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Part II day 1: E- and B-modes Very brief reminders from day I

Books, Reviews and Lecture Notes

• Bartelmann & Schneider 2001, review Weak gravitational lensing,
Phys. Rep., 340, 297 arXiv:9912508

• Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
III (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

• Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

• Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

• Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

• Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

• Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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Science with gravitational lensing

What has gravitational lensing ever done for us?
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Microlensing rules out objects between 10−7 and few 10 M�.

[Takahiro Sumi, Nagoya University]
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Detection of Earth-like exoplanets with microlensing.
Masses and distances to host star similar to Earth.

9 

 

Figure 1 : The observed light curve of the OGLE-2005-BLG-390 microlensing 
event and best fit model plotted as a function of time. The data set consists of 
650 data points from PLANET Danish (ESO La Silla, red points), PLANET Perth 
(blue), PLANET Canopus (Hobart, cyan), RoboNet Faulkes North (Hawaii, 
green), OGLE (Las Campanas, black), MOA (Mt John Observatory, brown). 
This photometric monitoring was done in the I band (with the exception of 
Faulkes R band data and MOA custom red passband) and real-time data 
reduction was performed with the different OGLE, PLANET and MOA data 
reduction pipelines. Danish and Perth data were finally reduced by the image 
subtraction technique19 with the OGLE pipeline. The top left inset shows the 
OGLE light curve extending over the previous 4 years, whereas the top right 
one shows a zoom of the planetary deviation, covering a time interval of 1.5 
days. The solid curve is the best binary lens model described in the text with a 

planet-to-star mass ratio of q = 7.6 ± 0.7 × 10-5, and a projected separation d = 

1.610 ± 0.008 RE (where RE is the Einstein ring radius). The dashed grey curve 

is the best binary source model that is rejected by the data, while the dashed 
orange line is the best single lens model.  

(Beaulieu et al. 2006)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Structure of QSO inner emission regions.
Microlensing by stars in lens galaxies.

[J. Wambsganss]
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Dark matter profiles in outskirts of galaxies.
Measuring halo mass to very large galactic scales.

Halo profile around stacked fg galaxies
8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
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6 CFHTLenS

⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)
(Velander et al. 2014)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Galaxy clusters are dominated by dark matter.
Bullet cluster and others: bulk of mass is collisionless.

(Clowe et al. 2006)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Observation of very-high (z ≥ 7) galaxies.
Galaxy clusters as “natural telescopes”.

Fig. 3: (a) 3ÕÕ x 5ÕÕ HST and background-subtracted Spitzer/IRAC (CH1 and CH2)
postage stamps of MACS1423-z7p64. Black represents positive signal. The source is
detected in F125W, F140W and F160W and not detected in any optical bands. The
marginal detection in F105W is consistent with a rapid drop in flux around 1.05µm, just
blue-ward of Ly–. The source is detected in IRAC CH2 but not in CH1. (b) HST near-IR
false-color image of the galaxy cluster MACSJ1423.8+2404 (z = 0.545), showing the
location of MACS1423-z7p64 (cyan circle) relative to the critical line (white line) and the
MOSFIRE slit (yellow rectangle). (c) Close-up of region inside dotted cyan rectangle from
(b). The dispersion directions from the two GLASS P.A.s are shown by the red (P.A.=8¶)
and white (P.A.=88¶) arrows. (d) Observed broadband flux densities (squares) and 3‡
upper limits (downward arrows) from ≥ 0.4 ≠ 5 µm. Vertical error bars show the 1‡ flux
density errors and horizontal error bars show the e�ective width of each filter. We also
show the best-fit galaxy spectral energy distributions (SEDs) when redshifts are fixed at
the Ly– redshift z = 7.640 (red solid line) and at the hypothetical [O ii] redshift z = 1.818
(blue dashed line). The flux densities predicted by the best-fit z = 7.640 galaxy SED are
shown as purple diamonds. The photometric redshift probability density function obtained
by allowing the galaxy redshift to vary is shown in the inset in the lower-right corner. The
vertical dashed line in the inset marks the Ly– redshift, z = 7.640.

8

(Hoag et al. 2017)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
Hints of inconsistency of our cosmological model at low and high z?
Planck and WL in tension? Also WL cluster masses for Planck SZ clusters;
H0 from cepheids + SL.18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the

present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.

The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see

MNRAS 000, 1–48 (2016)

(Hildebrandt et al. 2017)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
General relativity holds on cosmological scales.
Joint WL and galaxy clustering cosmology-independent GR test.

Modifying general relativity

Galaxy-galaxy lensing: 
measures ! + " and b#

Galaxy clustering:  
measures "

13 

 

Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1σ error bars (s.d.) including the statistical error on the measurement19 of β 

(filled circles). The grey shaded region indicates the 1σ  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+ΛCDM model, EG = Ωm,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+ΛCDM 

(EG = 0.408 ± 0.029(1σ ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001− 0.1 

(EG = 0.328 − 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

Friedmann-Lemaître-Robertson-Walker metric with perturbations:

(Reyes et al. 2010)

Parameterisation

Gravitational potential as experienced by galaxies:

Gravitational potential as experienced by photons:

 ds
2 = −(1+ 2ϕ )dt 2 + (1− 2φ)a2drx 2

∇2ϕ = 4πGa2ρδ

∇2 (ϕ + φ) = 8πGa2ρδ 1+ Σ[ ]

1+ µ[ ] µ(a)∝ΩΛ (a)

Σ(a)∝ΩΛ (a)

time dilation spatial curvature

(Reyes et al. 2010)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Detection of Earth-mass exoplanets.
Structure of QSO inner emission regions.
Dark matter profiles in outskirts of galaxies.
Galaxy clusters are dominated by dark matter.
Observation of very-high (z ≥ 7) galaxies.
Hints of inconsistency of our cosmological model at low and high z?
General relativity holds on cosmological scales.

Most important properties of gravitational lensing
Lensing probes total matter, baryonic + dark.
Independent of dynamical state of matter.
Independent of nature of matter.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 7 / 153



Part II day 1: E- and B-modes Very brief reminders from day I

Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

• Continuous deflection: sensitive to
projected 2D mass distribution.

• Differential deflection:
magnification, distortions of
images.

• Small distortions, few percent
change of images: need statistical
measurement.

• Coherent distortions: measure
correlations, scales few Mpc to few
100 Mpc.

scales
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Part II day 1: E- and B-modes Very brief reminders from day I

Cosmic shear deflection angle
We derived the deflection angle as integral over the potential gradient
(continuous deflection along the line of sight):

observer

source
dx(χ

)

β

χ

χ′

χ − χ′

θ

∇⊥φ(χ
′ )

x(χ)
dα̂

α(θ, χ) =
2

c2

∫ χ

0

dχ′
χ− χ′

χ

[
∇⊥φ(x(χ′), χ′) −∇⊥φ(0)(χ′)

]
.

Geometrical relation: (Unobervable) unlensed source position β is observed
lensed position (direction of incoming light ray) θ minus deflection angle α,

β(θ, χ) = θ −α(θ, χ) = θ −∇θψ(θ);

with the lensing potential

ψ(θ, χ) =
2

c2

∫ χ

0

dχ′
χ− χ′

χχ′
φ(χ′θ, χ′).
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Part II day 1: E- and B-modes Very brief reminders from day I

Convergence and shear

The lens equation is the mapping from lens to
soure 2D coordinates. The linearized lens
equation

∂βi
∂θj
≡ Aij = δij − ∂i∂jψ,

is described by the symmetrical 2× 2 Jacobi
matrix,

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
,

Which defines convergence κ and shear γ.

• convergence κ: isotropic magnification

• shear γ: anisotropic stretching

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

κ

γ

source

image

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 10 / 153



Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap from part I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for γ.
That results in radial pattern.Projected mass and distortionCONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011

overdensity
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap from part I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for γ.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the E-mode. A so-called B-mode is not generated.

E mode

B mode

mass
trough

mass
peak

E mode

B mode

mass
trough

mass
peak
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap I

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

• Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

• Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

• Intrinsic alignment (although magnitude not well-known!)

• Varying seeing and other observational effects (table ronde topic!)

• Non-standard cosmologies (non-isotropic, TeVeS, . . .)

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 12 / 153



Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap II

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain κE and κB from γ, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear γt is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering κ with a function U that is related to Q.
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap III

εt

ε×

θ

The resulting quantity is called aperture mass Map(θ), which is a function of
the filter size, or smoothing scale, θ. It is only sensitive to the E-mode.

If one uses the cross-component shear γ× instead, the filtered quantity, M×
captures the B-mode contribution only.

End of recap from part I.
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Part II day 1: E- and B-modes E-/B-mode estimators

Convergence as potential field
Again convergence κ and shear γ:

∂βi
∂θj
≡Aij = δij − ∂i∂jψ;

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
.

From this, write κ and γ as second derivatives of the potential.

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ; γ1 =

1

2
(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ.

We can now define a vector field u for which the convergence is the
“potential”, with

u = ∇κ.

Express u in terms of the shear.

u =

(
∂1κ
∂2κ

)
=

(
1
2 (∂1∂1∂1 + ∂1∂2∂2)κ
1
2 (∂1∂1∂2 + ∂2∂2∂2)κ

)
=

(
∂1γ1 + ∂2γ2

−∂2γ1 + ∂1γ2

)
.
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Part II day 1: E- and B-modes E-/B-mode estimators

E- and B-mode potential, convergence, and shear I
Thus, from a shear field γ, to linear order, the corresponding convergence is
derived from a gradient field u, and is curl-free, ∇× u = ∂1u2 − ∂2u1 = 0, as
can easily be seen.
This is the E-mode, in analogy to the electric field.

However, in reality, from an observed shear field, one might measure a
non-zero curl component.
This is called the B-mode, in analogy to the magnetic field.

Definition:

∇2κE :=∇ · u;

∇2κB :=∇× u,

and potentials
∇2ψE,B = 2κE,B.

Note that ψB and κB do not correspond to physical mass over-densities.
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Part II day 1: E- and B-modes E-/B-mode estimators

E- and B-mode potential, convergence, and shear II
These can be written in complex notation,

ψ = ψE + iψB; κ = κE + iκB,

and the shear

γ1+i γ2 =
1

2

(
∂1∂1ψ

E − ∂2∂2ψ
E
)
−∂1∂2ψ

B+i

[
∂1∂2ψ

E +
1

2

(
∂1∂1ψ

B − ∂2∂2ψ
B
)]
.

Now, we can compute the E-, B-, and mixed EB-mode power spectrum.

