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Reminder from last year ...

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II




Reminders from last year (part I)

Books, Reviews and Lecture Notes

e Bartelmann & Schneider 2001, review Weak gravitational lensing,
Phys. Rep., 340, 297 arXiv:9912508

e Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
[IT (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

e Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

e Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

e Mandelbaum 2018, review Weak lensing for precision cosmology, ARAA
submitted, arXiv:1710.03235

e Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

e Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

e Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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Reminders from last year (part I)

Science with gravitational lensing

Outstanding results
Dark matter profiles in outskirts of galaxies.
Measuring halo mass to very large galactic scales.
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Reminders from last year (part I)

Science with gravitational lensing

Outstanding results

Hints of inconsistency of our cosmological model at low and high 27
Planck and WL in tension? Also WL cluster masses for Planck SZ clusters;
Hy from cepheids + SL.
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(Hildebrandt et al. 2017)
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Reminders from last year (part I)

Science with gravitational lensing

Outstanding results
General relativity holds on cosmological scales.
Joint WL and galaxy clustering cosmology-independent GR test.
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(Reyes et al. 2010)
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Reminders from last year (part I)

Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

e Continuous deflection: sensitive to
projected 2D mass distribution.

e Differential deflection:
magnification, distortions of
images.

e Small distortions, few percent
change of images: need statistical
measurement.

e Coherent distortions: measure
correlations, scales few Mpc to few

100 Mpe.
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Reminders from last year (part I)

Reminder: Deflection angle

source S

Perturbed Minkowski metric, weak-field (¢ < ¢?)

ds* = (1+2¢/c%) *dt* — (1 —2¢/c) d¢?

One way to derive deflection angle: Fermat’s principle:

1
Light travel time = = / (1 — 2qb/(:2) d/
C path

is stationary, t = 0. (Analogous to geometrical optics,
potential as medium with refract. index n =1 — 2¢/c?.)
Integrate Euler-Lagrange equations along the light path to
get

9 O
deflection angle a=—— / Vipdl
" Js

observer O
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Reminders from last year (part I)

Reminder: Special case: point mass

Deflection angle for a point mass M is
AGM § _ 2Rs £

c*¢ ¢ § &
(Rg is the Schwarzschild radius.)

o =

This is twice the value one would get
in a classical, Newtonian calculation.

We derived this result last year in the
limit of the Born approximation (light
propagates on straight line as if
unperturbed).

SDSS J1627-0053 HE 1104-1825
25=05,21=02, a=28"(5kpc) 7 -23 2 =17 a=16" (14kpo)
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Reminders from last year (part I)

Reminder: Extended lens & extended source

Extended source: different light rays impact lens at different positions &, their
deflection angle (&) will be different: differential deflection — distortion,
magnification of source image!
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Reminders from last year (part I)

Reminder: Cosmic shear deflection angle

We derived the deflection angle as integral over the potential gradient
(continuous deflection along the line of sight):

source

observer

a®0 = 5 [ o [Vaoe(d) ) - V1o 0)]

62

Geometrical relation: (Unobervable) unlensed source position 3 is observed
lensed position (direction of incoming light ray) @ minus deflection angle a,

B(0,x) =0 —a(b,x) =0 — Ve1p(0);
with the lensing potential

(0, x) = 2/0 dx' X=X 6(x'6, ).

2 /
C XX
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Reminders from last year (part I)

Convergence and shear

The lens equation is the mapping from lens to
soure 2D coordinates. The linearized lens
equation

dPi
00

= A;j = 0i5 — 0,059,

is described by the symmetrical 2 x 2 Jacobi
matrix,

A l—Kx—m —Y2
—72 l—rk+4+m )’

Which defines convergence x and shear .

e convergence k: isotropic magnification

e shear ~: anisotropic stretching
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Reminders from last year (part I)

Reminder: Complex ellipticity/shear

Define complex shear

y
¥ =7+ e = [y]e®?; /< a
The relation between convergence, shear, and the ’ s "
axis ratio of elliptical isophotes is then /
1—0b/a
[yl =11 —&|
1+0b/a
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Reminders from last year (part I)

E- and B-modes: recap from part I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.

Under-dense regions cause a similar pattern, but with opposite sign for ~.
That results in radial pattern.

