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2D Mass Mapping Problems
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•Irregular sampling 

•Missing data (mask and limited number densities): 

•Shape noise: 

•Reduced shear:

the observed reduced shear is invariant under the transformation:  
0
= �(1� �)

=> Mass-sheet degeneracy problem

P1(k) =
k21 � k22

k2

P2(k) =
2k1k2
k2
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State of the Art
Linear Methods: 

•Kaiser-Squires (1993) + Gaussian smoothing : HSC (2018), DES (2017) 

•3D SVD Inversion (Simon et al, 2009) -> HSC (2018) 

Non Linear methods: 
•  For clusters: 

•Model fitting algorithms  (Bartelmann et al, 1996; Bradac et al, 2005;   Jullo and Kneib, 2009). 
•Aperture Mass (Seitz and Schneider, 1996; 2002). 

•  For larger fields: 
•Maximum Likehood (Bartelmann et al, 1996). 

•MemLens (Bridle et al, 1998; Marshal and Hobson, 2002). 

•FastLens + MR-Lens (Starck et al 2006; Pires et al, 2009). 

•Bayesian approches (Heavens et al, 2016, Alsing et al , 2017, Schneider et al, 2017). 

•Glimpse2D (Lanusse et al, 2016). 

•  3D Mass Mapping: 
•Bayesian approches (Bohm et al, 2017). 
•Glimpse3D (Leonard et al, 2012, Leonard et al, 2014). 
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Regular shear sampling
Shear Convergence  



Irregular shear sampling
�Shear 

Convergence  
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Galaxy catalogue with 30 gal/arcmin2

Handling Missing Data (no noise): Binning+Smoothing

Kaiser-Squires with 0.05' binsKaiser-Squires with 1' bins KS with 0.05' bins + 0.1’ smoothing

Input



� = F ⇤PF

� = T ⇤PF

Mass mapping as an inverse problem

T = Non Equispaced Discrete Fourier Transform (NDFT)

Binned data:

Unbinned data:

P = T ⇤PFwith

min


1

2
k � �P k22

But there is no unique and stable solution, 
  it is an ill posed inverse problem. 



Y = HX +N

Inverse Problems & Regularization

Physical Knowledge on X (ex: Gaussian Random Field, etc). 
       ==>  Gaussian smoothing, Wiener reconstruction, etc

 ==>   Log normal distribution prior

Knowledge on the histogram of X in pixel space or in another one.
       ==>  Positivity constraint, sparsity constraint, etc.

X properties are understood through a representative data set.
       ==>  Machine Learning

min
X

||Y �HX||2 C(X)+



Direct Space Wavelet Space

Sparse Representation

Sorted wavelet coefficients

 

 

Many small coefficients

Few large 
 coefficients
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Y = HX +N

min
X

||Y �HX||2 C(X )+

Inverse Problems & Sparse Recovery

  Optimization 
(proximal theory)

        Data Representation 
(harmonic analysis, machine learning)

      Noise Modeling 
(Gaussian, Poissson, etc)

min
↵

kY �H�↵k2 + �k↵kpp

Sparse model:



L1 Norm & Sparsity

kXkp = (
X
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� = F ⇤PF

� = T ⇤PF

Mass mapping as an inverse problem

T = Non Equispaced Discrete Fourier Transform (NDFT)

Binned data:

Unbinned data:
P = T ⇤PF

+ C(�)min


1

2
k � �P k22

F. Lanusse, J.-L. Starck, A. Leonard, and S . Pires, High Resolution Weak 
Lensing Mass Mapping combining Shear and Flexion, A&A, 2016.
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• Fast and flexible algorithm

• Sparsity constraint � estimated locally by noise simulations =) Accounts
for survey geometry, varying noise levels
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The 2D Glimpse Algorithm 

with

A few remarks: 
• Recovers the convergence from the reduced shear 
• P can be defined with and without binning the shear 
• P can be ill-posed in case of missing data 
• Sparse regularization of noise and missing data 
  We use isotropic wavelets, well adapted to the recovery of 
clusters.

