nations, respectively.

As a cross-check of the methodology we performed the
same fits to the ∆Σ(R) measurements from the mock cat-
alogues for all the combinations of source-lens datasets, us-
ing the full-survey realizations including masks. The aver-
age parameter measurement across the realizations is σ8 =

0.80 ± 0.03 with average value of χ2/dof = 50.5/47, com-
pared to the input parameter value σ8 = 0.826. The slight
offset of the fit to lower values than the input is due to the
artificial reduction in the clustering amplitude of high-bias
mocks constructed via Equation 36, as discussed in Section
5. For b = 1 mocks we recover the input cosmology within
the statistical error in the mean.

c⃝ 0000 RAS, MNRAS 000, 000–000

• RCS2, Gilbank et al. 
(2011), 800 deg2 in g’, r’, 
z’, and i’ (2/3 of the area). 

• RCSLenS, Hildebrandt et 
al. (2016), lensing with 
r’=24.3.

Testing General Relativity on cosmological scales



Simple CFIS prediction



DM halo shapes
2 Clampitt and Jain

previous work producing lensing detections that go beyond
the description of isotropic dark matter halos to measure
higher order structures of the cosmic mass distribution. In
Clampitt et al. (2016) we detected the weak lensing signal of
filaments, and in Clampitt & Jain (2015) we constrained the
density profile of cosmic voids. For all these measurements,
filament lensing, void lensing, and now elliptical halo lens-
ing, we have relied heavily on the Sloan Digitial Sky Survey1

(SDSS) shear catalogs of Sheldon et al. (2009a). While new
lensing measurements from the Dark Energy Survey2 (DES)
are starting to be released (Melchior et al. 2015; Chang et
al. 2015; Vikram et al. 2015) (as well as the Kilo Degree
Survey3 and the Subaru4 HSC survey), there is still more to
be gleaned from the previous generation data of SDSS. Fur-
thermore, the measurement techniques developed in these
works will be useful to apply to DES and other cutting edge
datasets in the near future.

In § 2 we describe our model for the shear from ellip-
tical halos as well as potential systematic errors. In § 3 we
describe our data for lens and source galaxies and also spec-
ify our observables. Then in § 4 we show the results for the
measurement and constraints on halo ellipticity, compare to
previous estimators used in the literature, and repeat the
measurement with redMaPPer clusters. In § 5 we discuss
systematic shear tests and the impact of galaxy-halo mis-
alignment. Finally, in § 6 we summarize our main conclu-
sions, compare to previous work, and discuss implications
for theories of gravity and dark matter.

2 MODEL

2.1 Elliptical halo shear signals

We use the results of Adhikari et al. (2015), whose model
for the effect of halo ellipticity on weak lensing observables
will be useful in interpreting our measurements. This model
for the surface density of elliptical halos uses a multipole
expansion:

⌃(R, ✓) / R⌘0 [1 + ✏(�⌘0/2) cos 2✓ + O(✏2)] (1)
⌘ ⌃0(R) + ⌃2(R) cos 2✓ + ... (2)

where ⌘0(R) = d log⌃0/d logR < 0 and we assume the coef-
fecient of the quadrupole �✏⌘0/2 ⌧ 1, justifying the neglect
of higher orders in the expansion. Here R is the projected
distance from the center of the halo, and ✓ is the angle rel-
ative to the halo’s major axis. We set

✏ ⇡ �2⌃2(R)
⌘0(R)⌃0(R)

, (3)

thus allowing the quadrupole ⌃2 to be completely deter-
mined by the monopole ⌃0, up to a proportionality factor
✏, the magnitude of the ellipticity. This ellipticity is related
to the axis ratio of the projected mass distribution, q, by
✏ = (1 � q2)/(1 + q2). Note that our ellipticity definition is
bounded on the interval [0,1] and thus differs by a factor of
2 from Adhikari et al. (2015).

1
http://www.sdss.org

2
http://www.darkenergysurvey.org

3
http://kids.strw.leidenuniv.nl

4
http://www.subarutelescope.org/index.html

γ1  < 0

γ1  > 0

γ2  > 0 

γ2  < 0 
x

y

Figure 1. The quadrupole shear pattern produced by an elliptical

dark matter halo. The x-axis of the Cartesian coordinate system

is aligned with the major axis of the galaxy light distribution,

assumed to be aligned with the major axis of the dark matter

halo. Our sign convention for the Cartesian shear components is

shown at the right. Note that the monopole shear (which is purely

tangential) is not contributing to the pictured shear pattern.

Adhikari et al. (2015) shows that the tangential and
cross-components of shear from the quadrupole are given by

⌃crit �+ = (✏/2) [⌃0(R)⌘0(R)� I1(R)� I2(R)] cos 2✓ (4)
⌃crit �⇥ = (✏/2) [�I1(R) + I2(R)] sin 2✓ , (5)

where

I1(R) ⌘ 3
R4

Z R

0

R03⌃0(R
0)⌘0(R

0)dR0 , (6)

I2(R) ⌘
Z 1

R

⌃0(R
0)⌘0(R

0)
R0 dR0 . (7)

(The lensing weight function ⌃crit is defined later in Eq. 21.)
Note that throughout this paper we are concerned only with
shear from the quadrupole: all shear variables �+, �⇥, etc.,
refer to shear from the quadrupole and have no contribution
from the monopole.

In § 4.3 we take a careful look at weighted estimators of
tangential and cross shear that have been studied elsewhere
in the literature (Natarajan & Refregier 2000; Mandelbaum
et al. 2006; van Uitert et al. 2012). However, for most of this
work we use Cartesian estimators, measured with respect to
a coordinate system with the x-axis aligned with the lens
LRG’s major axis. Our sign convention for these Cartesian
�1 and �2 components is shown in Fig. 1. In this coordi-
nate system, the two shear components are related to the
tangential and cross-shear by

�1(R, ✓) = ��+(R, ✓) cos 2✓ + �⇥(R, ✓) sin 2✓ (8)
⌃crit�1(R, ✓) = (✏/4) [(2I1(R)� ⌃0(R)⌘0(R)) cos 4✓ +

2I2(R)� ⌃0(R)⌘0(R)] , (9)

and

�2(R, ✓) = ��+(R, ✓) sin 2✓ � �⇥(R, ✓) cos 2✓ (10)
⌃crit�2(R, ✓) = (✏/4) [2I1(R)� ⌃0(R)⌘0(R)] sin 4✓ . (11)

Studying these equations, we see that the angular depen-
dence of the shear goes as cos 4✓ or sin 4✓. Thus there is
a sign change in both components after every angle ⇡/4,
and moving around the circle the shear signal from elliptical
halos transitions between regions where �1 then �2 alter-
nately dominate. The resulting shear pattern of Eqs. (9, 11)
is sketched in Fig. 1.

c� 0000 RAS, MNRAS 000, 000–000

Clampitt & Jain (2016)



DM halo shapes

CFHTLenS, Schrabback et al. (2015) 
93,000 bright galaxies i<23.5, 0.2<z<0.6, 150 deg2.

1440 T. Schrabback et al.

Figure 3. Measured isotropic (top row of panels) and anisotropic (rows two to four, note the varying y-axis scale) shear signal around red lenses in the
CFHTLenS fields passing the systematics tests for cosmic shear as function of radial distance r. The anisotropic signal has been scaled by r for better
readability, where rows two, three, and four show the signal components (f − f45)!", f!", and −f45!", respectively. From left to right, we show the stellar
mass bins log10M∗ > 11, 10.5 < log10M∗ < 11, and 10 < log10M∗ < 10.5, combining all lens redshift slices. For the isotropic signal the curve shows the
best-fitting NFW shear profile constrained within 45 kpc/h70 < r < 200 kpc/h70. For (f − f45)!" the curves show models corresponding to the best-fitting
isotropic model and the best-fitting fh (solid curves), as well as fh ∈ { + 1, 0, −1} (dotted curves) for comparison. For f!" and −f45!", the dashed curves
show model predictions for the best-fitting fh. The best-fitting fh has been constrained from (f − f45)!" and !" within 45 kpc/h70 < r < r200c (indicated by
the vertical dotted lines), with r200c estimated from the fit to the isotropic signal.