Projected matter density Distortion field
convergence K shear ~y
~0.041 0.095 0.23

tangential distortions around mass peaks

Source galaxies at z = 1, ray-tracing simulations by T. Hamana
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Reminders from last year (part I)

E- and B-modes: recap from part I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.

Under-dense regions cause a similar pattern, but with opposite sign for ~.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the E~-mode. A so-called B-mode is not generated.

‘ Fmode . ’ B mode ‘
.’ peak ‘. .‘ trongh ’ . @ « .
® N N\ 7 P,

Vo’ 79N ‘,. .\.
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Reminders from last year (part I)

E- and B-modes: recap 1

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

e Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

e Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

o Intrinsic alignment (although magnitude not well-known!)
e Varying seeing and other observational effects

e Non-standard cosmologies (non-isotropic, TeVeS, ...)
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Reminders from last year (part I)

E- and B-modes: recap 11

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain " and &P from ~, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear +; is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering x with a function U that is related to ().
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Reminders from last year (part I)

E- and B-modes: recap 111

The resulting quantity is called aperture mass M,,(#), which is a function of
the filter size, or smoothing scale, #. It is only sensitive to the E-mode.

If one uses the cross-component shear v instead, the filtered quantity, M
captures the B-mode contribution only.

End of recap from part L.
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Convergence as potential field
Again convergence k and shear ~:

9B
agj =A;; = 0ij — 0;05;

A = 1_/1_71 —2
—72 l—xk+m /)

From this, write k and ~ as second derivatives of the potential.
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Convergence as potential field
Again convergence k and shear ~:

9B
agj =A;; = 0ij — 0;05;

A = 1_/1_71 —2
—72 l—xk+m /)

From this, write k and ~ as second derivatives of the potential.

1 1 1
KR = 9 (8131 + 5’2@2) Y = §V2¢3 Y1 = 5 (8131 — 5’2@2) V5 y2 = 0102%.
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Part II day 1: E- and B-modes E-/B-mode estimators

Convergence as potential field
Again convergence k and shear ~:

9B
(‘92 =A;; = 0ij — 0;05;

A = l—r— g4l —72 .
—72 l-Kk+m
From this, write k and ~ as second derivatives of the potential.

1 1 1
KR = 5 (5131 + 3232) Y = §V2¢§ Y1 = 9 (5131 — 3232) V5 y2 = 0102%.

We can now define a vector field w for which the convergence is the
“potential”, with

u = Vk.

Express u in terms of the shear.
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Part II day 1: E- and B-modes E-/B-mode estimators

Convergence as potential field
Again convergence k and shear ~:

9B
(‘92 =A;; = 0ij — 0;05;

A = l—r— g4l —72 .
—72 l-Kk+m
From this, write k and ~ as second derivatives of the potential.

1

1 1
KR = 5 (5131 + 3232) Y = §V2¢§ Y1 = 9 (5131 — 3232) V5 y2 = 0102%.

We can now define a vector field w for which the convergence is the

“potential”, with
u = VK.

Express u in terms of the shear.

U = ( Ok ) _ ( %(818181 + 010202)K ) B ( Ov1 + Oavo )
D2k 5(010102 + 020202k O + Oy )
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Part II day 1: E- and B-modes E-/B-mode estimators

E- and B-mode potential, convergence, and shear I

Thus, from a shear field 7, to linear order, the corresponding convergence is
derived from a gradient field u, and is curl-free, V x u = d1us — douy; = 0, as
can easily be seen.

This is the E-mode, in analogy to the electric field.

However, in reality, from an observed shear field, one might measure a
non-zero curl component.
This is called the B-mode, in analogy to the magnetic field.