〈κ̂E(`)κ̂E(`′)〉 = (2π)2δD(`− `′)PE
κ (`),

〈κ̂B(`)κ̂B(`′)〉 = (2π)2δD(`− `′)PB
κ (`),

〈κ̂E(`)κ̂B(`′)〉 = (2π)2δD(`− `′)PEB
κ (`),

and can derive (from γ̂(`) = e2iβκ̂(`), see last years’ TD) for the correlators of
γ in Fourier space

〈γ̂(`)γ̂∗(`′)〉 = (2π)2δD(`− `′)
[
PE
κ (`) + PB

κ (`)
]
,

〈γ̂(`)γ̂(`′)〉 = (2π)2δD(`+ `′)e4iβ
[
PE
κ (`)− PB

κ (`) + 2iPEB
κ (`)

]
.
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Part II day 1: E- and B-modes E-/B-mode estimators

Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

〈γ(θ)γ∗(θ + ϑ)〉 = 〈γγ∗〉(ϑ) =F [〈γ̂(`)γ̂∗(`′)〉] (ϑ);

〈γγ〉(ϑ) =F [〈γ̂(`)γ̂(`′)〉] (ϑ);

But these correlators are very closely related to the shear two-point
correlation functions ξ+ and ξ−, that we defined on day 1 (part I):

ξ+(ϑ) = 〈γtγt〉 (ϑ) + 〈γ×γ×〉 (ϑ)

ξ−(ϑ) = 〈γtγt〉 (ϑ)− 〈γ×γ×〉 (ϑ)
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Part II day 1: E- and B-modes E-/B-mode estimators

Recall: 2PCF
Correlation of the shear at two points yields four quantities

γtγt < 0

> 0 < 0

〈
γtγ×

〉
,
〈
γ×γt

〉

〈
γ×γ×

〉

〈γtγt〉

Parity conservation −→ 〈γtγ×〉 = 〈γ×γt〉 = 0

The two components of the shear two-point correlation function (2PCF) are
defined as

ξ+(ϑ) = 〈γtγt〉 (ϑ) + 〈γ×γ×〉 (ϑ)

ξ−(ϑ) = 〈γtγt〉 (ϑ)− 〈γ×γ×〉 (ϑ)

Due to statistical isotropy & homogeneity, these correlators only depend on ϑ.
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Part II day 1: E- and B-modes E-/B-mode estimators

Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

〈γ(θ)γ∗(θ + ϑ)〉 = 〈γγ∗〉(ϑ) =F [〈γ̂(`)γ̂∗(`′)〉] (ϑ);

〈γγ〉(ϑ) =F [〈γ̂(`)γ̂(`′)〉] (ϑ);

But these correlators are very closely related to the shear two-point
correlation functions ξ+ and ξ−, that we defined on day 1 (part I):

ξ+(ϑ) = 〈γtγt〉 (ϑ) + 〈γ×γ×〉 (ϑ)

ξ−(ϑ) = 〈γtγt〉 (ϑ)− 〈γ×γ×〉 (ϑ)

Choose ϑ = (ϑ, 0). Then, γt = −γ1 and γx = −γ2.

→ 〈γγ∗〉 = 〈γ1γ1〉+ 〈γ2γ2〉 = ξ+;

〈γγ〉 = 〈γ1γ1〉 − 〈γ2γ2〉+ 2i〈γ1γ2〉 = ξ− + 2iξ×.
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Part II day 1: E- and B-modes E-/B-mode estimators

2PCF and E-/B-mode power spectra I

We generalize the relation between 2PCF and convergence power spectrum Pκ
from day 1,

ξ+(ϑ) =
1

2π

∫ ∞

0

d` `J0(`ϑ)Pκ(`)

ξ−(ϑ) =
1

2π

∫ ∞

0

d` `J4(`ϑ)Pκ(`),

to include E- and B-mode power spectra:

ξ+(ϑ) =
1

2π

∫ ∞

0

d` `J0(`ϑ)
[
PE
κ (`) + PB

κ (`)
]

ξ−(ϑ) =
1

2π

∫ ∞

0

d` `J4(`ϑ)
[
PE
κ (`)− PB

κ (`)
]

(and we don’t look any further at ξ×, which vanished for a parity-symmetric
universe.)
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Part II day 1: E- and B-modes E-/B-mode estimators

2PCF and E-/B-mode power spectra II
We have thus two observables (ξ+, ξ−) and two unknowns (PE

κ , P
B
κ ). Surely,

these two power spectra can be deduced from the observations?
The above equations can be inverted using the orthogonality of the Bessel
function: ∫ ∞

0

dϑϑJν(`ϑ)Jν(`′ϑ) =
δD(`− `′)

`
,

(or, alternatively, go back to the 2D Fourier integrals and use the
orthogonality of the plane wave basis functions exp(i`ϑ))
resulting in

PE
κ (`) =π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ) + ξ−(ϑ)J4(`ϑ)] ,

PB
κ (`) =π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ)− ξ−(ϑ)J4(`ϑ)] .

So, in principle, the E-/ and B-mode power spectra can be computed
separately, but not in practice, since this requires information about the shear
correlation that is unobservable, towards 0 and ∞ separation.
→ We have to further filter the field for a better separation.
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass

Yesterday we introduced the aperture-mass as convolution of the shear field
with a filter Q,

Map(θ,ϑ) =

∫
d2ϑ′Qθ(|ϑ− ϑ′|) γt(ϑ

′)

and claimed that this was equivlaent of convolving the convergence with
another filter U ,

Map(θ,ϑ) =

∫
d2ϑ′ Uθ(|ϑ− ϑ′|)κE(ϑ′), (1)

(Kaiser et al. 1994, Schneider 1996).

Exercise for next session (where you’ll need stuff from today’s TD): What is
the relation between U and Q?
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Part II day 1: E- and B-modes E-/B-mode estimators

Convolution with shear
Parenthesis:

Eq. (3) involves the tangential shear γt with re-
spect to the aperture centre ϑ; it should be writ-
ten γt(ϑ,ϑ

′).
This “field” γt is thus defined locally, and can-
not be represented globally.
How can this expression be written as convolu-
tion with γ = γ1 + iγ2?

#0 � #

#

✓

#1

#2

Solution:

γt(ϑ,ϑ
′) =−<

(
γe−2iϕ

)
= −<

(
γe−2i arctan |ϑ2−ϑ′

2|/|ϑ1−ϑ′
1|
)

→Map(θ,ϑ) =−<
∫

d2ϑ′ γ(ϑ′)e−2i arctan[|ϑ2−ϑ′
2|/|ϑ1−ϑ′

1|]

=< (Q′θ ∗ γ) (ϑ)

with Q′θ(ϑ) =−Qθ(ϑ)e−2i arctan[ϑ2/ϑ1].

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 24 / 153



Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with Map I

εt

ε×

θ

It is clear that Map (M×) is sensitive to the E-mode (B-mode) of the shear
field γ.

When chosing Q such that its support is finite, with Q(θ) = 0 for θ > θmax,
the E-/B-mode separation is achieved on a finite interval.

To get this separation at the second-order level, let’s take the variance of the
aperture-mass: Square Map(θ,ϑ) and average over circle centres ϑ (Schneider
et al. 1998).
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with Map II
Square Map(θ,ϑ) and average over circle centres ϑ:

〈M2
ap〉(θ) =

∫
d2ϑ′ Uθ(|ϑ− ϑ′|)

∫
d2ϑ′′ Uθ(|ϑ− ϑ′′|)〈κE(ϑ′)κE(ϑ′′)〉

=

∫
d2ϑ′ Uθ(ϑ

′)
∫

d2ϑ′′ Uθ(ϑ
′′)〈κEκE〉(|ϑ′ − ϑ′′|)

=

∫
d2ϑUθ(ϑ)

∫
d2ϑ′ Uθ(ϑ

′)

×
∫

d2`

(2π)2
e−i`ϑ

∫
d2`′

(2π)2
e−i`ϑ′

(2π)2δD(`− `′)PE
κ (`)

=

∫
d2`

(2π)2

(∫
d2ϑ e2i`ϑUθ(ϑ)

)2

PE
κ (`)

=
1

2π

∫
d` ` Û2(θ`)PE

κ (`).

Note: Typically, the filter function U depends on the scale ϑ normalized to the
radius θ, Uθ(ϑ) = U(ϑ/θ). In Fourier space this then becomes Û(θ`).
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with Map III
For popular choices of U , Û2 is a narrow pass-band filter function.

polynomial Gaussian

Uθ(ϑ)

{
9
πθ2

(
1− ϑ2

θ2

)(
1
3
− ϑ2

θ2

)
|ϑ| < θ

0 else

1
2πθ2

(
1− ϑ2

2θ2

)
exp

(
− ϑ2

2θ2

)
Qθ(ϑ)

{
6
πθ2

ϑ2

θ2

(
1− ϑ2

θ2

)
|ϑ| < θ

0 else

ϑ2

4πθ4
exp

(
− ϑ2

2θ2

)
Û(η)

24J4(η)

η2
η2

2
exp

(
−η2

2

)
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with Map IV

Filter functions in Fourier space:

2.2 Second-order statistics

 1e-06

 1e-05

 1e-04

 0.001

 0.1  1  10  100
θ [arcmin]

ξ+(θ)    
ξ−(θ)    

<Map
2  (θ)>   (2.9)

<Map
2  (θ)> (2.10)

Figure 2.4: The second-order
statistics of cosmic shear used in
this work, for a ΛCDM model
(Table B.1, model 1). The solid
and long-dashed lines show the
two components of the 2PCF, ξ+
and ξ−, respectively. The two
aperture mass dispersions cor-
respond to the polynomial (2.9,
short-dashed) and Gaussian filter
(2.10, dash-dotted line), respec-
tively.

1e−06

1e−05

1e−04

0.001

0.01

0.1

1

0.1 1 10
η

|J0(η)|

|J4(η)|

η4

4 exp(−η2)

[

24J4(η)/η2
]2

Figure 2.5: Filter functions for the different second-order shear statistics.

2.2.3 Interrelations

The dispersion of the aperture mass can in principle be measured directly from data by
placing apertures onto the observed area. However, this method is very ineffective – regions
with bright stars, foreground galaxies or telescope reflections have to be omitted in order not
to bias the result. Moreover, for the Gaussian filter (2.10), apertures of radius θ cannot be
put closer than about 3θ from the image border because of the significant exponential tail of
the filter.

A more effective way to get ⟨M 2
ap⟩ from data is by integration over the 2PCF. Since ⟨M 2

ap⟩ is
given in terms of the power spectrum (2.14), and the equation which relates the 2PCF to the
power spectrum (2.12) can be inverted, one can express ⟨M 2

ap⟩ (and any other second-order
statistics) in terms of the 2PCF. The following relation can be derived (Schneider et al. 2002;

43
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with Map V

Thus, the aperture-mass dispersion filters out a small range of `-modes around
` ∼ const θ−1.

For example, for the polynomial filter from (Schneider et al. 1998), the peak is
θ` ≈ 5.

Analogous equations for B- and mixed modes are

〈M2
×〉(θ) =

1

2π

∫
d` ` Û2(θ`)PB

κ (`);

〈MapM×〉(θ) =
1

2π

∫
d` ` Û2(θ`)PEB

κ (`).

In complex notation, the last three expressions can be written as

〈M2
ap〉(θ)± 〈M2

×〉(θ) + 2i〈MapM×〉(θ) =
1

2π

∫
d` ` Û2(θ`)

[
PE
κ ± PB

κ + 2iPEB
κ

]
(`).
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF I
The above recipe to get the aperture-mass variance can be implemented in an
estimator as follows: For an aperture with center ϑ and radius θ, average the
observed galaxy ellipticities weighted by the filter Q. Square, average over
many centers ϑ:

STUDYING TWO ESTIMATORS FOR THE LINEAR STOCHASTIC BIAS

Figure 3.7.: Examples illustrating the tolerance scheme for placing apertures. Displayed are allowed
aperture positions (dark grey disks) in the field area if at maximum an overlap (light grey) with the gaps
(black) of 10% is tolerated. Note that the regions outside the square field also count as gap.

3.4.3. Technical aspects of the estimators

As estimators of
〈
N2
〉
, ⟨NMap⟩ and

〈
M2

ap

〉
we applied the two methods described in Sect.

3.2.4, which either estimate two-point correlation functions being transformed to the aperture
statistics afterwards, or which place circular apertures into the field and obtain estimates from
every individual aperture being combined for a final estimate. All galaxies in the synthetic
data have equal weight, wi = 1. In the following section, we denote the estimator methods by
“I” and “II”, respectively. If possible, estimates were taken for 40 equally spaced angular bins
ranging between 0 and 20 arcmin. The program code implementing the estimators invokes
data structures based on the tree-code data structure (Pen & Zhang 2003; Moore et al. 2001)
to reduce the computation time, which is mostly due to finding pairs of galaxies at a certain
distance (“I”) or to finding galaxies inside the apertures (“II”).

Estimator “I”

The two-point correlators for the angular galaxy clustering, Eq. (3.28), galaxy-galaxy lensing,
Eq. (3.29), and shear-shear correlations, Eq. (3.30), are estimated from the data of each field
realisation inside 600 logarithmic θ-bins ranging between 1′′.74 and 42′.19. For the transfor-
mation of the two-point correlators to the corresponding apertures statistics, we approximate
the transformation integrals (3.22)-(3.24) by a sum.

