

The impact of baryons on weak lensing statistics

Céline Gouin, Institut d'Astrophysique Spatial with Nabila Aghanim Thesis supervisors: R. Gavazzi and C. Pichon

22/10/2018 - Euclid - France atelier workshop gravitational lensing

Cosmic shear: weak lensing by the large scale structure the upcoming large weak lensing galaxy survey from Euclid

Euclid mission - Cosmic Shear over 0 < z < 2 over 15,000 deg2

1.5 billion galaxy shapes, accurate photometric redshifts

From Y. Mellier, 2013

Accurate theoretical model $l_{\text{max}} \sim 4000 \quad \theta_{\text{max}} \sim \text{few arcmin}$

The impact of baryons and baryonic physics on the matter power spectrum

Simulations OWLS

E. Semboloni, et al 2011

Same adding AGN feedback

The impact of baryons and baryonic physics on the weak lensing statistics

2-point shear correlation function

 $\xi_{\pm}(\theta) = \langle \epsilon_{+} \epsilon_{+} \rangle(\theta)$ $\pm \langle \epsilon_{\times} \epsilon_{\times} \rangle(\theta)$

DARK MATTER

Hydrodynamical simulation Gas cooling, Star formation & évolution, SN feedback

Same changing the initial stellar mass function

Same adding AGN feedback

The impact of baryons and baryonic physics on the corresponding cosmological constraints

Ignoring baryons can bias cosmological constraints

DARK MATTER

Hydrodynamical simulation

changing IMF

+ AGN feedback

E. Semboloni, et al 2011

Ray-tracing through the light-cone of Horizon-AGN simulation

light ray propagation method

The impact of the baryons on the weak lensing statistics (Gouin et al 2018, submitted to A&A)

- We predicted the lensing signal by propagating light-rays through the lightcone of the Horizon-AGN hydrodynamical simulation down to small scales
- We quantified the **impact of baryons on the two point statistics of weak lensing observables**
- We explored the relation between **galaxies and mass** by comparing Galaxy-Galaxy lensing signal with current observations

Horizon-AGN simulation

Run with Adaptive Mesh Refinement code RAMSES (Teyssier, 2002)

Lbox = 100 Mpc/h 1024³ DM particles Mass resolution $M_{res,DM} = 8 \ 10^7 \ M_{\odot}/h$ Spatial resolution $\Delta x = 1 \ kpc$

Simulated baryonic processes

- ✓ Gas dynamics
- ✓ Gas heating / cooling
- ✓ Star formation
- ✓ Feedback of SuperNovae
- ✓ Feedback of Active Galactic Nuclei

Dubois et al, 2014

Horizon-AGN simulation

(Dubois et al, 2014)

The light-cone of Horizon-AGN simulation

simulation box

Observer

Propagation of light rays

The light rays are traced back from the observer to a fiducial source plane

500 lens planes up to z~7

discrete $\overrightarrow{\beta^{j}} = \overrightarrow{\theta} - \sum_{i=1}^{j-1} \frac{D_{i;j}}{D_{j}} \overrightarrow{\alpha^{i}} (\overrightarrow{\beta^{i}})$

Computing the deviation of light rays on each lens plane

observer

Mapping the surface density (SPL)

Standard approach

pros	separate components
cons	edge effect (FFT)

Using the acceleration field (OBB)

Source

plane

New approach

pros	integrate the true acceleration
cons	do not separate components

Computing the deviation of light rays on each lens plane (SPL)

 α

The deflection

$$\overrightarrow{\alpha} = \int \overrightarrow{\nabla} \phi \ dl$$

Mapping the surface density

2D Poisson equation $\ \Delta \phi \ = 4 \pi G \Sigma$

Each particle is smoothed by a **gaussian kernel** as function of the **local density**

Inspired by the Smooth Particle Lensing method (Aubert et al, 2007)

Computing the deviation of light rays on each lens plane (SPL)

Computing the deviation of light rays on each lens plane (OBB)

light ray (θ_1, θ_2) α l_i

The deflection

$$\overrightarrow{\alpha} = \int \overrightarrow{\nabla} \phi \ dl$$

Using the acceleration field

RAMSES gives the acceleration field for each cell. I perform the deflection by summing:

$$\vec{lpha}(\vec{ heta}) \propto \sum_{i_{cells}} \vec{a_i} \ l_i$$

 l_i intersection between a ray and a cell obtained with Oriented Box Boundary method (**OBB**)

High resolution maps (by OBB method)

The convergence power spectrum

The impact of baryons on the convergence power spectrum

The impact of baryons on the convergence power spectrum

Galaxy-Galaxy lensing (GGL)