Definition:

Vit .=V - u;

VikB =V x u,

and potentials
V2EB = 94FB,

Note that ¥® and B do not correspond to physical mass over-densities.
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Part II day 1: E- and B-modes E-/B-mode estimators

E- and B-mode potential, convergence, and shear 11
These can be written in complex notation,

v =P" +iyh; k= K" +iKk",
and the shear

, 1
Y1+Hiy2 = 5(0131¢E—3232¢ )—01020°+i | 81029 + = (3131¢ — 0,0,0")

Now, we can compute the E-, B-, and mixed EB-mode power spectrum.
(KE(0)&R"()) = (2m)%0p (£ — £) P (D),
(5 (L)R° (L)) = (2m)*dp (€ — £) P (¢),
(RE(£)R°(£)) = (2m)%dp (€ — £) P (),
)

and can derive (from 4(£) = e?P&(£), see last years’ TD) for the correlators of
v in Fourier space

(3(£)7"(£)) = (2m)*op (£ — £) [P (6) + P (0)]
(H(O)F(€)) = (2m)*dp (£ + £)e™ [PF(€) — P2 (0) + 2iP 5 (0)] .

3>
3>
|

x>
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Part II day 1: E- and B-modes E-/B-mode estimators

Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

(7(0)7* (6 + 1)) = (") (W) =F [(F(0)F*(€'))] (9);
(vy) () =F [(H(£)7(€))] (I);

But these correlators are very closely related to the shear two-point
correlation functions £, and &_, that we defined on day 1 (part I):

E4 (V) = (nm) () + (vxyx) (9)
E-(9) = (mm) (V) — {(vxvx) (9)
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Part II day 1: E- and B-modes E-/B-mode estimators

Recall: 2PCF

Correlation of the shear at two points yields four quantities

(rt) . ******* . . ***** <
(Y5 ¥x) \ fffff \ \,

Parity conservation — (y4vx) = (vxYt) = 0

The two components of the shear two-point correlation function (2PCF) are

defined as

E4 () = (mm) (V) + (vxvx) (9)
E- () = (ny) (9) = (rxvx) (9)

Due to statistical isotropy & homogeneity, these correlators only depend on 1.
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Part II day 1: E- and B-modes E-/B-mode estimators

2PCF and E-/B-mode power spectra |

We generalize the relation between 2PCF and convergence power spectrum P,
from day 1,

1 ©. @)
EL(09) = —/ dl L]y (09) P, (£)
27 0
1 (©. @)
E_(09) = —/ dl L], (09) P, (£),
2T 0
to include E- and B-mode power spectra:
I " pE B/ ]
E.(9) = 7 dilJo(69) | P (£) + P (€)
0
1 [ . :
{-(0) = o deLJ4(€9) [P (0) — P2(0)
™ Jo ) )

(and we don’t look any further at £, which vanished for a parity-symmetric
universe. )
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Part II day 1: E- and B-modes E-/B-mode estimators

2PCF and E-/B-mode power spectra 11

We have thus two observables (£,,£_) and two unknowns (PY, PB). Surely,
these two power spectra can be deduced from the observations?
The above equations can be inverted using the orthogonality of the Bessel
function:
op(l — 1)

g Y
(or, alternatively, go back to the 2D Fourier integrals and use the
orthogonality of the plane wave basis functions exp(if))
resulting in

/ " 4993, (60)3,(£9) =

PEO) = | T 499 (64 (9)T0(09) + £ (9)T4(09)].
PR = [ 400 [60(0)30(09) - & (9)3a(9)

So, in principle, the E-/ and B-mode power spectra can be computed
separately, but not in practice, since this requires information about the shear
correlation that is unobservable, towards 0 and oo separation.

— We have to further filter the field for a better separation.
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture mass

Earlier, we introduced the aperture-mass as convolution of the shear field with
a filter @),

M (6, 8) = / 829’ Qo (|8 — O|) 1 ()

and claimed that this was equivlaent of convolving the convergence with
another filter U,

Map(6.9) = [ &0 Up([9 ~ ) (2. 1)

(Kaiser et al. 1994, Schneider 1996).

Exercise for next session (where you’ll need stuff from today’s TD): What is
the relation between U and ()7
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Part II day 1: E- and B-modes E-/B-mode estimators

Convolution with shear
Parenthesis:

Eq. (3) involves the tangential shear ¢ with re-
spect to the aperture centre 19; it should be writ-
ten v (9, 9).

This “field” = is thus defined locally, and can- ¥ —
not be represented globally.