Estimator “II” with tolerance scheme

For the estimators placing apertures into the field, Eq. (3.15)-(3.17), we introduce a tolerance
scheme. An additional parameter defines a tolerance threshold that determines how much

100

From [P. Simon, PhD thesis, 2005].

This is however not very efficient due to
masked regions and field boundaries.
Solutions:

• Inpainting of missing data (Starck
et al. 2006), using fast algorithms
for convolution (Leonard
et al. 2012).

• Compute 2PCF first, integrate to
get aperture-mass dispersion.
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF II
Aperture-mass dispersion from 2PCF
Map depends on γt, thus we expect that 〈M2

ap〉 depends on 〈γtγt〉 ∼ 2PCF.
Simple calculation: Use

〈M2
ap〉(θ) =

1

2π

∫
d` ` Û2(θ`)PE

κ (`)

and insert

PE
κ (`) = π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ) + ξ−(ϑ)J4(`ϑ)] .

Result:

〈M2
ap〉(θ) =

∫ 2θ

0

dϑϑ

[
T+

(
ϑ

θ

)
ξ+(ϑ) + T−

(
ϑ

θ

)
ξ−(ϑ)

]
.

with

T±(x) =

∫ ∞

0

dt t J0,4(xt)Û2(t).
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF III
The functions T±(x) have support [0; 2], thus the above integral extends to 2θ.
Therefore, the maximum distance to compute the shear correlation ξ± is
ϑmax = 2θ.
Remember the diagram from Part I?

γ map

ξ±
filter with

T±

Q

filter with

σ2sum over pairs
(auto-correlation)

Map,⊥ maps

〈M2
ap〉, 〈M2

⊥〉

Maybe this makes a bit more sense now. . .
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion measurements

CFHTLS 2007 versus CFHTlenS 2013.

L. Fu et al.: Very weak lensing in the CFHTLS wide 15
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Fig. 4. Two-point statistics from the combined 57 pointings. The error
bars of the E-mode include statistical noise added in quadrature to the
non-Gaussian cosmic variance. Only statistical uncertainty contributes
to the error budget for the B-mode. Red filled points show the E-mode,
black open points the B-mode. The enlargements in each panel show
the signal in the angular range 35′−230′.

theoretical (statistical) and not estimated from the data, which
would include systematics (for example error contributions may
arise from the incomplete PSF correction). Moreover, the signal-
to-noise with the present CFHTLS Wide data is so high, even
for B-modes, that subtle effects may dominate the very small
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Fig. 5. The top-hat E-mode shear signals of W1 up to 200′ , of W2 up to
120′ and of W3 up to 230′ are shown. The error bars includes statistical
noise and cosmic variance for each individual field.

Poissonian error, particularly on large scales where there are a
significant number of galaxy pairs.

The field-to-field variation of the B-modes is a possible way
to assess these effects on the error buget. We tried to measure this
by splitting the 3 Wide fields into 11 blocks of 2 × 2 deg2 each,
which allows to calculate the B-modes on scales up to 60 arcmin
in each block. We obtained B-modes with amplitude very simi-
lar to Fig. 4 but the field-to-field scatter is larger than the plotted
error bars and reaches a factor of 2 at 60′. This is an interest-
ing indication that we are likely underestimating the error on
B-modes, even though it is not a precise measurement due to the
small number of independant fields. A thorough analysis of this
noise contribution needs many more field and is left to a future
analysis of the CFHTLS four year data.

4.4. Cross-check and control of systematics

We cross-checked the shear measurement by using an indepen-
dent analysis on the same data sets. This analysis was done
with another version of KSB+ that has been tested with the
STEP1+2 simulations (“HH” in Heymans et al. 2006a; Massey
et al. 2007b). Hereafter, we refer to our analysis as “Pipeline I”
and to the “HH” results as “Pipeline II”.

The left panel of Fig. 6 shows the shear estimated for each
galaxy by each of the pipelines. The results are in good agree-
ment for ellipticity values per component between −0.6 and 0.6.
For ellipticities outside this range the dispersion between the
pipelines is larger and a trend for an underestimation of the shear
from Pipeline I with respect to Pipeline II can be seen. Note
however that the pipelines are not optimised for large elliptic-
ities, since the STEP simulation galaxies have ellipticities that
are smaller than 0.1.

We then compare the two-point functions using the aperture-
mass variance. We choose this statistic because angular scales
are less correlated than for the top-hat dispersion. Moreover,
it does not have any ambiguity related to a non-local E/B de-
composition. The values of Map are calculated from the two
pipelines using only objects detected by both pipelines. Because
the pipelines have different selection criteria the common ob-
jects are only two-thirds of the whole sample. Each object
is assigned a weight which is the product of its weights in
each of the two pipelines. The largest radius explored in the

From (Fu et al. 2008).
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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From (Kilbinger et al. 2013).
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Part II day 1: E- and B-modes E-/B-mode estimators

Ring statistic I
The problem of the unaccessible zero lag shear correlation for an E- and
B-mode decomposition remains. How can we construct a E-/B-mode
second-order correlation with a minimum galaxy separation ϑmin > 0?

Solution: Correlate shear on two con-
centric rings (Schneider & Kilbinger
2007).
What are the minimum and maximum
distances in this configuration?

T. Eifler, P. Schneider and E. Krause: Measuring cosmic shear with the ring statistics 3

Fig. 1. This figure illustrates the basic idea of the ring statis-
tics and how it can be obtained from the 2PCF of cosmic shear.
We measure the 2PCF of each galaxy in the inner ring with
all galaxies in the outer ring. For a given argument of the ring
statistics Ψ, the angular separation of the required 2PCFs ex-
tends over ηΨ ≤ ϑ ≤ Ψ. The meaning of η and its possible val-
ues are further explained in the text. The ring statistics is then
calculated as an integral over the 2PCF with the filter functions
Z±(ϑ, η).

position of the ring statistics can be obtained from the 2PCF
as

〈RRE〉 (Ψ) =
∫ Ψ

ηΨ

dϑ
2ϑ
[
ξ+(ϑ) Z+(ϑ, η) + ξ−(ϑ) Z−(ϑ, η)

]
, (7)

〈RRB〉 (Ψ) =
∫ Ψ

ηΨ

dϑ
2ϑ
[
ξ+(ϑ) Z+(ϑ, η) − ξ−(ϑ) Z−(ϑ, η)] . (8)

The functions Z± are defined in SK07; we plot them in Fig. 2
for four different η, i.e. ϑmin/Ψ = 0.00151, 0.1, 0.4, 0.7.
Similar to the case of the aperture mass dispersion, 〈RRE〉 can
be related to the E-mode power spectrum. Inserting Eq. (3),
into Eq. (7) gives

〈RRE〉 (Ψ) =
∫ ∞

0

d$ $
2π

PE($)WE($Ψ, η) (9)

with

WE($Ψ, η) =
∫ Ψ

ηΨ

dϑ
2ϑ
[
J0($ϑ) Z+(ϑ, η) + J4($ϑ) Z−(ϑ, η)

]
. (10)

When calculating 〈RRE〉 for different arguments Ψ, we distin-
guish two cases for η. It can be fixed to a specific value or it
can vary according to Ψ, in particular η = ϑmin/Ψ. We will
refer to the latter case as a scale-dependent η. Here, the lower
limit in the integrals of Eqs. (7) and (8) is equal to ϑmin which
implies that all 2PCFs in the interval [ϑmin;Ψ] are included in

the calculation. The choice of η = ϑmin/Ψ should give a higher
S/N ratio compared to a fixed η for the reason that more galaxy
pairs are included which reduces the statistical noise. In SK07
the authors hold η fixed; in order to obtain a high signal this
implies that η must be chosen as small as possible.
Choosing a fixed η has a second disadvantage. The lower limit
in the integrals Eqs. (7) and (8) cannot be smaller than ϑmin, i.e.
ηΨ ≥ ϑmin. Vice versa, this implies that Ψ ≥ ϑmin/η. Fixing η
to a small value (in order to increase the S/N ratio) implies that
Ψ is restricted to larger scales. This trade-off between S/N ratio
and small-scale sensitivity can be overcome when relaxing the
condition of a fixed η.

4. General E/B-mode decomposition on a finite
interval

The ring statistics described in the last section is the special
case of a general E/B-mode decomposition.According to SK07
this general EB-statistics can be defined as

E =
1
2

∫ ∞

0
dϑϑ

[
ξ+(ϑ)T+(ϑ) + ξ−(ϑ)T−(ϑ)

]
, (11)

B =
1
2

∫ ∞

0
dϑϑ

[
ξ+(ϑ)T+(ϑ) − ξ−(ϑ)T−(ϑ)] . (12)

To provide a clean separation of E- and B-modes using a 2PCF
measured over a finite interval, the following conditions must
be fulfilled (see SK07 for the exact derivation). Starting from
an arbitrary function T+(ϑ), which is zero outside the interval
[ϑmin;ϑmax], the constraints
∫ ϑmax
ϑmin

dϑϑT+(ϑ) = 0 =
∫ ϑmax
ϑmin

dϑϑ3T−(ϑ) (13)

must hold. For a so constructed filter function T+(ϑ) a corre-
sponding filter function T−(ϑ) can be calculated as

T−(ϑ) = T+(ϑ) + 4
∫ ϑ

ϑmin

dθ
θ

ϑ2
T+(θ)

[
1 − 3

(
θ

ϑ

)2]
. (14)

Conversely, one can construct T+ for a given T−.
The expressions for T+ and T− used in this paper are given in
the Appendix. We calculate the EB-statistics according to Eq.
(11) and compare the results to the ring statistics. Note that this
EB-statistics can be optimized, e.g., with respect to its S/N ratio
or its ability to constrain cosmology. For more details on this
topic the reader is referred to Fu & Kilbinger (2009).
In this paper, the EB-statistics is calculated as a function of Ψ.
Similar to the ring statistics, Ψ denotes the maximum angular
scale of 2PCFs which enter in the calculation of E(Ψ).

5. Covariance and signal-to-noise ratio
For our further analysis we have to derive a formula to calcu-
late the covariance of ring statistics and EB-statistics. A corre-
sponding expression for 〈M2

ap〉 reads (see e.g. Schneider et al.
2002b).

CM(θk, θl)) =
1
4

I∑

i=1

J∑

j=1

∆ϑi∆ϑ j

θ2kθ
2
l
ϑiϑ j

Figure from (Eifler et al. 2010).
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Part II day 1: E- and B-modes E-/B-mode estimators

Ring statistic II
Filter functions (in the original paper called Z± instead of T±) depend on
geometry of circles, and free-to-choose weight functions over the rings.

〈RR〉E,B =

∫ 1

η

dx

2x
[ξ+(xΨ)T+(x, η)± ξ−(xΨ)T−(x, η)] .

where η = ϑmin/ϑmax < 1 is ratio of minimum to maximum separation of the
configuration.

General E-/B-mode decomposition on a finite interval (in log ϑ).
(Schneider & Kilbinger 2007) worked out the conditions on T± to have finite
support, with 0 < ϑmin < ϑmax <∞:

∫ ϑmax

ϑmin

dϑϑT+(ϑ) = 0 =

∫ ϑmax

ϑmin

dϑϑ3 T+(ϑ) ;

∫ ϑmax

ϑmin

dϑ

ϑ
T−(ϑ) = 0 =

∫ ϑmax

ϑmin

dϑ

ϑ3
T−(ϑ) .
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Part II day 1: E- and B-modes E-/B-mode estimators

Ring statistic measurements

CFHTLS 2007 versus CFHTLenS 2013.8 T. Eifler, P. Schneider and E. Krause: Measuring cosmic shear with the ring statistics
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Fig. 6. The ring statistics signal measured from the CFHTLS for the case of η = ϑmin/Ψ (upper row). The red data points (circles)
correspond to the E-mode signal, the black data points (triangles) to the B-mode signal. The three panels correspond to small
(left), intermediate (middle), and large (right) scales. The lower row shows a similar analysis but for η = 0.1.