Condat-Vu algorithm, 2013

Primal-dual splitting: 

http://www.cosmostat.org/software/glimpse/

http://www.cosmostat.org/software/glimpse/


Input 10’ x 10’, z=0.3 cluster,  
Lens plane at redshift zs = 1.2 

Example with 93 % of missing data

Galaxy distribution: 93% of missing pixels, corresponding to 30 galaxies per square arcminute 

Lensing catalogue: Lens plane at redshift zs = 1.2
93% of missing pixels. 
Kaiser-Squires inversionKaiser-Squires + 0.25’ smoothingGLIMPSE 2D



Example with 93 % of missing data

Input

Kaiser-Squires + 0.25’ smoothing GLIMPSE 2D

Kaiser-Squires inversion

10’ x 10’, z=0.3 cluster,  
Lens plane at redshift zs = 1.2 

Galaxy distribution: 93% of missing pixels, corresponding to 30 galaxies per square arcminute 

Lensing catalogue
 Lens plane at redshift zs = 1.2 



Missing Data + Noise

Input

Kaiser-Squires + 1.0’ smoothing GLIMPSE 2D

Kaiser-Squires + 0.5’ smoothing

10’ x 10’, z=0.3 cluster,  
ng=30/arcmin2
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Flexion + Redshift  Information
We can integrate flexion in our reconstruction framework  

=> Jointly fit shear and flexion

=> Jointly fit shear and flexion with redshift information

⌃crit(zs) =
c2

4⇡G
DS

DLDLS

with Z = ⌃1
critic/⌃critic(zi) ⌃1

crit = limz!1 ⌃crit(z)



Individual redshifts have two benefits: 
•Directly  map the surface mass density of the lens 
•Mitigate the  mass-sheet degeneracy when     becomes significant (Bradac, Lombard and  
Schneider, 2004) 



Glimpse2D on public DES SV data
Niall Jeffrey et al. 2018, MNRAS, arXiv:1801.08945

139 deg2

The maximum signal-to-noise value of peak statistic increased by a factor of 9 using GLIMPSE.



 Mass Mapping & Cluster A520
A. Peel, F. Lanusse, J.-L. Starck, « SPARSE RECONSTRUCTION OF THE MERGING A520 CLUSTER 
SYSTEM », ApJ, 847, 1, id. 23, 2017.Dark matter substructure in galaxy clusters

A puzzling case 
Abell 520 (the “cosmic train wreck”) is a dynamically complex merging 
cluster system. Previous weak-lensing studies disagree about the 
presence of a mysterious dark mass peak—if real, it would challenge 
our current understanding of dark matter.

 dark peak ?

Glimpse2D mass reconstruction

We generated new mass maps of 
A520 using Glimpse2D*, a novel 
technique based on a sparsity prior.

Based on a statistical noise analysis, 
we cannot confirm the existence of 
the dark peak.

(Peel, Lanusse, Starck submitted 2017)

Result


Sparsity-based mass mapping


*http://www.cosmostat.org/software/glimpse 

Upper limits on the 
significance of the P3’ 
structure of 2.3σ and 
1.0σ for the J14 and 
C12 catalogs, 



3D Weak Lensing 





fK is the angular diameter distance, which is a function of the comoving radial 
distance r and the curvature K.

Ø Galaxies are not intrinsically circular: intrinsic ellipticity ~ 0.2-0.3; gravitational 
shear ~ 0.02 
Ø Reconstructions require knowledge of distances to galaxies

Kappa (or convergence) is a dimensionless surface mass density of the lens  

3D Mass Mapping



 ² Assume uncorrelated Gaussian noise* 
 ² Linear methods 
 ² Wiener/inverse variance filter (Simon et al., 2009) 
 ²  
  
 ² SVD decomposition & thresholding (VanderPlas et al., 2011)

Reconstruction resolution limited by resolution of data

Linear Methods



Target Areas for Improvement

 ² Redshift bias in location of detected peaks 
 ² Smearing along the line of sight 
 ² Damping of the reconstruction 
 ² Sensitivity at high redshift 
 ² Improving resolution in reconstructions

Linear Methods
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M  measurements: 

number of bins in the source plane

M x N  (M > N)

N  redshift bin for the density contrast

+

N

� is sparse.

Q spreads out the information in    along      bins.
More unkown than measurements

� 

3D Mass Mapping



2-

Density constrast wavelet 
coefficients

   Weak Lensing & 3D Matter Distribution 

� = �� � = 2D Wavelet Transform on each redshift bin
�30

min
�

� � �1 s.t.
1
2
� ⇥ �R�� �2��1� ⇤

A. Leonard, F. Lanusse, J-L. Starck, GLIMPSE: Accurate 3D weak lensing reconstruction usiing 
sparsity, Astronomy and Astrophysics, 2014

A. Leonard, F.X. Dupe, and J.-L. Starck, "A Compressed Sensing Approach to 3D Weak Lensing", Astronomy 
and Astrophysics , 539, A85, 2012.

