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Introduction

Figure: The Euclid mission (source: ESA)
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Introduction
Overview

Euclid PSF field recovery entails:
PSF estimation at star positions
Spatial interpolation to galaxy positions

We study the impact of errors made during those steps on
shape measurement with image simulations
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PSF estimation
Preprocessing

p × p postage stamps around detected objects are
extracted (e.g. with SExtractor) along with their positions
U := (xi , yi)i within field of view (FOV)
Star-galaxy separation (e.g. through size-magnitude, Gaia
catalog, ...) leads to clean sample of stars
We consider each star image as a flat vector Yi ∈ Rp2
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PSF estimation
Observation model

Given galaxy positions UG = {(x1, y1), (x2, y2), . . . }, we
want an estimator Ĥ(xj , yj) of the true PSF H(xj , yj)

Observations are noisy, undersampled stars (Yi)i∈US at
positions US 6= UG:

Yi = MiH(xi , yi) + Ni

Ni is white gaussian noise, Mi is degradation operator
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PSF estimation
Degradation operator

Mi contains both decimation and object-specific shift:

H
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PSF estimation
Observation model

Observation model
Y = MH + N

where
Y = (Yi)i∈{1,...,nstars}, M = (Mi)i∈{1,...,nstars},
N = (Ni)i∈{1,...,nstars}

H = (H(xi , yi))(xi ,yi )∈US

We must both:
Counteract the effect of M (superresolution);
Interpolate from US to UG (spatial interpolation).
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Superresolution
Data-driven approaches

Learn Dictionary S and codes (Ai) such that Yi ≈ Mi(SAi)

PSFEx (Bertin, 2011)
RCA (Ngolè et al., 2016): Enforce several constraints on S
and A = αV> to reflect known properties of the PSF

=

S A=Ĥ

Ĥj : reconstructed PSF at position uj Aj : codes for Ĥj

r
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es

p
2
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nstars columns
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r columns

nstars columns

(Sk)k: eigenPSFs
sparse in Starlet domain
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Superresolution
Data-driven approaches

Learn Dictionary S and codes (Ai) such that Yi ≈ Mi(SAi)

PSFEx (Bertin, 2011)
RCA (Ngolè et al., 2016): Enforce several constraints on S
and A = αV> to reflect known properties of the PSF

=

A = ↵ V >

Eigenvectors of
PSF graphs’ Laplacians

↵i: sparse to enforce spatial constraints
Ai: function on PSF graph
associated with eigenPSF Si
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Superresolution
Resolved Component Analysis (RCA)

min
S,α

1
2
‖Y −MSαV>‖22 + ιΩ(α) + ι+(S, α) +

r∑
i=1

‖wi � Φsi‖1

(1)

Dimensionality reduction: PSF variations across the field
are smooth enough (at least locally) to be captured
through a small number of eigenPSFs r << p;
Graph constraints: the smaller the difference between two
PSFs’ positions ui ,uj , the smaller the difference between
their representations Ĥi , Ĥj should be;
Positivity: the PSF should only contain positive pixel values
Sparsity: the PSF should have a sparse representation in
an appropriate basis.
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Graph constraints

Spatial variations can either be localized or occur slowly
across the whole field
Each eigenPSF Sk should capture information linked to a
certain spatial frequency
Consider a set of graphs with edges between points i and j
weighted by 1/‖ui − uj‖ek

2

We enforce the spatial constraints by further factorizing A
by the set of eigenvectors of our graphs’ Laplacians, and
forcing the coefficients to be sparse
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Graph constraints
Illustration
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Spatial Interpolation

RCA gives us estimators of the PSF at star positions
Ĥ(xi , yi) = SαiV>

Spatial interpolation must then be carried out to obtain
desired PSFs at galaxy positions

(
Ĥ(xj , yj)

)
j∈UG

Dictionary S and graph eigenvectors V> contain
information about the PSF and its spatial variations by very
construction
Perform spatial interpolation within the RCA-learned
graphs to stay within the correct manifold
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Simulation set-up
Galaxies

Simulate GREAT3-like galaxies and convolve them with
true, unobserved Euclid PSF with GalSim (Rowe et al.,
2015): ~2,000,000 galaxies with 204 different shear values
Sample them at twice Euclid resolution and add noise
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Simulation set-up
Stars and PSF models

Estimate PSF: "known", RCA+RBF, PSFex
Apply actual shape measurement method with all three
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Shape measurement