The CFHTLS 2PCF was measured in 72000 bins over an an-
gular range of 0.′05 ≤ ϑ ≤ 466′; we calculate ⟨RRE⟩ (Eq.
7) and ⟨RRB⟩ (Eq. 8) in 60 logarithmic bins over a range
0.′5 ≤ Ψ ≤ 460.′0. The error for the i-th E/B-mode data point is
calculated as

√
CRE/B (Ψi,Ψi), where CRE/B (Ψi,Ψi) is calculated

from a Gaussian 2PCF covariance. This Gaussian covariance
was calculated from a theoretical model using the same cos-
mology and survey parameters as in the FSH08 analysis. We
do not employ the non-Gaussian correction of Semboloni et al.
(2007) as this corrects the C++-term in the 2PCF covariance,
but not the C−−- and C+−-terms. Here, we use the full 2PCF
covariance in the analysis. Similar to FSH08 we do not con-
sider systematic errors in our analysis which might lead to an
underestimation of the error bars.
The results of our analysis are illustrated in Fig. 6. The three
panels in the upper row show the ring statistics’ E- and B-
modes on (from left to right) small, intermediate and large
scales of Ψ for the case of η = ϑmin/Ψ. The three panels in
the lower row show the same analysis but for η = 0.1. The
circled (red) data points correspond to the E-mode signal, the
triangled (black) data points correspond to the B-mode signal.
We measure a robust E-mode shear signal, however we also
find a significant B-mode contribution on small (around 2′), in-
termediate (16′-22′), and large scales (right panel). On small

scales E-and B-mode are of similar order. It should be stressed
that such an analysis of small-scale contaminations is not feasi-
ble with the aperture mass dispersion, which, to avoid the E/B-
mode mixing on small scales, involves a theoretical (therefore
B-mode free) 2PCF in its calculation. This theoretical data ex-
tension, combined with the fact that the aperture mass disper-
sion data points are stronger correlated (Sect. 5) can hide pos-
sible small-scale contaminations in the data.
The B-mode contamination on large scales is also observed in
the FSH08 analysis. In addition, we find a small B-mode on
intermediate scales (between 16′ and 22′), otherwise these in-
termediate scales are mostly free of B-modes and give a ro-
bust E-mode signal. The small correlation of the individual data
points leads to the oscillations in the amplitude of the shear sig-
nal. A similar analysis with the aperture mass dispersion shows
a much smoother behavior.

8. Conclusions

Decomposing the shear field into E- and B-modes is an impor-
tant check for systematics in a cosmic shear analysis. The most
commonly used methods for E- and B-mode decomposition,
namely the aperture mass dispersion and the E/B-mode shear
correlation function, require the 2PCF to be known down to

From (Eifler et al. 2010).
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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From (Kilbinger et al. 2013), optimised ring

statisc following (Fu & Kilbinger 2010).
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Part II day 1: E- and B-modes E-/B-mode estimators

COSEBIs I

∫ ϑmax

ϑmin

dϑϑT+(ϑ) = 0 =

∫ ϑmax

ϑmin

dϑϑ3 T+(ϑ) ;

∫ ϑmax

ϑmin

dϑ

ϑ
T−(ϑ) = 0 =

∫ ϑmax

ϑmin

dϑ

ϑ3
T−(ϑ) .

Under these conditions the functions T± can be freely choosen. Idea of
(Schneider et al. 2010): Define modes En, Bn using polynomials of order n+ 1.
Define family of orthogonal polynomials that provide all information about
E-/B-modes on finite interval:

Complete Orthogonal Set of E-/B-mode Integrals.

The COSEBIs contain nearly all information that is in ξ+ and ξ−, except the
very large scales. These are outside the survey, and cannot be decomposed
into E-/B-modes, but form an ambigous mode. This mode is contained in
ξ+(θ), for which the filter J0(θ`)→ const for arbitrarily large `→ 0.
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COSEBIs II
Polynomials can be linear in θ (Lin-COSEBIs), or linear in z = log θ
(Log-COSEBIs). A&A 520, A116 (2010)
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Fig. 1. The linear filter functions T±n(ϑ) for ϑmin = 1′, ϑmax = 400′.
Note that the shape of the curves depends only on the ratio ϑmin/ϑmax.

3.1. Polynomial weight functions

First, we construct a complete set of weight functions which are
polynomials in ϑ. To do so, we transform the interval ϑmin ≤ ϑ ≤
ϑmax onto the unit interval −1 ≤ x ≤ 1, by defining

x =
2(ϑ − ϑ̄)
∆ϑ

, (15)

with ϑ̄ = (ϑmin + ϑmax)/2, ∆ϑ = ϑmax − ϑmin. In addition,
we define the relative interval width B = ∆ϑ/(2ϑ̄) = (ϑmax −
ϑmin)/(ϑmax + ϑmin). Thus, as ϑ varies from ϑmin to ϑmax, x goes
from−1 to+1. Then we set T+n(ϑ) = t+n(x), and T−n(ϑ) = t−n(x).
The t+n are chosen to be polynomials in x; as Eq. (15) is a linear
transformation, the polynomial order is preserved. Furthermore,
we require that the set of functions are orthonormal, i.e.,
∫ 1

−1
dx t+n(x) t+m(x) = δmn. (16)

The first two functions of the set are constructed “by hand”: the
lowest-order polynomial which can satisfy the constraints (4)
and the normalization constraint (16) is of second order. Hence,
we choose t+1(x) to be a second-order polynomial, and determine
its three coefficients from the three constraints. The lowest-order
polynomial which can satisfy the two constraints (4) and the or-
thonormality relation (16) for m = 1, 2 is of third order, and its

four coefficients are determined accordingly; this yields

t+1(x)=
1√
X1

[
3B2 − 5 − 6Bx + 3

(
5 − B2

)
x2

]
,

t+2(x)=
1√
X2

[
B3

(
25 + 3B2

)
− 15

(
35 + 9B2 + 8B4

)
x

−15B3
(
3 + B2

)
x2 + 35

(
25 + 5B2 + 6B4

)
x3

]
, (17)

with

X1 = 8
(
25 + 5B2 + 6B4

)
/5,

X2 = 8
(
25 + 5B2 + 6B4

) (
175 + 35B2 + 45B4 + B6

)
. (18)

To obtain the higher-order functions of this set, we note that the
Legendre polynomials Pn(x) are orthogonal, and that
∫ 1

−1
dx Pn(x) xm = 0 for m < n.

This shows that the constraints (4), written in terms of x, are sat-
isfied if we choose t+(x) ∝ Pn(x) for all n ≥ 4. Furthermore,
the Pn(x) for n ≥ 4 are orthogonal to t+1(x) and t+2(x), since the
latter are polynomials of order ≤ 3. Thus, choosing the normal-
ization such as to satisfy Eq. (16), we find for n ≥ 3,

t+n(x) =

√
2n + 3

2
Pn+1(x) ≡ pn+1(x). (19)

In the upper panel of Fig. 1, we have plotted the filter function
T+n(ϑ) for three values of n. For n ≥ 3, they are simply propor-
tional to the Legendre polynomials. Note that T+n(ϑ) has (n+ 1)
roots in the interval ϑmin ≤ ϑ ≤ ϑmax, and the normalization is
chosen such that T+n(ϑmax) > 0. The corresponding filter func-
tions Wn(ℓ) which relate the COSEBIs to the power spectrum
PE(ℓ) are displayed in Fig. 2, for several values of n and for two
different values of the relative width parameter B (corresponding
to two different values of ϑmax).

For this set of functions t+n(x), we can obtain the correspond-
ing t−n(x) using Eq. (3),

t−(x) = t+(x) +
4B

(1 + Bx)2

∫ x

−1
dy t+(y) G(y, x), (20)

where

G(y, x) = 1 + By − 3
(1 + By)3

(1 + Bx)2 =

3∑

k=0

Aky
k, (21)

and the coefficients Ak are given explicitly as

A0 = 1 − 3
(1 + Bx)2 , A1 = B − 9B

(1 + Bx)2 ,

A2 =
−9B2

(1 + Bx)2 , A3 =
−3B3

(1 + Bx)2 · (22)

For the first two functions, the integral is carried out explicitly,
yielding

t−1(x) =
1√

X1(1 + Bx)4

5∑

k=0

U1k xk,

t−2(x) =
1√

X2(1 + Bx)4

7∑

k=0

U2k xk, (23)
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Fig. 2. The functions Wn as defined in Eq. (6) which relate the COSEBIs
to the underlying power spectrum, calculated from the T±n. The upper
panel corresponds to ϑmax = 400′ , whereas the lower panel is calculated
using ϑmax = 20′, both for ϑmin = 1′.

with the coefficients U

U10 = −5 + 19B2 − 15B4 + 3B6,

U11 = 2B
(
7 + B2 − 3B4

)
,

U12 = 15 + 7B2 + B4 − 3B6,

U13 = 20B, U14 = 10B2, U15 = 2B3;

U20 = −B
(
350 − 360B2 + 182B4 − 93B6 + 21B8

)
,

U21 = −525 + 215B2 − 30B4 + 38B6 + 18B8,

U22 = B3
(
130 + 30B2 + 19B4 + 9B6

)
,

U23 = 5
(
175 + 105B2 + 48B4 + 12B6

)
,

U24 = 5B
(
350 + 105B2 + 87B4 + 6B6

)
,

U25 = B2
(
1400 + 315B2 + 339B4 + 6B6

)
,

U26 = 21B3
(
25 + 5B2 + 6B4

)
,

U27 = 3B4
(
25 + 5B2 + 6B4

)
.

For n ≥ 3, we first define

Ik
n(x) :=

∫ x

−1
dy Pn(y) yk. (24)

For k = 0, one obtains

I0
n (x) =

Pn+1(x) − Pn−1(x)
1 + 2n

, (25)

whereas for k ≥ 1, we make use of the recurrence relation
for Legendre polynomials, (2n + 1)yPn(y) = (n + 1)Pn+1(y) +
nPn−1(y), to find

Ik
n(x) =

(n + 1)Ik−1
n+1(x) + nIk−1

n−1(x)

2n + 1
· (26)

Making use of Eqs. (20) and (21), we then find, for n ≥ 3,

t−n(x) = t+n(x) +

√
2n + 3

2
4B

(1 + Bx)2

3∑

k=0

AkIk
n+1(x). (27)

For three different values of n and ϑmin = 1′, ϑmax = 400′, the
functions T−n(ϑ) are displayed in the lower panel of Fig. 1.

3.2. Logarithmic weight functions

Choosing the T+n to be polynomials in ϑ implies that the struc-
ture of these weight functions is similar on all angular scales
from ϑmin to ϑmax. For example, the roots of the T+n are fairly
evenly spread on the interval ϑmin ≤ ϑ ≤ ϑmax. On the other
hand, we expect the correlation function ξ+(ϑ) to show more
structure on small scales than on large scales. Hence, for a given
maximum number N of modes, the large angular scales will
be sampled on finer scales than needed, whereas small angular
scales may not be sufficiently well resolved to extract all infor-
mation contained in the correlation function.

