PSF modeling using a Graph manifold

Morgan A. Schmitz, Jean-Luc Starck, Fred Ngolè morgan.schmitz@cea.fr

French-Chinese Days on Weak Lensing

04/10/2018

Impact on shape measurement

Introduction

Figure: The Euclid mission (source: ESA)

PSF estimation

Impact on shape measurement

Introduction Galaxy

Galaxy

Introduction

PSF estimation

mpact on shape measurement

Morgan A. Schmitz

CosmoStat, Astrophysics Dept., CEA Saclay

3/21

Star

Introduction

PSF estimation

mpact on shape measurement

Point Source Euclid PSF Euclid PSF 1.0 -0.0032 0.9 0.0028 0.8 0.7 0.00240.6 convolved 0.00200.5 0.0016 with 0.4 0.0012 0.30.20.0008 0.1 0.0004 0.0

PSF estimation

mpact on shape measurement

Introduction Star

Morgan A. Schmitz

CosmoStat, Astrophysics Dept., CEA Saclay

4/21

PSF estimation

mpact on shape measurement

Introduction Star

Morgan A. Schmitz

CosmoStat, Astrophysics Dept., CEA Saclay

4/21

Introduction Overview

- Euclid PSF field recovery entails:
 - PSF estimation at star positions
 - Spatial interpolation to galaxy positions
- We study the impact of errors made during those steps on shape measurement with image simulations

● SF estimation

PSF estimation

- *p* × *p* postage stamps around detected objects are extracted (*e.g.* with SExtractor) along with their positions
 U := (*x_i*, *y_i*)_{*i*} within field of view (FOV)
- Star-galaxy separation (*e.g.* through size-magnitude, Gaia catalog, ...) leads to clean sample of stars
- We consider each star image as a flat vector $Y_i \in \mathbb{R}^{p^2}$

PSF estimation Observation model

- Given galaxy positions $U_G = \{(x_1, y_1), (x_2, y_2), ...\}$, we want an estimator $\hat{H}(x_j, y_j)$ of the true PSF $H(x_j, y_j)$
- Observations are noisy, undersampled stars (Y_i)_{i∈U_S} at positions U_S ≠ U_G:

$$Y_i = M_i H(x_i, y_i) + N_i$$

• N_i is white gaussian noise, M_i is degradation operator

PSF estimation

Impact on shape measurement

PSF estimation Degradation operator

• *M_i* contains both decimation and object-specific shift:

H

Morgan A. Schmitz

PSF estimation

Impact on shape measurement

PSF estimation Degradation operator

• *M_i* contains both decimation and object-specific shift:

H

PSF estimation

Impact on shape measurement

PSF estimation Degradation operator

• M_i contains both decimation and object-specific shift:

PSF estimation

Impact on shape measurement

PSF estimation Degradation operator

• M_i contains both decimation and object-specific shift:

PSF estimation

Impact on shape measurement

PSF estimation Degradation operator

• M_i contains both decimation and object-specific shift:

9

8/21

PSF estimation Observation model

Observation model

$$Y = MH + N$$

where

•
$$Y = (Y_i)_{i \in \{1,...,n_{stars}\}}, M = (M_i)_{i \in \{1,...,n_{stars}\}}, N = (N_i)_{i \in \{1,...,n_{stars}\}}$$

•
$$H = (H(x_i, y_i))_{(x_i, y_i) \in \mathcal{U}_S}$$

- We must both:
 - Counteract the effect of *M* (superresolution);
 - Interpolate from U_S to U_G (spatial interpolation).