For comparison, we also plot the components of the anisotropic
signal f!" and −f45!" in the bottom panels of Figs 3 and 4. We
note that the blue galaxies shown in Fig. 4 show a tendency for
f!" < 0 and −f45!" > 0, especially towards larger radii, which is
consistent with the expected trend for cosmic shear. We will discuss
this further in Section 5.

From the bootstrapping analysis we find that off-diagonal terms
in the correlation matrix are small, justifying our analysis approach
(see Section 2.1.3). Within the fit range of the isotropic signal the
average of the off-diagonal elements is consistent with zero at the
∼ 1 − 2σ level for all lens bins with |⟨cori, j⟩i > j| ! 2 percent.

3.5.2 Constraints on fh

The results of the fits to the CFHTLenS data are presented in Table 2
and we show the model fits to the data in Figs 3 and 4. For each lens
colour and stellar mass bin we fit the combined shear signal from
all redshift slices to ensure that the isotropic shear profile, which
determines r200c, is measured with high significance.12

12 For comparison we repeated the measurement where we initially analyse
each redshift slice separately and combine the constraints when estimating

For none of the individual lens bins do we detect an fh signifi-
cantly different from zero. We also compute joint constraints from
the (f − f45)!" and !" profiles of all stellar mass bins as ex-
plained in Section 2.1.3, yielding fh = −0.04 ± 0.25 for the red
lenses and fh = 0.69+0.37

−0.36 for the blue lenses when restricting the
analysis to the 129 fields passing the systematics tests described in
Heymans et al. (2012, ‘pass fields’). For comparison, we estimate
fh = −0.17 ± 0.21 for the red lenses and fh = 0.56+0.34

−0.33 for the
blue lenses when including all 171 CFHTLenS fields. In Table 2,
we also list reduced χ2 values which suggest that the models fit the
data reasonably well in both cases when considering all lens bins
together, but we note slightly lower χ2/d.o.f. for the blue lenses
when using the ‘pass fields’ only.

As a consistency check for the possible impact of satellite galax-
ies in the lens sample (see Section 3.3), we also compute joint
constraints for the red lenses now excluding the stellar mass bin
with the highest expected satellite fraction (10 < log10M∗ < 10.5).
In this case we obtain almost unchanged results fh = −0.02 ± 0.26
for the ‘pass fields’ and fh = −0.14 ± 0.22 for all fields, suggesting

fh. This led to nearly identical, and within the statistical uncertainty fully
consistent results.
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where we sum over lens–source pairs in an annulus around r. In this
section, we indicate estimators with a hat for clarity, but we drop it in
the subsequent sections when presenting results. In our analysis, we
employ inverse-variance weights wi for the source shape estimates.
These weights account for both measurement noise and the intrinsic
ellipticity distribution (Miller et al. 2013). We use uniform source
shape weights for simulated data. The main reason for conducting
the analysis in terms of !", which is a rescaled version of the
shear, instead of the shear directly, is to adequately account for the
redshift dependence of the weak lensing signal.

We note that the tangential ellipticity components et of sources
provide estimates for the tangential component of the reduced shear
gt, while !" is defined in terms of the tangential component of shear
γ t. In galaxy–galaxy weak lensing, typically |γ | ≪ 1 and |κ| ≪ 1.
Hence, many studies have typically approximated the reduced shear
with the shear as indicated in equation (2). Here we implicitly ac-
count for the difference when fitting the azimuthally averaged tan-
gential shear profiles, as we find a small but non-negligible impact
for our most massive lenses. When studying the anisotropy in the
shear field, as detailed below, we however ignore reduced shear
corrections as they cancel out to leading order.

In our analysis, we fit the isotropic part of the measured shear
profile with an NFW shear profile prediction according to Wright &
Brainerd (2000) in order to constrain r200c, the radius corresponding
to a mean overdensity that is 200 times the critical density at the
lens redshift, from the data itself. For this, we employ the mass–
concentration relation of NFW haloes from Duffy et al. (2008).

2.1.2 Constraining the anisotropic galaxy-galaxy lensing signal

The formalism to study the anisotropic weak lensing shear field
around elliptical lenses was introduced by Natarajan & Refregier
(2000) for the case of an elliptical isothermal sphere, and further
developed and generalized for other density profiles in M06. Here,
we largely follow the notation from M06, and introduce a few
additional quantities.

Similarly to M06, we model the stacked and scaled tangential
shear field as a combination of an isotropic profile !"iso(r) and
some azimuthal variation as

!"model(r,!θ ) = !"iso(r)
[
1 + 4frel(r)|eh,a| cos(2!θ )

]
. (8)

Here, !θ denotes the position angle with respect to the major axis
of the lens galaxy. We do not know the orientations of the matter
halo ellipticities eh on the sky. Thus, we have to approximate them
with the orientations of their corresponding galaxy ellipticities eg

when stacking the anisotropic shear field. Accordingly, our analysis
is only sensitive to the average component

|eh,a| = ⟨cos(2!φh,g)|eh|⟩ ≃ ⟨cos(2!φh,g)⟩|eh| (9)

of the halo ellipticity that is aligned with the galaxy ellipticity, where
!φh, g indicates the misalignment angle. Here, we average over the
misalignment distribution, which we assume does not depend on
|eh|. Following M06, we make the assumption that the absolute
value of the halo ellipticity is proportional to the absolute value of
the galaxy ellipticity

|eh| = f̃h|eg| . (10)

While there will be deviations from this assumed linear scaling in
reality, it provides a reasonable approximate weighting scheme (see
also van Uitert et al. 2012, who explore additional schemes).

In equation (8), frel(r) describes the relative asymmetry in the
shear field for an elliptical halo of ellipticity |eh, a|. It depends on

the assumed density profile and needs to be computed numerically
for non-power-law profiles (see M06).3 To recover the notation of
M06, we define

fh = f̃h⟨cos(2!φh,g)⟩ = |eh|
|eg|

⟨cos(2!φh,g)⟩ , (11)

f (r) = frel(r)fh . (12)

Then, equation (8) reduces to

!"model(r,!θ ) = !"iso(r)
[
1 + 4f (r)|eg| cos(2!θ )

]
. (13)

M06 show that the joint solution for the estimators of the isotropic
and anisotropic shear field components is given by

!̂"iso(r) =
∑

i wi"
− 1
c,i et,i∑

i wi"
− 2
c,i

, (14)

̂f (r)!"iso(r) =
∑

i wi"
− 1
c,i et,i |eg,i | cos(2!θi)

4
∑

i wi"
− 2
c,i |eg,i |2 cos2(2!θi)

, (15)

where the summation is again over lens–source pairs in a separation
interval around r. Note that the factor 2 difference in equations
(13) and (15) compared to equations (4) and (6) in M06 originates
from the different ellipticity definition used by M06. To ease the
comparison to M06 we decided to not rescale f(r), but rather to write
out the factor 2 difference explicitly.

In practice, (15) is not a useful estimator for constraining halo
ellipticity as it is susceptible to a systematic signal if the ellipticities
of lenses and sources are aligned because of an additional effect.
This could arise from instrumental systematics such as imperfectly
corrected PSF anisotropy, but also from cosmic shear by structures
in front of the lens. This can easily be understood: for example,
an intrinsically round lens (with an isotropic halo) would appear
elliptical because of this extra shear or systematic. Sources would
also have an extra shear component parallel to the lens ellipticity. In
the coordinates defined by the observed lens ellipticity this appears
as an increased shear along the lens minor axis and a decreased shear
along the lens major axis. Accordingly, this would be interpreted as
an ‘anti-aligned’ halo with fh < 0.