In order obtain a finer sampling of the small-scale correlation
function for a given N, we now construct a set of weight func-
tions which are polynomials in lnϑ. Hence the roots of these
weight functions are approximately evenly spaced in lnϑ, thus
the weight functions sample small angular scales with higher
resolution than large angular scales. As in Sect. 3.1, this set of
functions must fulfill the constraints (4), and we require the func-
tions to be orthonormal. Hence, the lowest-order weight function
again is of second-order. We parametrize this set of weight func-
tions as

tlog
+n (z) =

n+1∑

j=0

cn jz j = Nn

n+1∑

j=0

c̄n jz j, (28)

where we choose

z = ln (ϑ/ϑmin) , (29)

which varies from 0 to zmax = ln(ϑmax/ϑmin) as ϑ goes from
ϑmin to ϑmax. Furthermore, we defined cn j = Nnc̄n j with Nn ≡
cn(n+1) ! 0, so that c̄n(n+1) = 1. In this way, the relative amplitude
of the c’s is decoupled from the overall normalization Nn. As
before, we set T log

+n (ϑ) = tlog
+n (z) and T log

−n (ϑ) = tlog
−n (z). With this

transformation of variables the constraints (4) become
∫ zmax

0
dz e2z tlog

+n (z) = 0 =
∫ zmax

0
dz e4z tlog

+n (z) , (30)

and an orthonormality condition analogous to Eq. (16) can be
written as

1
∆ϑ

∫ ϑmax

ϑmin

dϑ T log
+n (ϑ)T log

+m(ϑ) =

ϑmin

∆ϑ

∫ zmax

0
dz eztlog

+n (z)tlog
+m(z) = δnm. (31)
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in Fourier space. From (Schneider et al.

2010).
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COSEBIs III
P. Schneider et al.: COSEBIs: Extracting the full E-/B-mode information from cosmic shear correlation functions
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Fig. 4. The logarithmic filter functions
T log
+n for ϑmin = 1′ and ϑmax = 400′.

The left panel shows the function over
the whole interval, whereas the right
panel provides a more detailed view for
small ϑ.
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Fig. 5. The logarithmic filter functions
T log
−n for ϑmin = 1′ and ϑmax = 400′ . As

in Fig. 4, the left panel shows the func-
tion over the whole interval, whereas
the right panel provides a more detailed
view for small ϑ.

given in the form (36). Alternatively, making use of the repre-
sentation

γ( j + 1, z) = j!

⎡⎢⎢⎢⎢⎢⎢⎣1 − e−z
j∑

m=0

zm

m!

⎤⎥⎥⎥⎥⎥⎥⎦ ,

one can write the tlog
−n (z) as

tlog
−n (z) = an2e−2z − an4e−4z +

n∑

m=0

dnmzm, (38)

where the coefficients are given as

an2=4
n+1∑

j=0

cn j j!
(−2) j+1 , an4 = 12

n+1∑

j=0

cn j j!
(−4) j+1 ,

dnm=cnm +
4

m!

n+1∑

j=m

cn j j!(−2)m− j−1
(
3 2m− j−1 − 1

)
. (39)

In Figs. 4 and 5, we have plotted the filter functions T log
±n for

ϑmin = 1′ and ϑmax = 400′. The left panels show these filter
functions over the whole angular range, the right panels show
an enlargement for small values of ϑ. As expected, the roots of
the weight functions are clustered towards lower values of ϑ.
Thus, for a fixed maximum number of n, these functions resolve
those scales better than the linear filter functions. Figure 6 shows
the filter functions Wn(ℓ) which, according to Eq. (5), relates the
COSEBIs to the underlying power spectrum PE(ℓ). With increas-
ing n, the COSEBIs are sensitive to power at increasingly larger
values of ℓ.

3.3. E-/B-mode correlation functions

Crittenden et al. (2002) and Schneider et al. (2002) constructed
E-/B-mode correlation functions, which consist of the original
correlation function ξ±(ϑ) plus a correction term which is again
an integral over correlation functions. However, these correction
terms are unobservable, since the integral extends over an infi-
nite angular range. Thus, these E-/B-mode correlation functions
cannot be obtained in practice and are of little use.

With the full E-/B-mode decomposition provided by the
COSEBIs, we can define new pure E-/B-mode correlation
functions,

ξE±(ϑ) =
2
ϑ∆ϑ

∞∑

n=1

En T±n(ϑ),

ξB± (ϑ) =
2
ϑ∆ϑ

∞∑

n=1

Bn T±n(ϑ); (40)

obviously, the ξE± only depend on the E-mode shear, whereas the
ξB± contains information only from B-modes. Owing to the con-
straints (4) which the functions T+n have to obey, one finds that

∫ ϑmax

ϑmin

dϑ ϑ ξE+(ϑ) = 0 =
∫ ϑmax

ϑmin

dϑ ϑ3 ξE+(ϑ). (41)

In fact, as shown in SK07, the function T− also obeys analogous
constraints, namely

∫ ϑmax

ϑmin

dϑ
ϑ

T−(ϑ) = 0 =
∫ ϑmax

ϑmin

dϑ
ϑ3 T−(ϑ),

Page 7 of 16
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COSEBIs IV

A&A 542, A122 (2012)
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Fig. 12. Comparison between the Lin- and Log-COSEBIs results. These
plots show one of our consistency checks. We consider the LS parame-
ter with a single (top panel) and two galaxy redshift distributions (bot-
tom panel), including all of the 7 parameters. Apart from very small nu-
merical inaccuracies, both sets of COSEBIs saturate to the same value,
as expected. There are two solid lines in each plot. The line with the
higher value shows the value of Log-COSEBIs at nmax = 20, and the
other line shows the value of f as obtained from the shear 2PCFs.
The slightly smaller value of f in the latter case (this difference is
not visible in the plot) is related to the fact that the analysis from the
shear 2PCFs implicitly assume the absence of B-modes, and thus con-
tains information from very large-scale modes which, however, cannot
be uniquely assigned to either E- or B-modes. The comparison of the
two plots shows that dividing the galaxies into two redshift bins not
only increases the information content of the Fisher analysis but also
decreases the number of COSEBIs modes needed.

is just an apparent one, bought by making a strong assumption.
The relative difference between the 2PCFs and the converged
Lin-/Log-COSEBIs values for f is larger for the variable Γ case,
since here small-ℓmodes, which are filtered out in the COSEBIs,
contain information about the power spectrum shape.

We also considered as further possibility that the require-
ment of finite support for the ξ−(ϑ) is dropped, and call
this “Full-COSEBIs”. They form a complete set of functions
on [ϑmin,ϑmax], without the constraints given in Eq. (4)8. Though
not physically reasonable, the Full-COSEBIs are equivalent to
measuring ξ+ only, on the same interval. As can be seen from
Fig. 11, the full COSEBIs yield a slightly lower value of f than
the true COSEBIs, showing that ξ− on scales larger than ϑmax
adds apparent information, which, however, is not observable.
We stress here that the E-/B-mode correlation functions ξE/B,
introduced by Crittenden et al. (2002) and Schneider et al.
(2002a), are essentially equivalent to the Full-COSEBIs, since

8 They are obtained by adding two additional weight functions T+ to
those used in the COSEBIs; for the linear case, we just take all Legendre
polynomials (see SEK).

they are also based on the assumption that ξ− can be measured
to arbitrarily large separations – which, however, is not possi-
ble. Therefore, a cosmic shear analysis based on ξE (e.g., Fu
et al. 2008; Lin et al. 2011) underestimates the uncertainties of
cosmological parameters.

Furthermore, we compare the Lin- and Log-COSEBIs for
LS parameters in Fig. 12, for one and two redshift bins. To
constrain np parameters at least np equations are needed, i.e.,
if one redshift bin is considered, np COSEBIs modes should
be accounted for to produce a covariance matrix with at least
np × np elements. For more than one redshift bin, a smaller num-
ber of COSEBIs modes are sufficient, subsequently the satura-
tion rate of f is faster, as is visible in the right plot in the figure.
Recall that 2 redshift bins means 3 different redshift combina-
tions, i.e., for 7 parameters, the smallest integer not less than
⌈7/3⌉ = 3 COSEBIs modes are needed.

5.4. Forecast for parameter constraints

This section is dedicated to our final results according to the as-
sumptions and parameters explained in Sect. 5.2.

Figure 13 shows the dependence of f for 20 Log-COSEBIs
modes and for the [1′, 400′] angular range on the number of
galaxy distributions (i.e., redshift bins), where all but one pa-
rameter are marginalized over. Dividing the galaxy distribution
into more than 4 redshift bins does not change the value of f
considerably. Nevertheless, a much larger number of redshift
bins is required to control and correct for systematic effects, e.g.,
coming from intrinsic alignments (see for example Joachimi &
Schneider 2010, and references therein).

We also show the dependence of f on nmax, for 8 redshift bins
and marginalized parameters, in Fig. 14. Comparing the cosmic
shear analysis with and without CMB prior, we see from the
figure that the prior in general flattens the curves. However, the
curves are flatter for MS+CMB than LS+CMB as a result of
the larger difference between the LS and the CMB prior.

The constraints on each of the cosmological parameters be-
have differently with respect to the number of COSEBIs modes
or redshift bins considered. For marginalized parameters where
the behavior of parameters is entangled, their curves show a
similar decline.

By comparing the different angular ranges we conclude that
a wider angular range needs more modes to extract all informa-
tion. We also note that the behavior of the seven parameters are
not similar and each of them should be followed separately.

Based on the results from these two figures, we will report
additional results for nmax = 20, where the value of f is con-
verged, and for either one or eight redshift bins. These results
are shown in Table 3 in the form of f (φ) for different cases.
We have compared these values with Debono et al. (2010), and
found them fully consistent.

In the following we explain our conclusions from the two
mentioned figures and Table 3 in more detail:

– MS vs. LS vs. CMB prior: in general, because of its much
larger survey area and larger galaxy number density, LS puts
tighter constraints on all of the parameters than the MS.
Furthermore, since the LS is deeper than the MS, it allows
more sensitive constraints on parameters which are sensitive
to the growth of structure, in particular w0. As can be seen
from Fig. 14, the requested number of COSEBIs for satura-
tion is slightly higher for the LS since this survey contains
more information, but smaller than 20 in all cases.

A122, page 10 of 16

Inverse Fisher-matrix (allowed parameter) volume as function of COSEBIs maximum mode.

From (Asgari et al. 2012).

Log-COSEBIs show faster convergence of available information with n.
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Band-power spectrum I

The power spectrum Pκ can be estimated from shear data using methods from
the CBM,
(Pseudo-C`, Bayesian, . . .)
from pixellised maps.

A much faster but biased method is a band-power estimate from the 2PCF.

Recall the expressions

PE
κ (`) =π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ) + ξ−(ϑ)J4(`ϑ)] ,

PB
κ (`) =π

∫ ∞

0

dϑϑ [ξ+(ϑ)J0(`ϑ)− ξ−(ϑ)J4(`ϑ)] .

To estimate these improper integrals as direct sums over observed ξ± between
ϑmin and ϑmax would introduce large biases.
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Band-power spectrum II14 Peter Schneider et al.: Analysis of two-point statistics of cosmic shear: I. Estimators and covariances

Fig. 4. The thick solid line displays the dimensionless projected power spectrum ℓ2Pκ(ℓ), whereas the other two
curves show the ‘observed’ power spectrum, as defined in (46). The dotted curve is for K+ = 0, i.e. only ξ− enters
the determination of the observed power spectrum in this case; the dashed curve is for K+ = 1. In this plot is was
assumed that the correlation functions are known between θmin = 6′′ and θmin = 2◦

for ℓ >∼ 8 × 103, that is for values of ℓ much less than 2π/θmin ∼ 2 × 105. The different behavior of the two estimates
again is due to the different filter function through which correlation function and power spectrum are related. Fig. 4
suggests that the best estimate for the power spectrum is obtained by choosing K+ = 1 for small values of ℓ, and
K+ = 0 for large ℓ.