Impact on shape measurement

Superresolution Data-driven approaches

Learn Dictionary *S* and codes (A_i) such that $Y_i \approx M_i(SA_i)$

- PSFEx (Bertin, 2011)
- RCA (Ngolè et al., 2016): Enforce several constraints on S and A = αV^T to reflect known properties of the PSF

10/21

Impact on shape measurement

Superresolution Data-driven approaches

Learn Dictionary *S* and codes (A_i) such that $Y_i \approx M_i(SA_i)$

- PSFEx (Bertin, 2011)
- RCA (Ngolè et al., 2016): Enforce several constraints on S and A = αV^T to reflect known properties of the PSF

CosmoStat, Astrophysics Dept., CEA Saclay

Morgan A. Schmitz

Impact on shape measurement

Superresolution Resolved Component Analysis (RCA)

$$\min_{S,\alpha} \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{M} \boldsymbol{S} \alpha \boldsymbol{V}^{\mathsf{T}} \|_{2}^{2} + \iota_{\Omega}(\alpha) + \iota_{+}(S,\alpha) + \sum_{i=1}^{r} \| \boldsymbol{w}_{i} \odot \boldsymbol{\Phi} \boldsymbol{s}_{i} \|_{1}$$
(1)

- Dimensionality reduction: PSF variations across the field are smooth enough (at least locally) to be captured through a small number of eigenPSFs r << p;
- Graph constraints: the smaller the difference between two PSFs' positions u_i, u_j, the smaller the difference between their representations Ĥ_i, Ĥ_j should be;
- Positivity: the PSF should only contain positive pixel values
- Sparsity: the PSF should have a sparse representation in an appropriate basis.

Impact on shape measurement

Superresolution Resolved Component Analysis (RCA)

$$\min_{S,\alpha} \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{M} \boldsymbol{S} \boldsymbol{\alpha} \boldsymbol{V}^{\mathsf{T}} \|_{2}^{2} + \iota_{\Omega}(\boldsymbol{\alpha}) + \iota_{+}(S, \boldsymbol{\alpha}) + \sum_{i=1}^{r} \| \boldsymbol{w}_{i} \odot \boldsymbol{\Phi} \boldsymbol{s}_{i} \|_{1}$$
(1)

- Dimensionality reduction: PSF variations across the field are smooth enough (at least locally) to be captured through a small number of eigenPSFs r << p;
- Graph constraints: the smaller the difference between two PSFs' positions u_i , u_j , the smaller the difference between their representations \hat{H}_i , \hat{H}_j should be;
- Positivity: the PSF should only contain positive pixel values
- Sparsity: the PSF should have a sparse representation in an appropriate basis.

Impact on shape measurement

Superresolution Resolved Component Analysis (RCA)

$$\min_{\boldsymbol{S},\alpha} \frac{1}{2} \|\boldsymbol{Y} - \boldsymbol{M} \boldsymbol{S} \alpha \boldsymbol{V}^{\top}\|_{2}^{2} + \iota_{\Omega}(\alpha) + \iota_{+}(\boldsymbol{S},\alpha) + \sum_{i=1}^{r} \|\boldsymbol{w}_{i} \odot \boldsymbol{\Phi} \boldsymbol{s}_{i}\|_{1}$$
(7)

- Dimensionality reduction: PSF variations across the field are smooth enough (at least locally) to be captured through a small number of eigenPSFs r << p;
- Graph constraints: the smaller the difference between two PSFs' positions u_i, u_j, the smaller the difference between their representations Ĥ_i, Ĥ_j should be;
- Positivity: the PSF should only contain positive pixel values
- Sparsity: the PSF should have a sparse representation in an appropriate basis.

11/21

Impact on shape measurement

Superresolution Resolved Component Analysis (RCA)

$$\min_{S,\alpha} \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{M} \boldsymbol{S} \boldsymbol{\alpha} \boldsymbol{V}^{\top} \|_{2}^{2} + \iota_{\Omega}(\boldsymbol{\alpha}) + \iota_{+}(\boldsymbol{S}, \boldsymbol{\alpha}) + \sum_{i=1}^{r} \| \boldsymbol{w}_{i} \odot \boldsymbol{\Phi} \boldsymbol{s}_{i} \|_{1}$$
(1)

- Dimensionality reduction: PSF variations across the field are smooth enough (at least locally) to be captured through a small number of eigenPSFs r << p;
- Graph constraints: the smaller the difference between two PSFs' positions u_i , u_j , the smaller the difference between their representations \hat{H}_i , \hat{H}_j should be;
- Positivity: the PSF should only contain positive pixel values
- Sparsity: the PSF should have a sparse representation in an appropriate basis.