How can this expression be written as convolu-

tion with v = v + ivy9? L4
i
Solution:
Vi (,197 ,19/) — R (’76_21@> — _R (,Ye—Qiarctan |192—19/2|/|191—19/1|)
N Map<(9779) _ %/dQﬁ/ fy(,ﬁ/)e—Qiarctan[|192—19/2|/|191—19’1|]
=R (Qy *7) (I)
with ng (,19) _ QQ (ﬁ)e—Qiarctan[ﬁg/fﬁl].
5/




Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with M, 1

It is clear that M,, (M) is sensitive to the E-mode (B-mode) of the shear
field ~.

When chosing @) such that its support is finite, with Q(0) = 0 for 6 > 0.,
the E-/B-mode separation is achieved on a finite interval.

To get this separation at the second-order level, let’s take the variance of the

aperture-mass: Square M,,(6,1) and average over circle centres 9 (Schneider
et al. 1998).
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with M, II

Square M,,(6,7¥) and average over circle centres -
(M3,)(0) Z/d219' Us(|9 — ') /dQﬁ" Us (|9 — 9"|) (k" (') (9"))
:/d219’ Ue(ﬁ/) /d219” UQ(Q?N)<FGE/{/E>(|79/ . ,19//‘)
= / d*9 Uy () / A9 Uy (19')

X / (%Ze—iw / %e—iw’(zw)%[)(e—z’)P,E(e)

— / (;ifz ( / d219e2w’9U9(19))2PE(€)

1 N
:—/dMUQ(ee)PE(e).
2T

Note: Typically, the filter function U depends on the scale ¥ normalized to the

A

radius 0, Uy(9¥) = U(4¥/60). In Fourier space this then becomes U (6¢).
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Part II day 1: E- and B-modes

E-/B-mode separation with M,, I1I

For popular choices of U, U2 is a narrow pass-band filter function.

E-/B-mode estimators

polynomial Gaussian
9 9> 1 2
——(1-%)(z—-% 9] < 0 1 92 92
762 02 ) \3 ~ 92 1 (1 - 22 _ 97
Up () ; ( ) ( ) olse 2762 (1 292) eXp( 292)
6 92 92
762 62 62 _ 97
Qo (V) { 0 ( ) olse 1ro% %P ( 292>
§ J P — 0
U(n) 2477;42(77) T~ exp ( . )
1 | | | Ug(9) poly
0.8 1 Qe(®) poly :
2 o6t Ug(®) Gauss )
S [ R Qq(®) Gauss
2 04Ff i
S o2¢ |
_c% 0r
-3 S N |
-04 | | | | |
0 0.5 1 1.5 2 2.5 3
9/6
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E-/B-mode separation with M,, IV

Filter functions in Fourier space:

0.1¢

001 ¢

0.001

le-04 ¢

le=05 ¢

| A D
0.1 1 10
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with M,, V

Thus, the aperture-mass dispersion filters out a small range of /-modes around
¢ ~ const 1.

For example, for the polynomial filter from (Schneider et al. 1998), the peak is
00 ~ 5.

Analogous equations for B- and mixed modes are

(M2)(0) = 5 [ deeTH 60 PP o),
1 2 EB
(MM )(0) =5 [ dCT*O0PE )

In complex notation, the last three expressions can be written as

2T

(MZ)(0) £ (MZ)(0) + 2i{Map My )(0) = L / deeU?(00) [PE £ P2 +2iPEB] (0).
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF' I

The above recipe to get the aperture-mass variance can be implemented in an
estimator as follows: For an aperture with center 9 and radius 6, average the
observed galaxy ellipticities weighted by the filter (). Square, average over
many centers 9:

This is however not very efficient due to
masked regions and field boundaries.
Solutions:

e Inpainting of missing data (Starck
et al. 20006), using fast algorithms
for convolution (L.eonard
et al. 2012).

e Compute 2PCF first, integrate to
get aperture-mass dispersion.

From [P. Simon, PhD thesis, 2005].
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF 11

Aperture-mass dispersion from 2PCF
M, depends on ~, thus we expect that (MZ,) depends on (v;y;) ~ 2PCF.
Simple calculation: Use

2 . ]‘ 2 E
(M2)(0) = - [ deerE0PE(E)
and insert -
PE(0) = 7 / 499 [+ (9)T0(09) + £_(9)Ta(£9) .
Result:

oo = [ avo [z (D) e er (§)em).

with

Tj:<33) = /OOO dttJ0’4<£Ijt)U2(t).
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF 111

The functions T4 (x) have support [0; 2], thus the above integral extends to 26.
Therefore, the maximum distance to compute the shear correlation &4 is

Vmax = 20.