The covariance matrix of P̂ reads, for K+ = 1,

Cov(P̂ ; ℓ, ℓ′) = (2π)2
∫ θmax

θmin

dθ θ J0(ℓθ)

∫ θmax

θmin

dθ′ θ′ J0(ℓ
′θ′)C++(θ, θ′) ; (48)

the generalization for other values of K+ is obvious and shall not be reproduced here.
To estimate the power spectrum from cosmic shear data, it is useful to define the power in a band with upper and

lower ℓ-values ℓiu and ℓil as

Pi :=
1

∆i

∫ ℓiu

ℓil

dℓ ℓ P̂ (ℓ) =
2π

∆i

∫ θmax

θmin

dθ

θ

{
K+ξ+(θ)

[
g+(ℓiuθ) − g+(ℓilθ)

]
+ (1 − K+)ξ−(θ)

[
g−(ℓiuθ) − g−(ℓilθ)

]}
,(49)

where ∆i = ln(ℓiu/ℓil) is the logarithmic width of the band, and

g+(x) = xJ1(x) ; g−(x) =

(
x − 8

x

)
J1(x) − 8J2(x) . (50)

One expects that the band power traces ℓ̄2i Pκ(ℓ̄i), where ℓ̄i is the geometric mean of ℓiu and ℓil, i.e. the center of the
bin. The covariance of the band power of two bins i and j is

Cov(PiPj) =
2πσ4

ϵ

∆i ∆j An2

∫ θmax

θmin

dθ

θ3

[
K2

+ Gi+(θ)Gj+(θ) + (1 − K+)2Gi−(θ)Gj−(θ)
]

+
(2π)2

∆i ∆j

∫ θmax

θmin

dθ

θ

∫ θmax

θmin

dθ′

θ′

{
K2

+ C′
++(θ, θ′)Gi+(θ)Gj+(θ′) + (1 − K+)2C′

−−(θ, θ′)Gi−(θ)Gj−(θ′)

+ K+(1 − K+)C+−(θ, θ′) [Gi+(θ)Gj−(θ′) + Gi−(θ′)Gj+(θ)]
}

(51)

where Gi±(θ) = g±(ℓiuθ) − g±(ℓilθ). In (51), we have already split off the ‘delta-function’ part of the correlation
covariance matrices, which yields the first term. It should be noted that the foregoing expressions remain valid if K+
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ellipticity distribution and the cosmic variance. Hence, we can expect that a more advanced treatment of the shear
four-point function would yield a slightly larger variance in this transition region around ∼ 5′: for significantly smaller
scales, it is dominated by the intrinsic ellipticity noise, and for larger scales, the shear four-point function is basically
Gaussian.

The variances of M for the cases K+ = 0 and K+ = 1 are basically identical, and larger by a factor ∼ 2 than
the variance of the estimator for K+ = 1/2. Hence, to minimize the variance of the estimator M, K+ = 1/2 should
be chosen. With this choice, the results are unchanged even in the presence of a B-mode contribution (see SvWM).
As was already mentioned by C02, using cosmic shear estimators which use ξ+ and ξ− with equal weight reduces
the resulting noise by a factor 2−1/2. One notes that the variance for large θ rises, but very slowly. We can compare
the behavior of the variance of M with that derived in SvWJK for a more direct estimator for the aperture mass
dispersion; using eqs. (5.12) and (5.16) of that paper, one finds in the limit of large angles (and, to make the estimate
comparable to the one obtained here, zero kurtosis) that

√
Var(M′; θ) ≈ 2θ

〈
M2

ap

〉
(θ)/A, where M′ is the estimator

used in SvWJK. The functional behavior with θ is similar to that seen in Fig. 3, but the amplitude is lower by a factor
of about 2 for K+ = 0, 1, and about 3 for K+ = 1/2; this again shows the superiority of the estimator considered here
in comparison to laying down independent apertures on the data field.

To investigate the correlation of the estimator M between different angular scales, we define the correlation
coefficient

rcorr(M; θ1, θ2) :=
Cov(M; θ1, θ2)√

Cov(M; θ1, θ1) Cov(M; θ2, θ2)
, (44)

which has the property that rcorr(M; θ, θ) = 1. The dependence of this correlation on the ratio of the angular scales
then provides information on the correlated error of the determination of the aperture mass dispersion on different
angular scales. In the right panel of Fig. 3 we have plotted this correlation coefficient as a function of θ2, for various
values of θ1. The logarithmic representation clearly shows that this correlation coefficient depends mainly on the
ratio θ1/θ2. The correlation drops off quickly, so that estimates of

〈
M2

ap

〉
(θ) for two angles with ratio θ1/θ2 <∼ 1/3

or θ1/θ2 >∼ 3 are practically uncorrelated. This was to be expected given that
〈
M2

ap

〉
(θ) is obtained from the power

spectrum Pκ(ℓ) through a very well localized filter function. Hence, the estimator M decorrelates much faster than
those of the shear correlation functions. Also seen in Fig. 3 is the fact that in the case of K+ = 1/2 and K+ = 1, the
correlation coefficient attains long negative, but low-amplitude tails, whereas they are basically absent if K+ = 0. This
is due to the much faster decorrelation of ξ− with scale ratio than that of ξ+.

7. A simple estimator for the power spectrum, and its covariance

The relations (5) may be used to define an estimator for the power spectrum Pκ(ℓ) as

P̂ (ℓ) = 2π

∫ θmax

θmin

dθ θ [K+ξ+(θ)J0(ℓθ) + (1 − K+)ξ−(θ)J4(ℓθ)] , (45)

where K+ ∈ [0, 1] again describes the relative contribution from the ξ+ correlation. Here, θmin and θmax describe the
range over which the correlation function has been measured. If this range extends from zero to infinity, the estimator
(45) would be unbiased (and would yield the E-mode power spectrum for K+ = 1/2 even in the presence of B-modes);
for real datasets, where this range is finite, (45) is a biased estimator. Note that in the absence of B-modes, eq. (45)
remains valid even if the factor K+ is chosen to be a function of ℓ. The expectation value can be obtained by inserting
the relation (2) between the correlation functions and the true power spectrum into (45) to yield

〈
P̂ (ℓ)

〉
≡ Pobs(ℓ) =

∫ ∞

0

dℓ′ ℓ′ [K+G0(ℓ, ℓ
′) + (1 − K+)G4(ℓ, ℓ

′)] Pκ(ℓ
′) , (46)

with

Gn(ℓ, ℓ′) =

∫ θmax

θmin

dθ θ Jn(ℓθ) Jn(ℓ′θ) =

[
θ

ℓ′2 − ℓ2
{ℓ′Jn+1(ℓ

′θ)Jn(ℓθ) − ℓJn(ℓ′θ)Jn+1(ℓθ)}
]θ=θmax

θ=θmin

. (47)

We have plotted the ‘observed’ power spectrum as ℓ2Pobs(ℓ) in Fig. 4, for K+ = 0 and K+ = 1, assuming that
θmin = 6′′ and θmax = 2◦. A comparison with the underlying power spectrum (shown as heavy solid curve) shows
that Pobs traces the true power spectrum over a wide range of ℓ-values, though in an oscillatory way. If Pobs is
determined solely from ξ− (i.e. K+ = 0), it substantially underestimates the power for ℓ <∼ 102 (that is, approximately
for ℓ <∼ 2π/θmax), but traces the true power spectrum out to the largest values of ℓ plotted. Conversely, the observed
power determined from ξ+ yields good estimates of the true power for small values of ℓ, but deviates from it strongly

From (Schneider et al. 2002).
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Part II day 1: E- and B-modes E-/B-mode estimators

Band-power spectrum III
However, we can add another integration in bands of `, between `min and `max,

14 Peter Schneider et al.: Analysis of two-point statistics of cosmic shear: I. Estimators and covariances

Fig. 4. The thick solid line displays the dimensionless projected power spectrum ℓ2Pκ(ℓ), whereas the other two
curves show the ‘observed’ power spectrum, as defined in (46). The dotted curve is for K+ = 0, i.e. only ξ− enters
the determination of the observed power spectrum in this case; the dashed curve is for K+ = 1. In this plot is was
assumed that the correlation functions are known between θmin = 6′′ and θmin = 2◦

for ℓ >∼ 8 × 103, that is for values of ℓ much less than 2π/θmin ∼ 2 × 105. The different behavior of the two estimates
again is due to the different filter function through which correlation function and power spectrum are related. Fig. 4
suggests that the best estimate for the power spectrum is obtained by choosing K+ = 1 for small values of ℓ, and
K+ = 0 for large ℓ.

The covariance matrix of P̂ reads, for K+ = 1,

Cov(P̂ ; ℓ, ℓ′) = (2π)2
∫ θmax

θmin

dθ θ J0(ℓθ)

∫ θmax

θmin

dθ′ θ′ J0(ℓ
′θ′)C++(θ, θ′) ; (48)

the generalization for other values of K+ is obvious and shall not be reproduced here.
To estimate the power spectrum from cosmic shear data, it is useful to define the power in a band with upper and

lower ℓ-values ℓiu and ℓil as

Pi :=
1

∆i

∫ ℓiu

ℓil

dℓ ℓ P̂ (ℓ) =
2π

∆i

∫ θmax

θmin

dθ

θ

{
K+ξ+(θ)

[
g+(ℓiuθ) − g+(ℓilθ)

]
+ (1 − K+)ξ−(θ)

[
g−(ℓiuθ) − g−(ℓilθ)

]}
,(49)

where ∆i = ln(ℓiu/ℓil) is the logarithmic width of the band, and

g+(x) = xJ1(x) ; g−(x) =

(
x − 8

x

)
J1(x) − 8J2(x) . (50)

One expects that the band power traces ℓ̄2i Pκ(ℓ̄i), where ℓ̄i is the geometric mean of ℓiu and ℓil, i.e. the center of the
bin. The covariance of the band power of two bins i and j is

Cov(PiPj) =
2πσ4

ϵ

∆i ∆j An2

∫ θmax

θmin

dθ

θ3

[
K2

+ Gi+(θ)Gj+(θ) + (1 − K+)2Gi−(θ)Gj−(θ)
]

+
(2π)2

∆i ∆j

∫ θmax

θmin

dθ

θ

∫ θmax

θmin

dθ′

θ′

{
K2

+ C′
++(θ, θ′)Gi+(θ)Gj+(θ′) + (1 − K+)2C′

−−(θ, θ′)Gi−(θ)Gj−(θ′)

+ K+(1 − K+)C+−(θ, θ′) [Gi+(θ)Gj−(θ′) + Gi−(θ′)Gj+(θ)]
}

(51)

where Gi±(θ) = g±(ℓiuθ) − g±(ℓilθ). In (51), we have already split off the ‘delta-function’ part of the correlation
covariance matrices, which yields the first term. It should be noted that the foregoing expressions remain valid if K+

This strongly reduces
the bias.

You will use the
program pallas.py in
the TD this afternoon
that implements this
estimator.
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Fig. 5. The large panel shows the estimates of the band power, shown as horizontal bars whose length indicates the
bins used. The error bar on each bin shows the square root of the autovariance of the band power, and the solid
curve is the underlying power spectrum, ℓ2Pκ(ℓ). For this figure, we have assumed that the correlation functions are
measured for 6′′ ≤ ϑ ≤ 2◦, from a survey of A = 25 deg2. The inset figure shows the correlation coefficient between
the 13 different bins, where the triangles indicate the center ℓ̄ of each bin. One sees that the bands are very little
correlated, except for the three bins with smallest ℓ; in fact, the first three band power estimates are fully correlated.
This explains why the band-power estimator yields reasonable results even for ℓ < 2π/θmax ∼ 180 – this is just a
coincidence.

is varied as a function of ℓ. From Fig. 3 it is clear that in order to get the least bias, one wants to choose K+ ∼ 1 for
small ℓ, and K+ ∼ 0 for large ℓ; for the intermediate region, setting K+ = 1/2 should yield the smallest error on the
power spectrum. We have therefore constructed a function K+(ℓ) which has these desired properties.