To cancel this systematic contribution, M06 suggest to include
an additional term in the estimator that is based on the ellipticity
cross component e× (6), and which is given by

̂f45(r)!"iso(r) = −
∑

i wi"
− 1
c,i e×,i |eg,i | sin(2!θi)

4
∑

i wi"
− 2
c,i |eg,i |2 sin2(2!θi)

. (16)

Equations (13) and (16) obtain nearly equal contributions from sys-
tematic effects aligning the lens and source ellipticities, as long
as the shear correlation function ξ− (r) = ⟨γ̃tγ̃t − γ̃×γ̃×⟩(r) is suffi-
ciently small, where γ̃ indicates the additional ‘systematic’ shear.
This is the case at the relevant small r (see our test for cosmic
shear in Section 4, and the discussion in M06). Hence, the estima-
tor ̂(f (r) − f45(r)) !"iso(r) can be used to probe halo ellipticity
free from the systematic contribution.

Importantly, f45(r) also contains signal from the flattened halo,
so that both f(r) and f45(r) need to be modelled. Here we scale the
model for f45(r) in correspondence to equation (12) as

f45(r) = frel,45(r)fh . (17)

3 Our tests conducted in Section 2.2 indicate that there is only a weak
dependence of frel(r) on the halo ellipticity itself, which can be ignored for
the expected halo ellipticities.
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6 Clampitt and Jain

Figure 3. (Top panel): Combined constraints from all four func-

tions �⌃
(+/�)
1,2 on the halo ellipticity ✏ and systematic shear am-

plitude. For allowed values within the 2� contours, the magnitude

of the systematic is at most 1% of the signal over all measured

scales. (Middle panel): Probability of the halo ellipticity given the

data, marginalized over the systematic amplitude. Constraints are

pictured for our entire data vector (solid line) and only the compo-

nents that are not dependent on the systematic model, �⌃
(+/�)
2

(dashed line). (Lower panel): Cumulative probability distribution

of the middle panel, corresponding to the p-value of a given ellip-

ticity ✏. The 1-4� confidence levels (horizontal dotted lines) show

that we rule out the hypothesis of no halo ellipticity ✏ at 4�, and

✏ < 0.12 at 2�. These lower bounds hold even in the presence of

misalignment between the light and dark matter profiles.

Figure 4. The tangential- (blue points) and cross-shear (red

triangles) estimators used in Mandelbaum et al. (2006), as well

as the corresonding best-fit model prediction to each (solid and

dashed lines, respectively). These also give a significant signal

with our lens and source sample, but subtraction of the two com-

ponents to deal with systematic shear will also remove real signal

from the elliptical halo.

ence of misalignment. The best-fit model has ✏ = 0.24±0.06.
(Note that 0.24 refers to the mean of the posterior and 0.06 is
the 1� confidence interval.) With a reduced �2 of 25.1/22,
the ✏ = 0.24 model is a good fit to the data. In contrast,
taking the null hypothesis model of no halo ellipticity the
reduced �2 is 41.7/24, a very poor fit. It should be noted
that this best-fit value may be an underestimate due to mis-
alignment of the light and dark matter position angles. We
discuss this possibility in detail in § 5.2. Note that the covari-
ance between the 24 data points in Fig. 2 is small but non-
negligible: thus the full covariance has been used in these
constraints.

Also shown in Fig. 3 is the constraint from the �⌃(+/�)
2

observable alone, i.e., not including the higher signal-to-
noise �⌃(+/�)

1 constraints. Even if our model for the sys-
tematic is somehow flawed, this observable is unaffected by
the systematic and it gives a 2� constraint by itself. In
§ 2.2 we discussed the motivation for not allowing a sys-
tematic anti-alignment (which will be somewhat degenerate
with the constant-with-angle terms of Eq. (9)) in our fits.
Nonetheless, if we redo the fits allowing a negative ampli-
tude of Eq. (16), the mean of the systematic amplitude is
then ⇠ (�0.35 ± 0.4) ⇥ 1012M�/Mpc, still consistent with
zero. Furthermore, given our tests in § 5.1 with a foreground
“source” sample that has no lensing contribution, we think it
unlikely that the systematic produces a net anti-alignment.
In the following section, we repeat the measurement using
estimators previously used in the literature, and make com-
parison to previous results of Mandelbaum et al. (2006).

c� 0000 RAS, MNRAS 000, 000–000

DM halo shapes

SDSS, Clampitt & Jain (2016) 
70,000 LRGs, DR-7
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Figure 5. Isotropic weak lensing signal (left) around the brightest group members of GAMA groups with a multiplicity of Nfof ! 5,
and the weak lensing signal anisotropy (middle) around the major axes of the same BCGs (AX1). In the middle panel, black circles
are for Γ̂t,2 and red squares for Γ̂×,2. The dashed vertical lines indicate the lower and upper limit of the fit range, 40 kpc and 250 kpc
respectively. Solid lines are the best-fitting elliptical NFW profile. The right-hand panel shows the ∆χ2 surface as a function of the two
fit parameters, M200 and ϵh. The 1-, 2- and 3-σ contours are indicated with black lines and the best-fitting model with the blue dot.

realizations approximates the measurement error. We show
the correlation matrix in Fig. 4. We cannot discern signifi-
cant off-diagonal terms, which is expected for a shape-noise
dominated measurement. The inset of Fig. 4 shows the ratio
of the error computed from shape noise over the bootstrap
error. The ratio is close to unity, suggesting that cosmic vari-
ance is not important on the scales that we probe. Therefore,
we use the shape noise errors throughout and assume that
the covariance matrix is diagonal, which enables us to use
a much finer radial binning. A similar result was obtained
in Viola et al. (2015) for the isotropic lensing signal around
GAMA groups using the KiDS-DR1/2 catalogues. Note that
we use this bootstrapping method to compute the errors of
the boost correction, which are much smaller than the errors
on the lensing measurement and therefore ignored.

4 RESULTS

We measure the lensing signal around the BCGs of GAMA
groups with Nfof ! 5 in the three equatorial patches, 2355
of which have a reliable shape measurement. Their average
redshift is 0.22. We first adopt the major axis of the BCG
as the proxy for the orientation of the halo. The lensing sig-
nal is measured in 50 logarithmically spaced bins between
30 kpc and 1100 kpc, enabling us to exactly probe the ra-
dial range of interest, and is shown in Fig. 5. For clarity, we
rebin the measurements in the figures. We fit an elliptical
NFW profile with a fixed mass-concentration relation to the
isotropic and anisotropic part of the signal. We perform the
fit in three different regimes: first, on scales between 40 kpc
and 250 kpc, which covers the inner part of the halo, roughly
up to 0.5 r200. Secondly, we use the range between 40 kpc
and 750 kpc, that is approximately up to 1.5 times r200. We
choose this upper bound as 750 kpc roughly corresponds
to the location where the lensing signal from neighbouring
haloes becomes important (see e.g. van Uitert et al. 2016b).
For completeness, we also fit on scales between 250 kpc and
750 kpc.

The best-fitting elliptical NFW model for the fit on
small scales is shown in Fig. 5. The right-hand panel shows

Figure 6. Constraints on the average halo ellipticity for three out
of seven proxies of the orientation of the dark matter distribution
that we adopt in this work. The horizontal bars with arrows show
the radial range used in the fit, while the vertical error bars show
the 68% confidence interval of the halo ellipticity. The results for
AX5 are slightly offset horizontally for clarity. Not shown are the
halo ellipticity constraints for AX3 and AX4, which are similar
to the one of AX2, and the constraints for AX6 and AX7, which
are consistent with zero on all scales.

the 1-, 2- and 3-σ contours of the two fit parameters, the
average halo mass and the average halo ellipticity. The
marginalized constraints are M200 = 1.50+0.25

−0.24 × 1013M⊙

and ϵh = 0.38 ± 0.12, respectively. The halo ellipticity is
therefore detected with "3σ. The reduced chi-squared of
the best-fitting model is χ2

red = 68.3/(75 − 2) = 0.94 (3×25
data points, 2 fit parameters), so the model provides a good
fit to the data.