Remember the diagram from Part I7

filter with
~ map 0 > M,p. 1 maps
sum over pajrs o?
(auto-correlatjon)
Y filter with . Y .
+ T ><Map>7 <MJ_>

Maybe this makes a bit more sense now. ..
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Part II day 1: E- and B-modes

E-/B-mode estimators

Aperture-mass dispersion measurements

CFHTLS 2007 versus CFHTlenS 2013.

2.010° — S
3.010° FT T .
2.010° %}} .
405 | i
1.510 o0 10109 [ {EEH} ; : |
o]
? 0.0-10° @@m«uai—

5.0.10° |

-5.010° |

%§{{§§§§§
0.010° bereerbd ] t},ﬁﬁ%ﬁ@@@mm:::géé@@@@ggg__

50 100 150 200 250

-1.0-107° ot

From (Fu et al. 2008).
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Part II day 1: E- and B-modes E-/B-mode estimators

Ring statistic 1
The problem of the unaccessible zero lag shear correlation for an E- and

B-mode decomposition remains. How can we construct a E-/B-mode
second-order correlation with a minimum galaxy separation ¥, > 07

Solution: Correlate shear on two con-
centric rings

What are the minimum and maximum
distances in this configuration?

Figure from
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Part II day 1: E- and B-modes E-/B-mode estimators

Ring statistic 11

Filter functions (in the original paper called Z4 instead of T1) depend on
geometry of circles, and free-to-choose weight functions over the rings.

RR)sn = [ 5 [64() Tyom) £ € (00) T- (1)

where 1 = Umin/PUmax < 1 is ratio of minimum to maximum separation of the
configuration.

General E-/B-mode decomposition on a finite interval (in log ).
(Schneider & Kilbinger 2007) worked out the conditions on T+ to have finite
support, with 0 < ¥in < Vmax < 00:

ﬂmax ﬁmax
/ d1919T+(z9):0:/ dy 9° T (V) ;
)

min ﬁmin

Y Y
max () ma o)
— T (9)=0= —T_(9).

min

min
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Ring statistic measurements

CFHTLS 2007 versus CFHTLenS 2013.

-6
3.0-10 — T ——
6w E-mode —&—
1= Hmin 6 | B-mode ~--&--+ |
8 -~ <RRg> Qéa 2.5:10 + WMAP7 --------
qIJ- A < RRB> L'T\J Clone .................
2 1e Qf) 2.0'10_6 i \\%i )
e 1l }H g 15100} %i l
: : 4 ¥
~ G } }H H‘ £ 1010° | Rl |
L o) h 8
v = 5010 g i
%} I g t ixi“' ......
.................................................... = ) i
%% L i 8‘ 0 éé@@@mmmmﬁlﬁlﬁlmﬁlg
S A L
o ‘ 7
0 -5.0-10 —— —
| | | | 10 100
50 100 200 500 0 [arcmin]
W [arcminl
From (Eifler et al. 2010). From (Kilbinger et al. 2013), optimised ring

statisc following (Fu & Kilbinger 2010).
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COSEBIs 1

ﬁmax ﬁmax
/ d1919T+(19):0:/ dy 9° T (V) ;
) Y

min min

) U
max d,l? max dﬁ
T () =0= T ().
. FT-0=0= [ G0

min min

Under these conditions the functions T can be freely choosen. Idea of

. Define modes F,,, B,, using polynomials of order n + 1.
Define family of orthogonal polynomials that provide all information about
E-/B-modes on finite interval:

Complete Orthogonal Set of E-/B-mode Integrals.

The COSEBIs contain nearly all information that is in £ and £_, except the
very large scales. These are outside the survey, and cannot be decomposed
into E-/B-modes, but form an ambigous mode. This mode is contained in
£,(0), for which the filter Jo(8¢) — const for arbitrarily large ¢ — 0.
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COSEBIs 11

Polynomials can be linear in 8 (Lin-COSEBISs), or linear in z = log 6
(Log-COSEBISs).