Impact on shape measurement

Superresolution Resolved Component Analysis (RCA)

$$\min_{S,\alpha} \frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{M} \boldsymbol{S} \alpha \boldsymbol{V}^{\top} \|_{2}^{2} + \iota_{\Omega}(\alpha) + \iota_{+}(\boldsymbol{S}, \alpha) + \sum_{i=1}^{r} \| \boldsymbol{w}_{i} \odot \boldsymbol{\Phi} \boldsymbol{s}_{i} \|_{1}$$
(1)

- Dimensionality reduction: PSF variations across the field are smooth enough (at least locally) to be captured through a small number of eigenPSFs r << p;
- Graph constraints: the smaller the difference between two PSFs' positions u_i , u_j , the smaller the difference between their representations \hat{H}_i , \hat{H}_j should be;
- Positivity: the PSF should only contain positive pixel values
- Sparsity: the PSF should have a sparse representation in an appropriate basis.

Graph constraints

- Spatial variations can either be localized or occur slowly across the whole field
- Each eigenPSF S_k should capture information linked to a certain spatial frequency
- Consider a set of graphs with edges between points *i* and *j* weighted by 1/||u_i u_j||^{e_k}₂
- We enforce the spatial constraints by further factorizing *A* by the set of eigenvectors of our graphs' Laplacians, and forcing the coefficients to be sparse

PSF estimation

Impact on shape measurement

Graph constraints

Morgan A. Schmitz

Spatial Interpolation

- RCA gives us estimators of the PSF at star positions $\hat{H}(x_i, y_i) = S \alpha_i V^{\top}$
- Spatial interpolation must then be carried out to obtain desired PSFs at galaxy positions (*Ĥ*(*x_j*, *y_j*))_{*i*∈U_G}
- Dictionary S and graph eigenvectors V[⊤] contain information about the PSF and its spatial variations by very construction
- Perform spatial interpolation *within* the RCA-learned graphs to stay within the correct manifold

Impact on shape measurement

Simulation set-up

- Simulate GREAT3-like galaxies and convolve them with true, unobserved Euclid PSF with GalSim (Rowe et al., 2015): ~2,000,000 galaxies with 204 different shear values
- Sample them at twice Euclid resolution and add noise

PSF estimation

Impact on shape measurement

Simulation set-up Stars and PSF models

- Estimate PSF: "known", RCA+RBF, PSFex
- Apply actual shape measurement method with all three

Shape measurement

- Two types of shape measurement approaches: KSB (Kaiser et al., 1995; Hirata & Seljak, 2003) and im3shape (Zuntz et al., 2013)
- Yields per-object estimator of the shape: $\hat{e}_j \approx e_j^{\text{int}} + g_j$
- For each data-driven model of PSF, we can look at *relative* error on the shape itself: $\langle (|\hat{e}^{kn}| |\hat{e}|)^2 \rangle$
- Or estimate shear and look at shear bias: $\hat{g} = \langle \hat{e} \rangle \approx \langle e^{int} \rangle + \langle g \rangle = g$

PSF estimation

Impact on shape measurement

Shape measurement Ellipticity distributions

Morgan A. Schmitz

9

PSF estimation

Impact on shape measurement

Impact on shape measurement Relative ellipticity error

- KSB: RCA yields ~35% improvement over PSFEx
- Model fitting less sensitive to PSF modelling (no model bias!)

PSF estimation

Impact on shape measurement

Impact on shear bias

9

Summary

- Data-driven PSF estimation: build PSF model using only images
- Model fitting seems less sensible to PSF misspecifications
- On moments-based method, RCA-based approach yields 35% relative improvement over PSFEx in shape measurement quality
- Perspective: chromatic dependency (see Rebeca's talk tomorrow)
- Acknowledgements and funding:

http://www.cosmostat.org/people/mschmitz/

Data-driven and optical PSF models

Superresolution & spatial interpolation

mpact on shape measurement (additional results)