At scales > 250 kpc, Γ̂×,2 becomes negative, possibly
indicating a fairly abrupt change in the orientation of the
matter distribution, which pulls ϵh down if it is included
in the fit. When fitting an elliptical NFW profile at scales
250 kpc < R < 750 kpc, the average halo ellipticity is con-
sistent with zero, as can be seen in Fig. 6 and read off from
Table 1. We quantify this further by measuring ϵh (< R),

MNRAS 000, 000–000 (2016)

KiDS-450 + GAMA, van Uitert et al. (2016) 
2600 groups in 60 deg2 

GAMA r<19.8
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which otherwise have significantly lower errors, and thus
typically contribute more to the χ2 value of the fit if the
model isn’t a perfect fit to the data.

For the models we tested, we typically found for the
HDE samples that σm ∼< 0.5M⊙/pc2, which is ∼< 5% of the
measured lensing signal ∆Σ. For the LDE samples, most fits
were initially of χ2

red ≈ 1, and so no model error term was
necessary.

Once the model error is determined, we run an MCMC
algorithm to help determine the errors of the fitted parame-
ters. Since only the mass of satellite halos is relevant to us,
we marginalize over all other parameters to get the mean
value and errors for the satellite mass.

4 RESULTS AND ANALYSIS

In this section, we present the results of the fits and discuss
their implications. In Section 4.1, we discuss the predicted
results from the simulations, for both the “No Stripping”
and “Stripping” models. Section 4.2 presents the main re-
sults of our analysis of the CFHTLenS dataset and discuss
their implications. In Section 4.3, we discuss alternative in-
terpretations of the data, and which of the one-halo mass,
concentration, and truncation radius might plausibly con-
tribute to the observed differences between the HDE and
LDE samples. Section 4.4 discusses potential systematic ef-
fects.

4.1 Predictions from Simulations

Fig. 4 shows plots of the best-fit models for the simulated
catalogues from the Millennium Simulation, for both the
“Stripping” and “No Stripping models” (described in Sec-
tion 2.4.2), for galaxies with 109M⊙ < m < 1010.5M⊙. The
plot illustrates that in the “No Stripping” scenario, the mea-
sured lensing signals for the HDE and LDE samples are
nearly identical at very small radii. Our algorithm does not
work perfectly for this mass bin, and in the “No Stripping”
scenario, it fits a one-halo mass to the HDE sample that is
somewhat larger than the one-halo mass fitted to the LDE
sample, while for the “Stripping” scenario, the fitted HDE
one-halo mass is slightly lower than the fitted LDE one-halo
mass.

Further comparisons of fitted one-halo masses for differ-
ent mass bins can be seen in Table 3 and Fig. 7. As can be
seen there, for all mass bins m < 1010.5M⊙ with the “Strip-
ping” model, as expected the fit yields a relatively lower
one-halo mass for the HDE sample compared to the LDE
sample than it does for the “No Stripping” model. Above
m = 1010.5M⊙, however, the fitted masses in the “Strip-
ping” and “No Stripping” scenarios are comparable. This
is due to the fact that at high stellar masses, the fraction
of galaxies in the HDE sample that are centrals increases
rapidly (see Table 2). Since mass stripped from satellites is
added to the masses of central galaxies, then if too many
central galaxies are included in the sample, stripping will
have little or no net effect on the lensing signal.

The fitted group masses for the simulated data seen
in Table 3 are larger than the actual group masses by a
factor of ∼ 1.5–2. Our tests have shown that this can occur
when halos from a very broad range of masses are averaged
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Figure 5. Measured lensing signal and model fits for data from
the CHFTLenS survey, including all galaxies with 109 < m <
1010.5M⊙. HDE (red) and LDE (blue) lensing signals and fits
are illustrated, as well as the HDE data with the fitted offset-
group-halo term subtracted off (orange). The dashed line shows
the one-halo model fit to the HDE sample, and the dotted line
shows the HDE offset-group-halo term. The one-halo mass fit for
the HDE sample is found to be significantly lower than for the
LDE sample.

together, as is the case here – the lensing signal of an average
of halos of varying mass is similar to the lensing signal of a
single halo with a mass somewhat greater than the average of
the sample. The fitted group masses for the CFHTLenS data
are additionally observed to be a factor of ∼ 2 larger than
the group masses for simulated data. This is not surprising,
as the halo masses in the simulated data are extrapolated
from the stellar masses of their constituent galaxies, and the
distribution of stellar masses in the Millennium Simulation
does not match the distribution in the CFHTLenS dataset.

These results from the simulations imply that with the
CFHTLenS data, a comparison of the HDE and LDE fitted
one-halo masses can be used as an indication of whether or
not tidal stripping is occurring, but we must use a stellar
mass upper limit of ∼ 1010.5M⊙.

4.2 Observational Results

Fig. 5 shows the lensing signals for the HDE and LDE sam-
ples taken from the CFHTLenS survey, including all galax-
ies with 109M⊙ < m < 1010.5 M⊙, with the best-fit models
plotted on top. For this broad mass bin, the fits show that
the HDE one-halo term is lower than the LDE term, at 2.5σ
significance (p = 0.0113). However, this simple fit is not op-
timal. In part, this is because we are combining galaxies with
greatly varying masses. The resultant lensing signal of this
combination does not perfectly resemble the lensing signal
of a single halo possessing the average mass of the sample,
and the code compensates for this by fitting a higher σm,
which results in larger errors for the best fit.
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Figure 4. Lensing signals and fits for simulated lensing data for the ‘no stripping’ (left) and ‘stripping’ (right) scenarios (see Section 2.4). The ‘no stripping’
scenario shows similar one-halo fits for the HDE and LDE samples, while the ‘stripping’ scenario shows a lower one-halo mass fit for the HDE sample than
for the LDE sample. Error bars are not shown, as shape noise is not simulated for these data sets, and so the scatter is extremely small.

Table 3. Results of the fitting procedure when applied to simulated (top) and the CFHTLenS (bottom) data in various
stellar mass bins. All masses are in units of 1010 M⊙. log m is the stellar mass bin. fsat is the fraction of satellites we use for
the fitting, based on data from the Millennium Simulation. MHDE and MLDE are the fitted one-halo masses for the HDE and
LDE samples. Mgr is the fitted mass of the offset group halo term. RM is the ratio of MHDE to MLDE. χ2

red is the reduced χ2

parameter without the model error term (see Section 3.4) included (for 36 degrees of freedom; a value close to 1 is ideal).

‘No stripping’ model ‘Stripping’ model
log m fsat MHDE Mgr MLDE RM MHDE Mgr MLDE RM

9–9.5 0.53 20 12 000 21 0.95 14 9800 19 0.74
9.5–10 0.60 46 11 000 41 1.12 32 9700 39 0.83
10–10.5 0.63 140 7300 110 1.27 110 7200 120 0.94

10.5–11 0.48 930 9600 650 1.43 950 5900 660 1.44

CFHTLenS data
log m fsat MHDE χ2

red,HDE Mgr MLDE χ2
red,LDE RM

9–9.5 0.53 17.6 ± 4.8 2.31 20 500 ± 2300 24.9 ± 4.0 0.83 0.71+0.25
−0.18

9.5–10 0.60 16.5 ± 6.5 1.05 15 060 ± 900 35.6 ± 6.2 0.80 0.46+0.25
−0.15

10–10.5 0.63 67 ± 12 0.65 14 550 ± 550 95 ± 11 0.90 0.70+0.17
−0.12

10.5–11 0.45 287 ± 34 1.45 23 100 ± 4000 239 ± 38 1.41 1.20+0.30
−0.21

11–11.5 0.45 1090 ± 120 0.81 20 300 ± 2000 530 ± 110 1.29 2.05+0.65
−0.31

be used as an indication of whether or not tidal stripping is occurring,
but we must use a stellar mass upper limit of ∼1010.5 M⊙.