The excess surface mass density

 $\Delta\Sigma(R) \propto \gamma_T(R)$

$$\Delta \Sigma(R) = \frac{M(< R)}{\pi R^2} - \Sigma(R)$$

Galaxy-Galaxy lensing is used to probe:

- the galaxy-halo connection
- the projected density at galactic scales

Estimation of γ_T by averaging galaxy elliticities in concentric annuli centred on the lens

GGL: comparison between Horizon-AGN and observations

The lens Galaxy sample of Leauthaud et al. (2016)

the CMASS (BOSS) lens galaxy sample $M_* > 1.7 \times 10^{11} M_{\odot}$ $z_L \in [0.4 - 0.7]$

GGL and clustering of galaxies are compared with prediction from HOD models

GGL: comparison between Horizon-AGN and observations

The lens Galaxy sample of Leauthaud et al. (2016)

the CMASS (BOSS) lens galaxy sample $M_* > 1.7 \times 10^{11} M_{\odot}$ $z_L \in [0.4 - 0.7]$

GGL and clustering of galaxies are compared with prediction from HOD models

GGL: comparison between Horizon-AGN and observations

Similar shear profile as CMASS galaxies

This good agreement suggests that Horizon-AGN galaxies live in halos of the right mass

Limitation: We could not assert that Horizon-AGN simulation has the right clustering amplitude (scarse massive galaxies in small volume)

...GGL predictions by dark matter only, in process

The impact of magnification bias on GGL signal

Magnification of the lens

induced by the matter between the lens and the observer

From the extracted catalog of galaxies, magnification bias is applied to stellar mass of the galaxy

 $M_* \to \mu M_*$

The impact of magnification bias on GGL signal

The production of mock lensed images

- Model the light emission of all star particles along the light-cone into a finit number of emitted source plane
- Lens the luminosity of source planes by the matter between them and the observer

Future: Adding observational noise and extracting galaxies properties (shape, redshift) with curent analyse pipelines

The production of mock lensed images

End-to-end comparison of signal: From simulated galaxies to observations

Reproduce realistic observations of galaxies: morphology and photometry, spatial distribution and lensing

Future investigation

Quantify how well lensing signal can be recovered from observations

 $\epsilon_s \qquad \epsilon_s + \gamma \qquad {
m PSF \ pixelisation} \qquad {
m noise}$

... blending, photometric redshift, intrinsic alignment

The production of mock lensed images

End-to-end comparison of signal: From simulated galaxies to observations

Reproduce realistic observations of galaxies: morphology and photometry, spatial distribution and lensing

Future investigation

- Quantify how well lensing signal can be recovered from observations
- Quantify the impact of lensing signal on observed galaxy properties how lensing magnification biases 1-point statistics (the mass function) magnification and displacement bias 2-point statistics (angular clustering)

Modelling light emission from star particles

Performed by C. Laigle

Spectral energy distribution

500 2D-Brightness maps (0.1 arcsec resolution) are made

Distorting mock images

500 brightness maps

Lensing induced by the matter

 \mathbf{C} $I_s(\vec{\beta}_i = \vec{\theta}_i - \vec{\alpha}_i(\vec{\theta}_i)) \rightarrow I_s(\vec{\beta})$

Conservation of surface brightness

$$I(\vec{\theta}) = I_s(\vec{\beta}) = I_s\left(\vec{\theta} - \vec{\alpha}(\vec{\theta})\right)$$

image plane source plane deflection
brightness brightness

- performed by bi-linear interpolation

Redshift

Visualisation of the mock lensed image of the lightcone

Size: 1 square degree Resolution: 0.1 arcsec All the stars between z=0.05 and z ~ 7

The position of galaxies with $M_* > 1 \times 10^{10} M_{\odot}$ are identified in the image

Critical lines for redshift source at zs = 1.2 and 3.5 are also computed

based on visiomatic (E. Bertin)

Conclusion & Perspectives

Future challenges..

• Improve statistical power in Hydrodynamical simulation (larger volume)

E. Chisari, et al 2018

Conclusion & Perspectives

Future challenges..

- Improve statistical power in Hydrodynamical simulation (larger volume)
- Predict cosmological observables with different subgrid models
 Understand the degeneracies between baryonic processes and cosmology
 Inderstand the degeneracies of 0.9
 Inderstand the degeneracies
 Inderstand the degenera

Elisa Chisari, et al 2018

Conclusion & Perspectives

Future challenges..

- Improve power statistics in Hydrodynamical simulation:
- Predict cosmological observables with different subgrid models
- Test the validity of subgrid physics recipes Resolve disc of galaxies

smaller scale lensing: for galaxy-galaxy lensing and the strong lensing regimes

New-Horizon (20 Mpc zoom - resolution 40pc)