Two types of shape measurement approaches: KSB
(Kaiser et al., 1995; Hirata & Seljak, 2003) and im3shape
(Zuntz et al., 2013)
Yields per-object estimator of the shape: êj ≈ eint

j + gj

For each data-driven model of PSF, we can look at relative
error on the shape itself: 〈(|êkn| − |ê|)2〉
Or estimate shear and look at shear bias:
ĝ = 〈ê〉 ≈ 〈eint〉+ 〈g〉 = g
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Shape measurement
Ellipticity distributions

(a) KSB (b) im3shape
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Impact on shape measurement
Relative ellipticity error

KSB: RCA yields ~35% improvement over PSFEx
Model fitting less sensitive to PSF modelling (no model
bias!)
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Impact on shear bias
KSB
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ĝRCA
1 ≈ −0.005 + (1 + 0.209)g1

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0
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Summary

Data-driven PSF estimation: build PSF model using only
images
Model fitting seems less sensible to PSF misspecifications
On moments-based method, RCA-based approach yields
35% relative improvement over PSFEx in shape
measurement quality
Perspective: chromatic dependency (see Rebeca’s talk
tomorrow)
Acknowledgements and funding:

morgan.schmitz@cea.fr
http://www.cosmostat.org/people/mschmitz/
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Euclid PSFs
Natural and log
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Paulin propagation

Paulin-Henriksson et al., 2008, eq (13):

δe = ê − e = (e − ePSF)

(
R2

PSF

R2
gal

)
δR2

PSF

R2
PSF
−
(

R2
PSF

R2
gal

)
δePSF
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Appendix

4 Data-driven and optical PSF models

5 Superresolution & spatial interpolation

6 Impact on shape measurement (additional results)
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Introduction
Data-driven PSF estimation: motivation

PSF estimation can be carried out:
by fitting physically-motivated model to observed stars
by relying solely on the data (this talk)

Always a good idea to have two independent methods for a
specific problem:

Validation
Combination

Data-driven approach may capture effects missed by
physical models
And should be less sensitive to unexpected surprises
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Appendix

4 Data-driven and optical PSF models

5 Superresolution & spatial interpolation

6 Impact on shape measurement (additional results)
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Superresolution
Data-driven approaches

Learn Dictionary S and codes (Ai) such that Yi ≈ F(SAi)

PSFEx (Bertin, 2011):

Ai =
(

xp
i yq

j

)
p+q≤d

RCA (Ngolè et al., 2016): Enforce several constraints on S
and A = αV> to reflect known properties of the PSF
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Observed stars
Noise levels

(a) Star at SNR 1 (b) Star at SNR 10 (c) Star at SNR 20

(d) Star at SNR 35 (e) Star at SNR 50
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Superresolution
Usual approach

Several exposures of same object available: random
intra-pixel shifts lead to capture of different parts of the
information
Use that information to perform superresolution
SPRITE (Ngolè et al., 2015): use sparsity to superresolve
and denoise Euclid-like PSF
Problem: different Euclid exposures of same star might not
measure the same H(x , y)
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Spatial Interpolation
Radial basis function interpolation

Radial basis functions (RBF): kernels Φ that only depend
on the distance between two observations
Typically, Φ(Aik ,Aik ′) = ϕ(‖uk − uk ′‖)
Thin-lens kernel: ϕ : r 7→ r2 log(r)

Use star neighborhood Uj of galaxy position uj to estimate

Âik =
∑
u∈Uj

wuϕ (‖u − uk‖)
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Appendix

4 Data-driven and optical PSF models

5 Superresolution & spatial interpolation

6 Impact on shape measurement (additional results)
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Impact on shape measurement
Absolute ellipticity error

Figure: Absolute ellipticity errors as a function of star SNR
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Impact on shape measurement
Relative ellipticity error (1st component)

Figure: Relative e1 errors as a function of star SNR
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Impact on shape measurement
Relative ellipticity error (2nd component)

Figure: Relative e2 errors as a function of star SNR
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Impact on shape measurement
Multiplicative bias per SNR

Figure: m as a function of star SNR
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Impact on shape measurement
Additive bias per SNR

Figure: c as a function of star SNR
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Impact on shear bias
im3shape
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ĝPSFEx
1 ≈ −0.001 + (1 + 0.071)g1

0.0

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

(b) PSFEx estimated

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

True shear

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

im
3s

h
ap

e
es

ti
m

at
ed

im3shape
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