— n=1 ,‘i’i
< n=2
...... n=20 3 7
Koo .
¥ | ,
% 1 Omax=400’ '
AR ‘ ‘ ‘ ﬁmax=409’ T 0 20 50 100 200 500 1000 2000
0 100 200 300 400 |
© [arcmin] $ |
N1 — n=1
n=2 g |
™ 4 e n=20 P
- =8
3 ©
o %)
N 4 T Z':> P——
(? | Opmax = 400’ 260 560 1060 20;00 5060 10600 20600
6 160 260 360 460 R
o ferem COSEBI linear filter functions W, (= U?)
COSEBI linear filter functions 1T, in real in Fourier space. From (Schueider ot al.

space. 2010).
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COSEBIs I11

—‘2

—‘4

—‘2

—‘4

COSEBI logarithmic filter functions T4+, in real space.

E-/B-mode estimators
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0.05

0.04 -

0.03

0.02 -

0.01 -

0

COSEBIs IV

Lin-COSEBIs  +
Log-COSEBIs X
2PCFs

. angular range [1,400’]
. 7 parameters LS
< +2 redshift bins

_|_

g
X T 2
_|_
X Tt

><><:: +++—|—-|—-—|—|—-_|_|_|_|_|_L |||||||||||| |_

5 10 15 20 25 30 35 40 45 50

nmax

Inverse Fisher-matrix (allowed parameter) volume as function of COSEBIs maximum mode.

From

Log-COSEBIs show faster convergence of available information with n.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II

41 / 154



Part II day 1: E- and B-modes E-/B-mode estimators

Band-power spectrum I

The power spectrum P, can be estimated from shear data using methods from
the CBM,

(Pseudo-C'y, Bayesian, ...)

from pixellised maps.

A much faster but biased method is a band-power estimate from the 2PCF.

Recall the expressions
PE() = [ 4006 (9)30(e9) + & 0)Ia(60)]
PR = [ 400 [60(0)30(t9) - & (9)3a(9)

To estimate these improper integrals as direct sums over observed &4 between
Vmin and Ypax would introduce large biases.
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Band-power spectrum 11

T rT
------------- 12 P (1) (K,=0)
“““ 12 Pobs(1> (K+_ 1)
10-3 - 1? PIC(]') E
T 7
L1074 E /
10—5 = ///
// ||"‘:‘||| L L]
101 10%° 103 10

Omax
P(t) = 2 /9 46 0 [F€..(8)Jo(08) + (1 — K ) ()T4(06)

min

From (Schneider et al. 2002).
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Band-power spectrum 111
However, we can add another integration in bands of £, between £,,;, and £y,

Pim e [ areb) = 2 [T Y ke 0)[g1 () — 01 (6a0)] 4 (- KOE @0 ) ~g-€a0)])

where A; = In(€;,/£x) is the logarithmic width of the band, and

5@ =sh@ 5 9-@)= (2= 1) 1@ -8
1073 |

This strongly reduces I
the bias. 10+ |

Al
You will use the =
program pallas.py in 1o |
the TD this afternoon :
that implements this
estimator. o o o

10! 102 10° 104 10°
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Part II day 1: E- and B-modes Galaxy-galaxy lensing: motivation

Galaxy-galaxy lensing: Overview

Correlation between high-z galaxy shapes and low-z galaxy positions.
E.g. average tangential shear around massive galaxies.
Provides mass associated with galaxy sample.

e (Galaxy halo profiles from kpc to Mpc
e Mass-to-light ratio

In combination with other tracers of matter (galaxy clustering, cosmic shear,
velocity correlations, X-ray emission, .. .):

e (Galaxy bias. Properties such as linearity, scale-dependence, stochasticity
o Test of General Relativity

Can be done quasi model-independent since two or more observables trace
same matter field, but with different biases.
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Part II day 1: E- and B-modes Galaxy-galaxy lensing: motivation

Tangential shear and projected overdensity

Tangential shear at distance 6 is related to total overdensity within this radius:

(1) (0) = R(< 0) — () ().

No assumption about mass distribution is made here!

End of day 1.
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