� = ��� = P⇥

  Lensing
Efficiency  

  Shear 
Measurements 

M  measurements:: number of bins in the source plane N  redshift bin for the density contrast

Q
⇥ = Q� ⇥ = PQ�� = R��

   
   
  

�

Shear Measurements
M measurements: number of bins in 
the source plan x number of pixels 

at for given bin

 

�R = PQ

Related to Compressed Sensing theorem 
==>  Use Sparse recovery and Proximal optimization theory

http://arxiv.org/abs/1111.6478


Austin Peel

Glimpse3D on Euclid calibration mock

density reconstruction on redshift slices

1 deg2 example tile

no Glimpse3D  
smoothing1 pix = 0.23 arcmin 



Mass Estimation    
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Cluster Masses from 3D Weak 

• GLIMPSE 3D reconstructions provide a direct, 
unbiased & nonparametric estimate of the cluster 
mass (Leonard, Lanusse & Starck 2014, MNRAS, 
440, 1281)

• Masses estimated integrating the density in the 
central 4 x 4 arcmin

• Error bars reflect the standard deviation in mass 
estimates 1000 Monte Carlo simulations of each 
cluster

• Cluster masses 2 x 1013h-1M◉ ≤ Mvir ≤ 1015h-1M◉
• Cluster redshifts 0.05 ≤ z ≤ 0.75

•A. Leonard, F. Lanusse, & J.-L. Starck, "Weak lensing reconstructions in 2D & 3D: 
implications for cluster studies",  MNRAS, 449, 1146–1157, 2015.
•A. Leonard, F. Lanusse &  J.-L. Starck, A&A, “GLIMPSE: Accurate 3D weak lensing 
reconstructions using sparsity”, 2014.

http://arxiv.org/abs/1502.05872
http://arxiv.org/abs/1502.05872
http://adsabs.harvard.edu/abs/2013arXiv1308.1353L
http://adsabs.harvard.edu/abs/2013arXiv1308.1353L
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A New Model  

with



GLIMPSE W-GLIMPSEWiener

W-GLIMPSE  





Conclusions  
üGLIMPSE2D: A new mass mapping algorithm, based on sparsity and proximal 

optimization theory: 
https://github.com/CosmoStat 

⇒  Does not require angular binning of the ellipticities, accounts for reduced shear, and proper 
regularization of missing data. 

⇒  Can include individual redshift PDFs of sources and flexion measurements if available 

➡ Bridge between low resolution weak lensing and high resolution strong lensing 

➡ Can recover cluster substructures without strong lensing information 

➡ Ideal tool for investigating models of dark matter   
- F. Lanusse , J.-L. Starck, A. Leonard, and S . Pires, High Resolution Weak Lensing Mass 

Mapping combining Shear and Flexion, A&A, 2016. 

- A. Peel, F. Lanusse, J.-L. Starck, Sparse Reconstruction of the  merging A520 cluster system, 
ApJ, 847, 1, id. 23, 2017. 







WL 3D Cosmo-Door is now open



WL 3D Cosmo-Door is now open







CosmoStat Lab

  Aperture Mass or Convergence  ?
but wavelets presents many advantages:
 - compensated and compact support filters
 - fast calculation:    
 - all scales processed in one step.
 - reconstruction is possible    
            ==> image restoration for peak counting

Map(✓) = (W)✓

- S. Pires, A. Leonard, J.-L. Starck, "Cosmological Parameters Constraint from Weak Lensing Data", MNRAS, 423, pp 983-992, 2012.
- A. Leonard, S. Pires, J.-L. Starck, "Fast Calculation of the Weak Lensing Aperture Mass Statistic", MNRAS, 423, pp 3405-3412, 2012.
- A. Leonard, J.-L. Starck, S. Pires , F.-X Dupe, Exploring the Components of the Universe Through Higher-Order Weak Lensing Statistics, Open Questions in Cosmology, Gonzalo J. Olmo (Ed.), InTech,  2012.

http://arxiv.org/abs/1203.2877
http://arxiv.org/abs/1204.4293
http://www.intechopen.com/books/open-questions-in-cosmology/exploring-the-components-of-the-universe-through-higher-order-weak-lensing-statistics


Map(✓) = (�t)✓

CosmoStat Lab

  Aperture Mass and Wavelets
Map(�) =

�
d2� �t(�)Q(|�|)

⇒	Wavelets	filters	are	formally	inden%cal	to	Mass	aperture	
A. Leonard, S. Pires, J.-L. Starck, "Fast Calculation of the Weak Lensing Aperture Mass Statistic", MNRAS, 423, pp 3405-3412, 2012.
 