4.2 Observational results

Fig. 5 shows the lensing signals for the HDE and LDE samples
taken from the CFHTLenS, including all galaxies with 109 < m <

1010.5 M⊙, with the best-fitting models plotted on top. For this
broad mass bin, the fits show that the HDE one-halo term is lower
than the LDE term, at 2.5σ significance (p = 0.0113). However,
this simple fit is not optimal. In part, this is because we combine
galaxies with greatly varying masses. The resultant lensing signal
of this combination does not perfectly resemble the lensing signal
of a single halo possessing the average mass of the sample, and the

code compensates for this by fitting a higher σ m, which results in
larger errors for the best fit.

Fig. 6 shows the likelihood distributions for the fitted satellite
masses, host group mass and surface density threshold for the HDE
sample of galaxies with 109 < m < 1010.5 M⊙. The plot shows
that there is only a weak degeneracy of Msat with the other two
parameters, but there is a stronger degeneracy between Mhost and #t.
Nevertheless, when marginalized over the other parameters, Mhost

is very tightly constrained, and Msat is reasonably constrained.
We can more carefully analyse the data by splitting the galaxy

sample into smaller stellar mass bins. Fig. 7 shows the results of this
analysis for both simulated and the CFHTLenS data, with the ratio
of the fitted one-halo mass for the HDE sample to that of the LDE
sample plotted against the galaxies’ stellar masses. Simulated data
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Figure 5. Measured lensing signal and model fits for data from the
CHFTLenS survey, including all galaxies with 109 < m < 1010.5 M⊙.
HDE (large red circles) and LDE (blue crosses) lensing signals and fits are
illustrated, as well as the HDE data with the fitted offset group halo term
subtracted off (small green circles). The dashed line shows the one-halo
model fit to the HDE sample, and the dotted line shows the HDE offset
group halo term. The one-halo mass fit for the HDE sample is found to be
significantly lower than for the LDE sample.

Figure 6. PDFs and joint PDFs for satellite mass Msat (left column), host
group mass Mhost (bottom row) and surface density threshold !t (middle
row and middle column) for the fit of the lensing signal of all HDE galaxies
with 109 < m < 1010.5 M⊙.

are not available for all mass bins plotted due to limitations of the
Millennium catalogue. The simulated data demonstrate that for suf-
ficiently high stellar mass bins, the ‘stripping’ HDE mass becomes
comparable to or greater than the ‘no stripping’ HDE mass. This is

Figure 7. A summary plot of the fitting results for various stellar mass bins.
Shown are the ratios of the best-fitting one-halo mass for the HDE and LDE
samples, for both the stripping and no stripping simulations, and for the
CFHTLenS data.

due to the fact that, at high stellar masses, the P3-identified HDE
sample contains a large number of centrals. When tidal stripping
is present, mass is transferred from satellites to centrals, increasing
their mass. When centrals make up a large enough fraction of the
sample, the sample shows an increase in mass under the effects of
tidal stripping. Therefore, we restrict the analysis to bins with m <

1010.5 M⊙, where the ‘stripping’ scenario predicts a lower fitted
mass than the ‘no stripping’ scenario.

Details of the fits to CFHTLenS data for different stellar mass
bins are shown in Table 3. The goodness of fit is comparable to
previous galaxy–galaxy lensing studies. Specifically, the χ2

red values
for our fits (which are calculated before the inclusion of the model
error term, see Section 3.4) are similar to the full halo model fits
of Velander et al. (2013): their χ2

red values varied from 0.5 to 2 for
different stellar mass bins, whereas ours vary from 0.6 to 2.3.

If only the three stellar mass bins with 109 < m < 1010.5 M⊙
are used, we obtained a weighted mean ratio of HDE one-halo
mass to LDE one-halo mass of 0.65 ± 0.12. If we assume that this
ratio is indicative of the retained mass after stripping, and assume
the sample contains ∼60 per cent satellites, then we can extrapolate
that for a sample of 100 per cent satellites, the mean retained mass
fraction will be ∼0.41 ± 0.19, which is consistent with the mean
retained mass fraction of 0.40 we measured from the simulated data.

Note that at a face value, our result suggests less mass reduction
in HDE environments than the factors of 2–5 found for the ∼L∗
satellites of the rich cluster Cl 0024+16 found by Natarajan et al.
(2009). There are several key differences between these samples,
however; in particular, our satellites have lower stellar masses and
our satellites inhabit lower mass host haloes than the rich cluster
studied by Natarajan et al. (2009).

These combined results reject the results of the simulated ‘no
stripping’ model at 4.1σ (p < 0.0001), reject MHDE = MLDE at
2.9σ (p= 0.0039) and are consistent with the simulated ‘stripping’
model at 1.8σ (p= 0.0651). This near-rejection of the ‘stripping’
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Shear calibration
Part II day 2: Shear estimation Shear calibration

Shear calibration from simulations: tricks of the trade I

Again: multiplicative and additive bias,

h"
obs

↵ i = g
obs

↵ = (1 + m↵)gtrue

↵ + c↵; ↵ = 1, 2.

for sample of galaxies with vanishing intrinsic ellipticity h"
I
↵i = 0.

How can we determine the multiplicative bias?
Simple method
From linear fit of many simulated pairs ("obs

↵ , g
true
↵ ).
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Fig. 2. Scheme of the estimation of biases m1 and c1 from the
linear fit of the distribution of e

obs
1 as a function of g1.

where e
obs

↵,A and e
obs

↵,B are the observed ellipticities of respec-
tively two orthogonal galaxies, whose intrinsic ellipticities
cancel exactly, e

I

↵,A = �e
I

↵,B for both ↵ = 1, 2.

The shear bias is then estimated from a linear fit of
g
obs
↵ as a function of g↵. This estimator is an improvement

over the simple linear fit reviewed in the previous section,
with reduced contribution from shape noise. However, the
observed ellipticities in the absence of shear do not cancel
in general, due to various effects. First, the stochasticity
of the two (assumed independent) ellipticity measurements
means that e

obs

↵,A + e
obs

↵,B is a random variable with non-zero
dispersion. We model this dispersion in Sect. 4.3. Second,
the response of the measurement to ellipticity, or ellipticity
bias, that depends on the galaxies orientation, either with
respect to the pixel coordinate system or to the PSF, can
cause the estimated shear to be biased with respect to g↵

(Kacprzak et al. 2012; Pujol et al. 2017). Third, selection
effects can break the symmetry if one of the two galaxies
is missed. This selection can occur at the detection level
or the shape measurement stage, both of which can fail for
one of the two objects. This could be due to a dependence
on the relative orientation of the galaxy with respect to the
PSF, or random noise fluctuations in particular in the low-

SNR range. Fourth, when accounting for galaxy weights the
ellipticity cancellation is broken.

A generalisation of this method consist on simulating
sets of n galaxies on a ring with constant |eI

|, rotated
uniformly such that their mean intrinsic ellipticity is zero
(Nakajima & Bernstein 2007). The case with n = 2 cor-
responds to the case of orthogonal pairs discussed above.
In Sect. 4.3 we show that increasing n beyond n = 2 does
not reduce the shape noise contribution to the shear bias
estimator.

4. Error estimation
In this section we study and compare the precision and pre-
cision of the different shear bias estimators. In this section,
a latin index of shear, ellipticity, bias, etc. serve to indicate
a galaxy number from a population.