Euclid PSFs Natural and log

0.0032 0.0028 0.0024 0.0020 0.0016 0.0012 0.0008 0.0008

Morgan A. Schmitz

Impact on shape measurement (additional results)

Paulin propagation

• Paulin-Henriksson et al., 2008, eq (13):

$$\delta \boldsymbol{e} = \hat{\boldsymbol{e}} - \boldsymbol{e} = (\boldsymbol{e} - \boldsymbol{e}_{\text{PSF}}) \left(\frac{\boldsymbol{R}_{\text{PSF}}^2}{\boldsymbol{R}_{\text{gal}}^2}\right) \frac{\delta \boldsymbol{R}_{\text{PSF}}^2}{\boldsymbol{R}_{\text{PSF}}^2} - \left(\frac{\boldsymbol{R}_{\text{PSF}}^2}{\boldsymbol{R}_{\text{gal}}^2}\right) \delta \boldsymbol{e}_{\text{PSF}}$$

23/21

9

mpact on shape measurement (additional results)

Appendix

5 Superresolution & spatial interpolation

Impact on shape measurement (additional results)

Impact on shape measurement (additional results)

Introduction Data-driven PSF estimation: motivation

• PSF estimation can be carried out:

- by fitting physically-motivated model to observed stars
- by relying solely on the data (this talk)
- Always a good idea to have two independent methods for a specific problem:
 - Validation
 - Combination
- Data-driven approach may capture effects missed by physical models
- And should be less sensitive to unexpected surprises

mpact on shape measurement (additional results)

Appendix

5 Superresolution & spatial interpolation

Impact on shape measurement (additional results)

Morgan A. Schmitz

26/21

Superresolution Data-driven approaches

Learn Dictionary *S* and codes (A_i) such that $Y_i \approx \mathcal{F}(SA_i)$ • PSFEx (Bertin, 2011):

$$A_i = \left(x_i^p y_j^q\right)_{p+q \leq a}$$

 RCA (Ngolè et al., 2016): Enforce several constraints on S and A = αV^T to reflect known properties of the PSF

0000

Observed stars Noise levels

(a) Star at SNR 1

(b) Star at SNR 10

(c) Star at SNR 20

(e) Star at SNR 50

0.040.00

Morgan A. Schmitz

CosmoStat, Astrophysics Dept., CEA Saclay

Superresolution Usual approach

- Several exposures of same object available: random intra-pixel shifts lead to capture of different parts of the information
- Use that information to perform superresolution
- SPRITE (Ngolè et al., 2015): use sparsity to superresolve and denoise Euclid-like PSF
- Problem: different Euclid exposures of same star might not measure the same H(x, y)

Spatial Interpolation Radial basis function interpolation

- Radial basis functions (RBF): kernels Φ that only depend on the distance between two observations
- Typically, $\Phi(A_{ik}, A_{ik'}) = \varphi(||u_k u_{k'}||)$
- Thin-lens kernel: $\varphi: r \mapsto r^2 \log(r)$
- Use star neighborhood U_j of galaxy position u_j to estimate

$$\hat{A}_{ik} = \sum_{u \in U_j} w_u \varphi \left(\|u - u_k\| \right)$$

mpact on shape measurement (additional results)

Appendix

5 Superresolution & spatial interpolation

Impact on shape measurement (additional results)

Impact on shape measurement (additional results) •••••••

Impact on shape measurement Absolute ellipticity error

Figure: Absolute ellipticity errors as a function of star SNR

Impact on shape measurement (additional results)

Impact on shape measurement Relative ellipticity error (1st component)

Figure: Relative e1 errors as a function of star SNR

Impact on shape measurement (additional results)

Impact on shape measurement Relative ellipticity error (2nd component)

Figure: Relative e2 errors as a function of star SNR

Impact on shape measurement (additional results)

Impact on shape measurement Multiplicative bias per SNR

Figure: m as a function of star SNR

35/21

Impact on shape measurement (additional results)

Impact on shape measurement Additive bias per SNR

Figure: c as a function of star SNR

Data-driven and optical PSF models

Superresolution & spatial interpolatior

Impact on shape measurement (additional results)

Impact on shear bias im3shape

9