but wavelets presents many advantages:
 - compensated and compact support filters
 - fast calculation:    
 - all scales processed in one step.
 - reconstruction is possible    
         ==> image restoration for peak counting

http://arxiv.org/abs/1204.4293


�(✓) = �1 + i�2

Shear
pixelated shear map 

complex field    



- Part I: Introduction to Weak Lensing Mass Mapping  

- Part II: 2D Weak Lensing Mass Mapping

- Part III: 3D Mass Map Reconstruction
 

 Weak Lensing Mass Mapping



CosmoStat Lab
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Cluster Detections: 2D vs 3D mapping
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• 3D	reconstructions	(GLIMPSE)	may	offer	an	SNR	advantage	over	2D	
reconstructions	(MRLens)	for	the	detection	of	clusters.		

• Improvement	particularly	significant	at	high	redshift.

Leonard,	Lanusse,	&	Starck	2015,	MNRAS



NGC2997
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ISOTROPIC UNDECIMATED WAVELET TRANSFORM
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I(k, l) = cJ ,k,l + w j,k,lj=1

J
∑

The STARLET Transform 
Isotropic Undecimated Wavelet Transform (a trous algorithm)

                           

€ 

ϕ = B3 − spline,  1
2
ψ(x

2
) =

1
2
ϕ( x

2
) −ϕ(x)

h = [1,4,6,4,1]/16,   g =δ - h,    ˜ h = ˜ g =δ



⌃crit(zs) =
c2

4⇡G
DS

DLDLSwith Z = ⌃1
critic/⌃critic(zi)

min
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2
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CosmoStat Lab



Individual redshifts have two benefits: 

•Directly  map the surface mass density of the lens 

•Mitigate the  mass-sheet degeneracy when     becomes significant (Bradac et al. 2004) 

 Since, we are not binning the data, the framework can be expanded to include additional information, 
in particular  redshifts.  
   
==> Allows  cluster density mapping (assuming knowledge of lens and sources redshifts).

Redshift Information

⌃1
crit = limz!1 ⌃crit(z)



Virial masses [1014 h�1M�]: 10.9 - 3.02 - 2.70

Cluster redshift: zclus = 0.30
Field size: 10⇥ 10 arcmin2 ⇠ 2⇥ 2 h�2Mpc2

 Density maps from Bolshoi simulations (Kyplin et al. 2011)
• Uniform angular distribution with ngal = 80 gal/arcmin2

• Redshift distribution zmed = 1.75

• Strongly lensed sources (|g| > 1) excluded

• Gaussian photo-z errors �z = 0.05(1 + z)

• Gaussian shape noise �✏ = 0.30

Simulations: 100 independent noise and galaxy distribution realisations



F = r

F =
F

1� 

CosmoStat Lab

  Flexion 
Shear is noise dominated on small scales ==> Substructures are lost

Small-scale substructure can be recovered from strong lensing when available.

Gravitational Flexion is useful in the intermediate regime.

Shear and Flexion Noise Power Spectrum

Shear (left) and first flexion (right) (Bartelmann 2010)

Flexion gives information relative to the third order derivatives of the lensing potential
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CosmoStat Lab

Flexion Information
We can integrate flexion in our reconstruction framework  

=> Jointly fit shear and flexion

=> Jointly fit shear and flexion with redshift information

⌃crit(zs) =
c2

4⇡G
DS

DLDLS

with Z = ⌃1
critic/⌃critic(zi) ⌃1

crit = limz!1 ⌃crit(z)



Individual redshifts have two benefits: 
•Directly  map the surface mass density of the lens 
•Mitigate the  mass-sheet degeneracy when     becomes significant (Bradac et al. 2004) 



CosmoStat Lab

Simulations with Flexion

Reconstruction from one realisation

Flexion noise �F = 0.029 arcsec�1 (Cain et al, 2011)

 Simulate reduced flexion 



• Improvement on the recovered profiles below 0.5 arcmin

• Recovery of small-scale substructure at the 10 arcsec scale

CosmoStat Lab

Flexion

Benefits of adding flexion: 



CosmoStat Lab

�57

Weak Sparsity or Compressible Signals  
A signal s (n samples) can be represented as sum of weighted elements of a given dictionary   

Ex: Haar wavelet

 

 

 

Sorted index k’

Many small coefficients

Few large 
 coefficients

 

Atoms
coefficients

Dictionary  
(basis, frame)

• Fast calculation of the coefficients 

• Analyze the signal through the statistical properties of the coefficients

• Approximation theory  uses  the sparsity of the coefficients