In Fig. 5 we have plotted the band power for our reference model parameters, in 13 bins of width ℓiu/ℓil = 2,
between ℓ = 10 and ℓ ≈ 8 × 104. The band power is shown as crosses, and vertical error bars show the range of the
bins. For comparison, the solid curve shows ℓ2 Pκ(ℓ); as expected, with this new choice of K+(ℓ), the band power
traces the underlying power spectrum over a very wide range of wavenumbers. Only in the bins with the smallest and
largest value of ℓ is there a significant bias; over the range 2π/θmax ≈ 180 <∼ ℓ <∼ 2π/θmin ≈ 2 × 105, the band power
estimator is practically unbiased. Next we calculated the error bars on the band power, by taking the square root of
the diagonal part of (51). For this calculation, we have assumed to have a total area of A = 25 deg2, for which the
condition θ2max ≪ A for the validity of the treatment of the ensemble average in Sect. 5 is approximately satisfied. The
square root of this autovariance is plotted as errorbars on the band power in Fig. 5; as can be seen from this figure, the
signal-to-noise ratio is larger than unity in all bins shown, and in fact very large for intermediate values of ℓ. Hence,
the power spectrum Pκ(ℓ) can be measured over a broad range of ℓ for the parameters chosen here.

Of course, in order to interpret the error bars correctly, it is important to see the degree of correlated noise between
different bands. The correlation matrix for the bins [defined in full analogy to (44)] was calculated and its values are
plotted in the inset of Fig. 5. One sees that errors of the bins for intermediate and high values of ℓ are essentially
uncorrelated (the correlation coefficient for neighboring bins is <∼ 10% for ℓ >∼ 200); however, for ℓ <∼ 100 the bins
become strongly correlated. In fact, the agreement of the band powers with the underlying power spectrum is forticious
for ℓ <∼ 100: the three band powers at lowest ℓ are nearly fully correlated, so that these three points contain practically
the same information of the underlying power spectrum.

The method presented here for the determination of the power spectrum has the virtue of its simplicity. Other
methods for determining the power spectrum from shear data have been investigated, e.g. by Kaiser (1998), Seljak
(1998) and Hu & White (2001). Our approach has the property that it makes use only of the shear correlation

From (?), with ϑmin = 2 arcsec, ϑmax = 2 deg.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 43 / 153



Part II day 1: E- and B-modes Galaxy-galaxy lensing: motivation

Galaxy-galaxy lensing: Overview

Correlation between high-z galaxy shapes and low-z galaxy positions.
E.g. average tangential shear around massive galaxies.
Provides mass associated with galaxy sample.

• Galaxy halo profiles from kpc to Mpc

• Mass-to-light ratio

In combination with other tracers of matter (galaxy clustering, cosmic shear,
velocity correlations, X-ray emission, . . .):

• Galaxy bias. Properties such as linearity, scale-dependence, stochasticity

• Test of General Relativity

Can be done quasi model-independent since two or more observables trace
same matter field, but with different biases.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 44 / 153



Part II day 1: E- and B-modes Galaxy-galaxy lensing: motivation

Tangential shear and projected overdensity

Tangential shear at distance θ is related to total overdensity within this radius:

〈γt〉 (θ) = κ̄(≤ θ)− 〈κ〉 (θ).

No assumption about mass distribution is made here!

End of day 1.
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Part II day 2: Shear estimation Outline

Reminder: Overview

Part II day 1: E- and B-modes
Very brief reminders from day I
E-/B-mode decomposition recap
E-/B-mode estimators
Galaxy-galaxy lensing: motivation

Part II day 2: Shear estimation
Galaxy-galaxy lensing in detail
Back to the aperture mass: Filter function relation
Spherical-sky lensing projections
Shear calibration

Part II day 3: Cosmological parameter estimation
Numerical simulations
Covariance estimation
Likelihood and parameter estimation
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Tangential shear and surface mass I

In an exercise you have derived the relation between tangential shear and
encompassed projected surface mass,

〈γt〉 (θ) = κ̄(≤ θ)− 〈κ〉 (θ).

We will re-write equation defining the surface mass excess ∆Σ.

Surface mass excess

Assume a single lens at (angular diameter) distance Dl. Approximate for this
case the expression of the convergence

κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .

and write Ds for the distance of the source, and Dls for the distance between
lens and source. Write all distances as proper, not comoving distances, express
the density contrast in terms of the density, δ = ∆ρ/ρ̄, and use the critical
density ρcrit.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Tangential shear and surface mass II
Assume that the lens mass distribution ρ extends over the inverval
[Dl −∆D/2;Dl + ∆D/2].

κ(θ) =
4πG

c2
DlDls

Ds

Dl+∆D/2∫

Dl−∆D/2

dD∆ρ(Dθ, D).

Define the critical surface mass density

Σ−1
cr (θ) :=

4πG

c2
DlDls

Ds

to write convergence as

κ(θ) =
Σ(θ)

Σcr
. (2)

[Why is Σcr called critical surface mass?]
With that, we define the surface mass excess

∆Σ(≤ θ) := 〈γt〉 (θ) Σcr = Σ̄(θ)− 〈Σ〉 (θ).
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Statistical galaxy-galaxy lensing (GGL) I
The convergence or tangential shear defined in the last slides depend linearly
on the mass distribution ρ, or Σ. So it seems to be a first-order statistic.

However, when measured statistically using a population of foreground
galaxies, it can be written as two-point correlation function. The convergence
is then the correlation of background lensing convergence and foreground
galaxy position.

If we write the latter as galaxy over-density δg, we get

〈κ〉 (θ) = 〈κ(ϑ)δg(ϑ+ θ)〉ϑ
= Σ−1

cr ρ̄

∫
dD 〈δ(Dθ, D)δg(Dlθ, Dl)〉

= Σ−1
cr ρ̄

∫
dD ξδg(

√
(Dθ)2 + (D −Dl)2).
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Statistical galaxy-galaxy lensing (GGL) II

Properties of statistical GGL

• Circular averages of tangential shear: robust against (some) systematic,
e.g. large-scale modes of PSF residuals cancel out.
CFHTLenS: 25% fields had to be discarded for cosmic shear, none for
GGL.

• Simple null tests:
〈γ×〉 around foreground objects (parity mode, should vanish).
〈γt〉 around random points, or special points that should not be correlated
with foreground sample such as chip corners, field centres, stars.

• Higher SNR compared to cosmic shear:
correlation with tracers of dense matter regions;
one shape instead of two;

• Can use spectroscopic galaxies for foreground sample.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Parenthesis: galaxy bias I
Simple bias

GGL measures the cross-correlation between galaxies and dark (more
precisely: total) matter, 〈δgδ〉. This correlation is non-zero since galaxies trace
the underlying matter.
Simplest model: linear, constant, deterministic bias:

δg = bδ.

From that it follws that

〈δgδg〉(θ) = b2〈δδ〉(θ); 〈δgδ〉(θ) = b〈δδ〉(θ),

or in Fourier space

Pgg(k) = b2Pmm(k); Pgm(k) = bPmm(k).

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 51 / 153



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Parenthesis: galaxy bias II

Properties

• The bias depends on the galaxy properties (type, color, luminosity, . . .,
and can be measured for different populations (e.g. early/late-type).

• Bias is redshift-dependent. Difficult to measure since degenerate with
z-dependent selection effects. Volume-limited samples: Bias tends to
increase with z: galaxies are more rare objects at higher z, situated in
more extreme environments (halo centres).
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Sample selection for galaxy bias measurementJ. Coupon et al.: Galaxy clustering in the CFHTLS-Wide

Fig. 4. Sample selection in the full (left), red (centre) and blue (right) galaxy samples. In each panel, the galaxy number density in the plane Mg/z
is shown; red rectangles represent the luminosity threshold samples.

at high redshift z > 0.8 have slightly bluer colours. Their dis-
tribution peaks near the blue galaxy distribution, suggesting that
these objects could be blue galaxies erroneously identified as red
galaxies due to photometric redshift errors. We also note that
a simple colour cut would not exactly reproduce our selection.
However, in the interests of simplicity and clarity we keep the
“red”/”blue” labels for the rest of the paper.

We extract volume-limited luminosity-selected samples for
each of the “full” (or “all galaxies”), “red” and “blue” samples,
using Mg absolute magnitude thresholds (hereafter denoted as
“luminosity threshold samples”), from Mg − 5 log h = −17.8
(fainter threshold in the range 0.2 < z < 0.4) to Mg − 5 log h =
−22.8 (brighter threshold in the range 1.0 < z < 1.2). The sam-
ple selection is illustrated in Fig. 4. For the rest of this paper
we will refer to these samples as simply full, red and blue. Due
to low numbers of pairs at small scales, luminous blue samples
were discarded. We are left with 45 samples, each comprising on
average ∼153 000, ∼70 000 and ∼129 000 galaxies for a typical
full, red and blue sample, respectively. The sample properties are
displayed in Tables B.1–B.3.

Finally, in each redshift interval [zmin; zmax] we compute the
galaxy number density:

nobs
gal = Ntotal/

[
Ω

∫ zmax

zmin

dV
dz

dz
]
, (1)

where Ω represents the solid angle subtended by the survey,
and dV/dz the volume element. Errors are estimated from the
weighted galaxy number density field-to-field variance.

3.2. Photometric redshift uncertainties

Our modelled two-point correlation function is projected using
the measured redshift distributions. In order to take into ac-
count statistical errors on redshifts, we select galaxies in the
redshift range considered and convolve the observed redshift
distributions with the estimated photometric redshift errors, de-
rived from the probability distribution functions. We construct a
Gaussian error distribution for each galaxy centred on the me-
dian redshift of the PDF, with a width corresponding to the 68%
confidence limits of the PDF, and normalised to unity. We then
sum these Gaussians to construct the redshift distribution resam-
pled to a redshift bin width of 0.04. Redshift distributions for
each sample are illustrated in Fig. 5.

To further assess the quality of photometric redshifts,
we perform the cross-correlation analysis introduced in

Benjamin et al. (2010). The measurement of the angular corre-
lation functions for galaxies in different photo-z bins is used to
constrain the fraction of galaxies that are scattered into “wrong”
redshift bins due to photo-z errors. We measure the bin-to-bin
cross correlation function for the full, red and blue samples, re-
spectively. A non-zero correlation between adjacent redshift bins
is present in all cases. This may be due to the presence of large-
scale structures extending over several redshift bins. More im-
portantly, this is also due to photometric redshift scatter, which
results in the leakage of galaxies into neighbouring bins. This
error contribution to the redshifts is taken into account by the
convolution of the redshift distribution with the errors, therefore,
we do not consider adjacent bins further in the analysis of pho-
tometric redshifts uncertainties.

The angular cross-correlation of galaxies in non-adjacent
redshift bins is much lower, indicating a small fraction of catas-
trophic outliers. We use the “global pairwise analysis” method to
measure the contamination between two redshift bins i and j. In
this approximation, the following linear combinations of the an-
gular cross-correlation function wi j and the two auto-correlation
functions, wii and w j j, respectively, are expected to cancel for all
angular scales θt,

dt = wi j(θt)
(
fii f j j + fi j f ji

)
− wii(θt)

Ni

Nj
fi j f j j − w j j(θt)

Nj

Ni
f ji fii

= 0. (2)

Here, Ni (Nj) is the observed number of galaxies in bin i ( j).
The contamination fi j is the number of galaxies with true red-
shift in bin i, but misidentified into bin j, as a fraction of the
true number of galaxies in bin i. For each bin pair (i, j), the leak-
age of the other redshift bins is neglected. This approximation is
valid for contamination fractions of up to 10% (Benjamin et al.
2010). With this, the fraction of galaxies which stay in their bin
is fii = 1 − fi j. We fit the two parameters fi j and f ji in Eq. (2)
by performing a χ2 null-test on dt. For the covariance ⟨dtds⟩, we
take into account the correlation between angular scales for each
of the three correlation functions using a Jackknife estimate (see
next section). We neglect the sub-dominant covariance between
different correlation functions. This corresponds to using the first
three terms in Eq. (A4) of Benjamin et al. (2010).