4.1. Our method: shape-noise-free shear bias estimation

Each galaxy i with properties Pi has a shear response Ri

estimated as described in Sect. 3.1, from different sheared
versions of the original simulated galaxy image with the
same noise realisation. We assume that the statistical un-
certainty of this measurement given Pi is negligible. This
is based on the results shown in App. A. The response Ri

depends deterministically on Pi, given by the input parame-
ters of the simulated image, the PSF, and the stochastically
of the random processes of the image realisation. The latter
in our case is a simple Gaussian pixel noise realisation, but
we can easily include other effects such as Poisson noise,
cosmic rays, etc. The effects on R from this stochasticity
can be measured by repeatedly estimating Ri for fixed Pi

with different noise realisations. This provides us with sam-
ples from the probability density function (PDF) of Ri(Pi).
This PDF defines the uncertainty �N,↵ for both components
of the estimated shear response due to stochastic effects.

In Fig. 3 we show two examples of this stochasticity
coming from noise. We have measured R 10, 000 times
for 10, 000 different noise realisations for the two galaxies
shown in the figure (see Sect. 5 for details on the simu-
lated images and shape measurement). As before, for each
realisation we do not change the noise for the original and
the 4 sheared versions of the image. The mean responses
hRii depend on the galaxy properties Pi. In general, the
response is further from 1 for small galaxies (the top panel)
and closer for large galaxies (bottom panel), and the two
response components can be different as in the top panel.
These results are consistent with the bias results from Pujol
et al. (2017).

The dispersion for each component �N,↵ of the response
depends on the noise level and on the properties P of the
object. The dispersion is generally larger for smaller ob-
jects. For our shear estimation method we only measure
R↵↵ once per galaxy, which means that each shear response
R↵↵i(Pi) has a stochasticity �N,↵i.

Quantifying �N,↵ allows us to estimate the number of
galaxies we need to simulate such that the stochasticity
is subdominant in the final bias uncertainty originating in
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Fig. 2. Scheme of the estimation of biases m1 and c1 from the
linear fit of the distribution of e

obs
1 as a function of g1.

where e
obs

↵,A and e
obs

↵,B are the observed ellipticities of respec-
tively two orthogonal galaxies, whose intrinsic ellipticities
cancel exactly, e

I

↵,A = �e
I

↵,B for both ↵ = 1, 2.

The shear bias is then estimated from a linear fit of
g
obs
↵ as a function of g↵. This estimator is an improvement

over the simple linear fit reviewed in the previous section,
with reduced contribution from shape noise. However, the
observed ellipticities in the absence of shear do not cancel
in general, due to various effects. First, the stochasticity
of the two (assumed independent) ellipticity measurements
means that e

obs

↵,A + e
obs

↵,B is a random variable with non-zero
dispersion. We model this dispersion in Sect. 4.3. Second,
the response of the measurement to ellipticity, or ellipticity
bias, that depends on the galaxies orientation, either with
respect to the pixel coordinate system or to the PSF, can
cause the estimated shear to be biased with respect to g↵

(Kacprzak et al. 2012; Pujol et al. 2017). Third, selection
effects can break the symmetry if one of the two galaxies
is missed. This selection can occur at the detection level
or the shape measurement stage, both of which can fail for
one of the two objects. This could be due to a dependence
on the relative orientation of the galaxy with respect to the
PSF, or random noise fluctuations in particular in the low-

SNR range. Fourth, when accounting for galaxy weights the
ellipticity cancellation is broken.

A generalisation of this method consist on simulating
sets of n galaxies on a ring with constant |eI

|, rotated
uniformly such that their mean intrinsic ellipticity is zero
(Nakajima & Bernstein 2007). The case with n = 2 cor-
responds to the case of orthogonal pairs discussed above.
In Sect. 4.3 we show that increasing n beyond n = 2 does
not reduce the shape noise contribution to the shear bias
estimator.

4. Error estimation
In this section we study and compare the precision and pre-
cision of the different shear bias estimators. In this section,
a latin index of shear, ellipticity, bias, etc. serve to indicate
a galaxy number from a population.

4.1. Our method: shape-noise-free shear bias estimation

Each galaxy i with properties Pi has a shear response Ri

estimated as described in Sect. 3.1, from different sheared
versions of the original simulated galaxy image with the
same noise realisation. We assume that the statistical un-
certainty of this measurement given Pi is negligible. This
is based on the results shown in App. A. The response Ri

depends deterministically on Pi, given by the input parame-
ters of the simulated image, the PSF, and the stochastically
of the random processes of the image realisation. The latter
in our case is a simple Gaussian pixel noise realisation, but
we can easily include other effects such as Poisson noise,
cosmic rays, etc. The effects on R from this stochasticity
can be measured by repeatedly estimating Ri for fixed Pi

with different noise realisations. This provides us with sam-
ples from the probability density function (PDF) of Ri(Pi).
This PDF defines the uncertainty �N,↵ for both components
of the estimated shear response due to stochastic effects.

In Fig. 3 we show two examples of this stochasticity
coming from noise. We have measured R 10, 000 times
for 10, 000 different noise realisations for the two galaxies
shown in the figure (see Sect. 5 for details on the simu-
lated images and shape measurement). As before, for each
realisation we do not change the noise for the original and
the 4 sheared versions of the image. The mean responses
hRii depend on the galaxy properties Pi. In general, the
response is further from 1 for small galaxies (the top panel)
and closer for large galaxies (bottom panel), and the two
response components can be different as in the top panel.
These results are consistent with the bias results from Pujol
et al. (2017).

The dispersion for each component �N,↵ of the response
depends on the noise level and on the properties P of the
object. The dispersion is generally larger for smaller ob-
jects. For our shear estimation method we only measure
R↵↵ once per galaxy, which means that each shear response
R↵↵i(Pi) has a stochasticity �N,↵i.

Quantifying �N,↵ allows us to estimate the number of
galaxies we need to simulate such that the stochasticity
is subdominant in the final bias uncertainty originating in
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Shear calibration from simulations: tricks of the trade II

Error on best-fit m↵ given by width in "
obs (including measurement errors),

g
true, and stochasticity of galaxy images (from pixel noise),

�m,↵ =
1

p
N

s

�
2

R,↵ +
�

2

S,↵

�2
g,↵

Second terms is dominant in most cases.

A&A proofs: manuscript no. shear_bias_measurements

Fig. 5. The distributions of e
I
1 and g1 used for the 2 million

simulated galaxies. The second component shows similar distri-
butions.

will be dominated by the intrinsic ellipticity e
I

↵i. We write
the dependence of observed to intrinsic ellipticity as S↵i =
f(eI

↵i) with some generic function f . In general, f is not the
identity that would represent a perfect measurement. Nor
is this relation S↵i = R↵↵ie

I

↵i, since the ellipticity response
has been shown to be different from the shear response. Be-
cause ellipticity is typically larger than shear, this relation
is likely to be non-linear. When comparing the predictions
with results from data, we will only make the weak assump-
tion that S↵ is dominated by e

I
↵.

For the linear fit to (10) we use a set of values of g↵

and e
I
↵, whose distributions have dispersions �g,↵ and �e,↵,

respectively. In Fig. 5 we show these distributions measured
on our simulated images, which we describe in more detail
in Sect. 5.

The best values of (1+m↵) and c↵ obtained from a linear
regression fit from equation (10) are given by (Kenney &
Keeping 1962) as,

1 + m↵ =
h(eobs

↵ � he
obs
↵ i)(g↵ � hg↵i)i

hg2
↵i

; (11)

c↵ = he
obs

↵ i � m↵hg↵i. (12)

Assuming hg↵i = 0, these relations become:

1 + m↵ =
h(eobs

↵ � c↵)g↵i

�2
g,↵

; (13)

c↵ = he
obs

↵ i. (14)

We assume that R↵↵ and g↵ are not correlated, which is a
very good approximation since the shear bias is linear with
g↵. Then, with

h(eobs

↵ � c↵)g↵i = hR↵↵g
2

↵ + S↵g↵i = hR↵↵i�
2

g,↵ + hS↵g↵i,

(15)

we find

1 + m↵ = hR↵↵i +
hS↵g↵i

�2
g,↵

. (16)

Note that the estimated m↵ is consistent with our
method if hS↵g↵i = 0. A correlation between these two
quantities would effectively modify the slope of the distri-
bution of equation (10), resulting in a biased estimate of
m↵. Note that for our method this condition does not need
to be fulfilled.

We can estimate the error �m,↵ on m↵ via simple Gaus-
sian error propagation assuming that the uncertainties in
R↵↵i and S↵i are uncorrelated. This assumption would be
violated if the shape estimator has a shear bias that depends
on ellipticity. We test our assumptions and approximations
in Sect. 6, where we compare the numerical predictions with
measurements from simulated images. The sensitivity of the
bias with respect to these two quantities is

✓
@m↵

@R↵↵i

◆2

=
1

N2
;

✓
@m↵

@S↵↵i

◆2

=
g
2

↵↵i

N2hg2
↵i2

. (17)

Replacing for simplicity the individual galaxies’ dispersions
�R,↵i and �S,↵i by the mean values, we get

�m,↵ =

����
NX

i=1

�✓
@m↵

@R↵↵i

◆2

�
2

R,↵ +

✓
@m↵

@S↵i

◆2

�
2

S,↵

�
(18)

=
1

p
N

s

�
2

R,↵ +
�

2

S,↵

�2
g,↵

. (19)

Compared to (7) this expressions shows the additional
term �

2

S,↵/�
2
g,↵. In most scenarios this is indeed the domi-

nant term for the bias dispersion, which is the main reason
why the linear fit achieves a much lower precision in bias
estimation compared to our method.

The uncertainty on the additive bias comes directly from
the dispersion in the stochasticity,

�c,↵ =
�S,↵
p

N
. (20)
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Fig. 3. The stochasticity of the measurement of R due to noise.
The upper and lower panel show the distribution of R11 (blue
histogram) and R22 (in green) for two different galaxies, respec-
tively, shown as inlayed postage stamps, with different proper-
ties.

the distribution of galaxy properties Pi. To meet an allowed
shear bias uncertainty of �req,↵, assuming that all galaxies
have the same stochasticity �N,↵ (alternatively one can use
the mean, or a worst-case value), we would need at least
Nmin ⇠ �

2

N,↵/�
2
req,↵ image simulations not to be dominated

by pixel noise.
In the following, for the calculation of the precision of

our estimator, we do not try to disentangle the contribu-
tions from noise and galaxy properties.

Our bias estimator m↵ for a sample of N galaxies is the
average of the individual shear responses,

1 + m↵ = hR↵↵i =

PN
i=1

R↵↵i(Pi)

N
. (6)

The uncertainty of the estimated response is

�m,↵ =
�R,↵
p

N
, (7)

where �R,↵ is the standard deviation of the distribution of
R↵↵.

Fig. 4. The distribution of R11 (top) and a1 (bottom) for the 2
million simulated galaxies. The second component of the biases
shows similar distributions.

Analogously, the additive bias is estimated as

c↵ = ha↵i =

PN
i=1

a↵i(Pi)

N
, (8)

with uncertainty

�c,↵ =
�a,↵
p

N
, (9)

where now �a,↵ corresponds to the dispersion of the addi-
tive bias over the galaxy population. Fig. 4 shows the dis-
tributions of the of R11 and a1 for our sample of simulated
images (see in Sect. 5).

Note that only the multiplicative bias is insensitive to
intrinsic ellipticity noise. The additive bias estimated via
(9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can
be defined as

e
obs

↵i = R↵↵i(Pi)g↵i + a↵i(Pi) + S↵i (10)

where g↵i is the shear, and S↵i is the stochasticity around
the linear regression of the measurement for galaxy i that
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Fig. 3. The stochasticity of the measurement of R due to noise.
The upper and lower panel show the distribution of R11 (blue
histogram) and R22 (in green) for two different galaxies, respec-
tively, shown as inlayed postage stamps, with different proper-
ties.

the distribution of galaxy properties Pi. To meet an allowed
shear bias uncertainty of �req,↵, assuming that all galaxies
have the same stochasticity �N,↵ (alternatively one can use
the mean, or a worst-case value), we would need at least
Nmin ⇠ �

2

N,↵/�
2
req,↵ image simulations not to be dominated

by pixel noise.
In the following, for the calculation of the precision of

our estimator, we do not try to disentangle the contribu-
tions from noise and galaxy properties.

Our bias estimator m↵ for a sample of N galaxies is the
average of the individual shear responses,

1 + m↵ = hR↵↵i =

PN
i=1

R↵↵i(Pi)

N
. (6)

The uncertainty of the estimated response is

�m,↵ =
�R,↵
p

N
, (7)

where �R,↵ is the standard deviation of the distribution of
R↵↵.

Fig. 4. The distribution of R11 (top) and a1 (bottom) for the 2
million simulated galaxies. The second component of the biases
shows similar distributions.

Analogously, the additive bias is estimated as

c↵ = ha↵i =

PN
i=1

a↵i(Pi)

N
, (8)

with uncertainty

�c,↵ =
�a,↵
p

N
, (9)

where now �a,↵ corresponds to the dispersion of the addi-
tive bias over the galaxy population. Fig. 4 shows the dis-
tributions of the of R11 and a1 for our sample of simulated
images (see in Sect. 5).

Note that only the multiplicative bias is insensitive to
intrinsic ellipticity noise. The additive bias estimated via
(9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can
be defined as

e
obs

↵i = R↵↵i(Pi)g↵i + a↵i(Pi) + S↵i (10)

where g↵i is the shear, and S↵i is the stochasticity around
the linear regression of the measurement for galaxy i that
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Noise suppression
Part II day 2: Shear estimation Shear calibration

Shear calibration from simulations: tricks of the trade
III

Noise suppression
Simulate pairs of galaxies with same shear and orthogonal intrinsic ellipticity
(rotated by 90 degrees),

"
I

A + "
I

B = 0.

This however does not mean that the observed ellipticity vanishes, due to:

• Measurement stochasticicy

• Ellipticity bias, if depends on galaxy orientation wrt PSF, shear,
(pixelization)

• Selection e↵ects, one pair member might drop out of sample
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Derivative method

Part II day 2: Shear estimation Shear calibration

Shear calibration from simulations: tricks of the trade
IV

More advanced noise suppression: ring test. Simulate n galaxies with
equidistant intrinsic ellipticity on ring around 0.
Derivative method
Write shear bias for individual galaxies, and as matrix equation (Hu↵ &
Mandelbaum 2017):

"obs

↵ = Rgtrue + c

The shear response tensor R generalizes m: 1 + m↵ = R↵↵.
To get population bias, average over measured shear responses hRi, and
correct measured ellipticities by hRi

�1.
Measure individual R as numerical derivatives

R↵� =
@"

obs
↵

@g�

by simulating the same galaxy several times with small added shear
±�g↵ ⇠ 0.02. With same noise realisation this measurement is extremely
precise!
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Fig. 1. Scheme of shear response estimation for a single galaxy
for R11.

We then approximate the shear response (2) by finite dif-
ferences, following Huff & Mandelbaum (2017),

R↵� ⇡
e
obs,+
↵ � e

obs,�
↵

2�g�
, (4)

where e
obs,±
↵ is the measured ellipticity of the image with

additional small shear ±�g↵. We therefore create addi-
tional sheared images for each original one. With four
sheared images we can estimate all components of R for
each galaxy. To determine the shear response averaged over
a sample of galaxies, we only require two appropriately cho-
sen shear values, or three images in total, see Sect. 5 and
App. A for more details.

To further reduce the stochasticity of our response es-
timator, we use the same noise realisation for all image
copies for each galaxy. This guarantees that intrinsic ellip-
ticity cancels exactly for our bias estimator.

When randomising the noise for each image, we obtain
the same mean but noisier response values. Keeping the
same noise realisation of our five images is not an artificial
noise reduction in the bias estimate, it only helps us to ob-
tain a noise-free numerical derivative. The noise properties
will be sufficiently well sampled by the different simulated
galaxies.

The additive shear bias for each galaxy is measured via
(3), on the original, non-sheared image.

In Fig. 1 we show an example of the estimated com-
ponent of the response, R11, for one galaxy image. The
finite-difference estimate is insensitive to the shear value as
long as it is small, |�g↵| <

⇠ 0.05 for ↵ = 1, 2. More details
about the robustness of our new estimator are presented in
App. A.

From the measurements of individual galaxy shear bi-
ases, we estimate the ensemble multiplicative and additive
bias of a galaxy population as the average of the individ-
ual estimates, respectively hR↵↵i and ha↵i. This can be a
weighted average if galaxies have different weights.

We ignore the non-diagonal terms of R, as we have
found that their contribution averages out to zero if the
shear values are symmetrical around zero, see App. A.

We emphasise again that our new bias estimator is not
affected by shape noise coming from the intrinsic galaxy el-
lipticity. This is true not only for the estimated mean, but
for the bias distribution. In our method, the intrinsic ellip-
ticity can be considered as just as another property of the
galaxy (such as the flux, radius, etc.) and as such affects the
shear bias in a deterministic way, but does not contribute to
the statistical uncertainty. Therefore, we can obtain a much
more precise bias estimation compared to methods that av-
erage over observed galaxy ellipticities. Consequently, our
method requires a much smaller number of simulated im-
ages. This will be quantified in Sect. 4. Note also that our
simulations do not require a vanishing mean intrinsic ellip-
ticity, which can be a hurdle when dealing with selection
biases or galaxy weights.

In the following two subsections, we review two com-
monly used calibration methods to estimate the shear bias.

3.2. Linear fit estimation

The most common methods to estimate the shear bias in
the literature is to perform a linear fit of (1) to simulated
sheared galaxy images (e.g. Heymans et al. 2006; Miller
et al. 2013; Zuntz et al. 2013; Mandelbaum et al. 2015;
Fenech Conti et al. 2017; Huff & Mandelbaum 2017; Hoek-
stra et al. 2017; Pujol et al. 2017; Zuntz et al. 2017; Man-
delbaum et al. 2017). For each galaxy population (e.g. for
each bin of given galaxy properties) we obtain the addi-
tive and multiplicative biases c↵ and m↵ from a linear fit
of the measured ellipticities as function of simulated input
shear, as illustrated in the top panel of Fig. 2. The error
of the parameter estimation can then be obtained by jack-
knife resampling, and obtaining the distribution of best-fit
parameters for each resample.

Alternatively, the straight line can be fitted to the av-
erage measured ellipticities for each input shear, he

obs
↵ i, as

shown in the bottom panel of Fig. 2. Both fitting schemes
provide consistent values and error bars for the shear bias
parameters.

3.3. Linear fit estimation with shape-noise suppression

The precision of the linear fitting technique to measure
shear bias is limited by shape noise stemming from the
intrinsic ellipticity distribution. To beat down this noise
requires the use of a very large number of galaxy images.
An alternative method to reduce the shape-noise contribu-
tion is to force the mean ellipticity to cancel, by simulating
orthogonal pairs of galaxy images (Massey et al. 2007; Man-
delbaum et al. 2014), As described in Massey et al. (2007),
the estimated shear of a pair of orthogonal objects is

g
obs

↵ =
e
obs

↵,A + e
obs

↵,B

2
, (5)

Article number, page 3 of 14

This measurement is independent of ellipticity (observed and intrinsic) and
thus removes the main uncertainty of error!
Note: For a di↵erent noise realisation, the obtained R can be quite di↵erent.
But the use of many simulated galaxy images assures the sampling of the
distribution of R, no additional error is introduced on the population bias.
Error on bias estimate:

�m,↵ =
�R,↵
p

N

This method requires a factor of several hundred fewer image simulations.
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Fig. 6. Multiplicative shear bias as a function of the disk flux Fd,
measured with our method (black lines) and (in orange) from
the linear fit to equation (1). Solid (dashed) lines correspond
to m1 (m2). The top panel shows the results using the same
number of object for both methods. In the bottom panel, only
1/1300 objects have been used for our method.

property we use the input disk flux Fd of the simulated
bulge+disk galaxies. As shown in the top panel of that fig-
ure, both methods give consistent results when using all
two million galaxies. However, our method estimates the
biases with a significantly better precision. The location of
the points on the x-axis corresponds to the centre of the
Fd bins. In addition to a small shift that we apply for an
easier visual comparison, the bin centres for our method in
the lower panel are modified, since the galaxies are now a
random subsample. It is remarkable that when using all two
million galaxies, the curves of m1 and m2 for our method
are almost identical.

We quantify the precision of the different shear bias es-
timation methods in Fig. 7. as a function of the number of
simulated galaxies Nsim. We create different random sub-
sets of galaxies with size Nsim, and measure for each subset
the shear bias for the three methods as described in Sect. 3.
We compute the RMS for each sub-set by jackknife resam-
pling of the input galaxies for all methods, using 50 sub-
samples (other numbers of subsamples have given the same
results).

Fig. 7. RMS of the multiplicative (top panel) and additive (bot-
tom panel) shear bias. We compare our method (red/orange
lines) to the linear fit with (green) and without (cyan/blue)
shape-noise suppression. The solid lines are measurement from
the numerical simulations. Dashed lines show the analytical pre-
dictions derived in Sect. 4.

We compare these uncertainties as measured from the
simulations to the numerical predictions derived in Sect. 4.
For the latter, we measure the parameters �R,↵, �a,↵, �S,↵,
�eobs,↵, and �g,↵ directly from the simulations, as illustrated
in Figs. 4 and 5. The amplitude and N

�1/2

sim
-dependence

of the uncertainty measured from the data shows excel-
lent agreement with the analytical calculations for all three
methods. This suggests that the assumptions we made
to derive these expressions are valid for the system and
regime studied here. For the linear fit predictions, we set
�S,↵ = �

I
e,↵, assuming that stochasticity S↵ is entirely de-

termined by the intrinsic ellipticity. For the linear fit with
shape noise suppression, we measure �eout,↵ directly from
the distribution of the sum of observed ellipticities of the
orthogonal pairs, (eobs

A,↵ + e
obs

B,↵)/2.
Our method has a much higher precision on the mul-

tiplicative shear bias estimation. Compared to the lin-
ear fit, �m,↵ for our method is smaller by a factor of
35.9. This means that for this study our method requires
35.92

/n
0
⇠ 1300/n

0 times fewer simulated images to obtain
the same precision, where n

0 is the number of sheared ver-
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Work in progress
• CFIS image simulations (Isaac Spitzer), shear calibration tests, validation of 

metacalibration 
• Machine learning calibration (Arnau Pujol) 
• Higher-order terms in shear-ellipticity relation, spatially varying shear bias  

(Axel Guinot, Olivier Kauffmann)
Travail effectué - calculs analytiques
Ajouter un terme 
supplémentaire dans le 
calcul de l'ellipticité.

La réponse de l’ellipticité 
observée au cisaillement 
dépend alors de l’ellipticité 
intrinsèque.

Possibilité d’ajouter des 
termes d’ordres 
supérieurs

Simulations

Simulations include:
● Galaxies

○ Sersic profiles
○ Properties from COSMOS
○ Randomly distributed
○ Past the detection limit
○ Multiple rotations

● Stars
○ Constant and isotropic for now

● Noise