Due to degeneracies between the parameters fi j and f ji, large
values for fi j (i > j) cannot be ruled out in principle. However,
for the full and red galaxy samples, the contamination fractions
are consistent with zero in most cases. The blue galaxy samples
are slightly worse, but contaminations are consistent with values

A5, page 5 of 31

Sample selection in absolute magnitude and redshfit, from (Coupon et al. 2012).
Samples in horizontal boxes have same absolute magnitudes and are

volume-limited.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 53 / 153



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias extended I

More complex bias models

• Scale-dependence, b(θ), or b̂(k̂). In particular on small scales, bias is not
constant.

• Non-linear bias

δg = b1δ + b2δ
2 + b3δ

3 + . . .

• Stochastic bias

Relation between δg is not determinstic (δg = bδ) but stochastic. In a
statistical picture, the two fields δg and δ can be interpreted a realizations
of random fields with joint pdf p(δg, δ). The study of stochastic biasing is
trying to quantify this joint pdf.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias extended II

At second-order level, one can measure the variances of both fields, and
their cross-correlation. If the fields are correlated, one can write down the
following two relations:

b =
σg

σ
=

√
〈δ2

g〉
〈δ2〉 ; r =

σ2
gm

σgσ
=

〈δgδ〉√
〈δ2

gδ〉〈δ2δ〉

introducing a correlation coffecient r = −1 . . . 1 between both fields.

In the above ratio cosmology dependence (dm correlation function or
power spectrum) mainly drops out!

Allows for model-independent measurement.
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GALAXIES AND THEIR RELATION TO THE DARK MATTER

r=+0.8, b=1r=+0.5, b=1

b=0.5

r=+1

b=2

r=+1

r=�0.8, b=1r=�0.5, b=1

Figure 1.10.: Example illustrating the linear stochastic bias (scale-independent). The (Gaussian)
random field in the centre is statistically related to the other (Gaussian) random fields according to six
different combinations of bias factors, b, and correlation coefficients, r, Eqs. (1.54). The fields could
be models for the large-scale density contrast of galaxies or dark matter. The contours encircle regions
with positive values for the density contrast (overdensity regions). The contour levels are the same for
all fields.

of an underlying probability distribution function P (δm, δg) (PDF); the density contrasts are
statistically homogeneous and isotropic random fields (Sect. 1.2). Studying the stochastic
biasing between δg and δm thus means quantifying their joint PDF. The density contrasts are
smoothed to a certain scale before looking at the PDF; by varying the smoothing scale we can
scan through the different scales.

Linear stochastic bias

Characterising the stochastic biasing, using two-point statistics only, boils down to two bias
parameters, which define a linear stochastic bias:

b(R) =

√〈
δ2
g

〉

⟨δ2
m⟩ ; r(R) =

⟨δmδg⟩√
⟨δ2

m⟩
〈
δ2
g

〉 . (1.49)

These parameters differ from unity in the case of two biased fields. They depend in general on
scale, since the joint PDF is a function of the smoothing applied to the density contrasts of

specific fields; they may be the density contrasts of any random field, such as of two different galaxy
populations as in Chapter 5 for the relative galaxy bias.

37

Illustration of correlated fields, from [P. Simon, PhD thesis, 2005].



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias II

Question: How would the correlation between δg and δ look like for negative
bias b < 0? For example b = −1, r = 1.

Non-linear and stochastic bias
A non-linear bias can mimic stochasticity.
Consider the (made-up) example of deterministic bias with δg = δ3.
Exercise:
Calculate r in the case where both fields follow Gaussian pdf’s.

r =
〈δgδ〉√
〈δgδg〉〈δδ〉

=
〈δ4〉√
〈δ6〉〈δ2〉

=
3σ4

√
15σ6σ2

=
3√
3 · 5

=

√
3

5
≈ 0.77 ≤ 1!

Final note: The density field cannot be a Gaussian, since δ ≤ −1.
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Galaxy bias II

Question: How would the correlation between δg and δ look like for negative
bias b < 0? For example b = −1, r = 1.

Non-linear and stochastic bias
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GGL: model-independent measurement of b/r

Idea:
Combine weak lensing and galaxy clustering to determine b and r.

• Galaxy clustering 〈δ2
g〉

• Galaxy-galaxy lensing 〈δgδ〉
• Cosmic shear 〈δ2〉

Cosmic shear is the most difficult to measure, so first measurements only used
GC and GGL.

Form ratio:

〈δgδ〉(θ)
〈δgδg〉(θ)

=
br

b2
=
b

r
.

Any cosmology-dependence, e.g. of clustering, drops out in the ratio.
These density correlations are projected to weak-lensing observables, and b
and r (if constant) can directly be measured.
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GGL: Aperture measures I

How can we trace the galaxy and dark-matter over-densities with weak
lensing?
Use aperture measures

〈N2〉(θ), 〈NMap〉(θ), 〈M2
ap〉(θ)

to trace
〈δ2

g〉, 〈δgδ〉, 〈δ2〉.
Difficulty: Structure along all redshifts contribute to cosmic shear 〈M2

ap〉, not
only mass associated with foreground galaxy sample δg.

Solutions:

• Choose background sample such that maximum lensing efficiency
coincides with foreground redshift.

• Add correction functions with minor dependency on cosmology
(geometry).
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Redshift calibration factors

Aperture measure ratios

b(θ) =

f1(θ)

√
〈N2〉(θ)
〈M2

ap〉(θ)
?

r(θ) =

f2(θ)

〈NMap〉(θ)√
〈N2〉(θ)〈M2

ap〉(θ)
?

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 60 / 153



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Redshift calibration factors
Aperture measure ratios

b(θ) =f1(θ)

√
〈N2〉(θ)
〈M2

ap〉(θ)

r(θ) =f2(θ)
〈NMap〉(θ)√
〈N2〉(θ)〈M2

ap〉(θ)

Calibration factors f1, f2 to account for different redshifts/lensing efficiency
(Hoekstra et al. 2001). Calculate those using theoretical model for fiducial
cosmology (fixing power spectrum, geometry), setting b = r = 1:

f1(θ) =

√
〈M2

ap〉(θ)
〈N2〉(θ)

∣∣∣∣∣∣
fid,b=1

f2(θ) =

√
〈N2〉(θ)〈M2

ap〉(θ)
〈NMap〉(θ)

∣∣∣∣∣∣
fid,b=r=1
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Redshift calibration factors870 P. Simon et al.: Galaxy bias in GaBoDS. VI.

Fig. 4. Left: the two figures show the scale-dependence of the calibration factors f1/2, for sample FORE-I only, for three different fiducial cos-
mologies; SCDM (dotted): Ωm = 1.0, ΩΛ = 0; ΛCDM (solid): Ωm = 0.3, ΩΛ = 0.7; OCDM (dashed): Ωm = 0.3, ΩΛ = 0. Right: these plots were
obtained by averaging f1/2 over a range of aperture radii, 1′ ≤ θap < 60′, assuming different fiducial cosmologies. For all cosmologies, Ωm is the
only free parameter. The others are: ΩΛ = 1 −Ωm, Γ = Ωmh, σ8 = 0.41Ω−0.56

m and h = 0.7. The average values for f1/2 in this figure are divided by
f1/2(Ωm = 0.3), the here adopted calibration. For pf (z), we have FORE-I (solid), FORE-II (dashed) and FORE-III (dotted); pb(z) is as in BACK.

According to Hoekstra et al. (2002), the calibration factors
have to be calculated based on some theoretical Pm(k, w) by
means of

f1
(
θap

)
=

√√√√〈
M2

ap

(
θap

) 〉
〈
N2

(
θap

) 〉

∣∣∣∣∣∣∣∣∣
r=b=1

,

f2
(
θap

)
=

√〈
N2

(
θap

) 〉〈
M2

ap

(
θap

) 〉

〈
N

(
θap

)
Map

(
θap

) 〉

∣∣∣∣∣∣∣∣∣
r=b=1

, (51)

where ⟨Nn(θap)Mm
ap(θap)⟩, n + m = 2, in these equations have to

be evaluated by Eqs. (18)–(20) and (26)–(28), specifically for
the redshift distributions of foreground, pf(z), and background
galaxies, pb(z), in the data and for a fiducial cosmological model
assuming that galaxies are not biased with respect to the dark
matter, i.e. b(k, w) = r(k, w) = 1.

Importantly, it turns out (van Waerbeke 1998) that the cal-
ibration factors f1 and f2 vary only slightly, mostly on scales
below θap ! 5′, for realistic aperture radii θap within a fixed fidu-
cial cosmological model. This is strictly true if the dark matter
power spectrum can be described by a power law, or – since we
are, for a fixed aperture radius, sensitive to only a very localised
range in ℓ-space due to the adopted aperture filter – if the power
spectrum is approximately a power law over the selected range
in Fourier space.

For examples, see Fig. 4 (upper left and bottom left)
where f1/2 are plotted for three fiducial cosmological models
assuming the redshift distribution of FORE-I and BACK. The

calibration factors show very little dependence on θap. Hence,
a scale-dependence of the uncalibrated measurements immedi-
ately indicates a real scale-dependence in the bias parameter
without fixing the fiducial cosmology! Moreover, it means that
the calibration factors can be worked out for the linear or quasi-
linear regime which is understood much better than the non-
linear regime. Still, when calibrating our measurements we also
take into account the dependence on scale.

We calculated the calibration factors f1/2 for a range of spa-
tially flat fiducial cosmologies, Ωm + ΩΛ = 1, using the redshift
distribution in our data set (right column in Fig. 4), assuming
constraints on σ8 ∝ Ω−0.56

m from cluster abundances (White et al.
1993) and the shape parameter Γ = Ωmh for a negligible baryon
density Ωb ≈ 0 (Efstathiou et al. 1992). The relation between σ8
and Ωm is scaled such that σ8 = 0.8 corresponds to Ωm = 0.3.
This value of σ8 for the power spectrum normalisation is sug-
gested by the GaBoDS data (Hetterscheidt et al. 2006). Note that
the value of σ8, like for example σ8 = 0.9 instead of σ8 = 0.8,
has virtually no impact on f1/2 and, therefore, on the measured
linear stochastic bias.

Predicting the power spectra, Pκ, Pκn and Pn, requires a
model for the redshift evolution of the 3D power spectrum
Pm(k, w). We use the standard prescription of linear structure
growth and the Peacock & Dodds (1996) prescription for the
evolution in the non-linear regime. A more recent and more ac-
curate description of the non-linear power spectrum is given by
Smith et al. (2003). Although Smith et al. predict in general
more clustering on smaller scales than Peacock & Dodds, we
found in a comparison between both methods only little differ-
ence for f1/2.

Scale-and cosmology-dependence of calibration factors. From (Simon et al. 2007), GaBoDS

(Garching-Bonn Deep Survey).
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GGL results: model-independent measurement of b/r

No. 1, 2001 HOEKSTRA, YEE, & GLADDERS L13

Fig. 1.—(a) Observed ratio of as a function of aperture radius . NoteR vap
that the points are somewhat correlated. The error bars are computed using
the scatter in the measurements of the individual fields. The dashed line in-
dicates the model predictions for an OCDM model, and the dotted line cor-
responds to an LCDM model. We find an average value of R p 0.021!

(indicated by the hatched region), where we have used the full covariance0.002
matrix in order to account for the correlation between the points. (b) Mea-
surement when the phase of the shear is increased by , which should vanishp/2
if the signal in (a) is caused by lensing. The results are indeed consistent with
no signal. The signal also vanishes when we correlate of a given fieldN(v )ap
with measured from the other pointings.M (v )ap ap

can write

r
R p Q f (Q , Q ), (13)m m Lb

where is a constant for a given cosmology. Thus, thef (Q , Q )m L

measurement of as a function of scale provides a unique wayR
to examine whether depends on scale or not. In fact, weakb/r
gravitational lensing allows one to estimate b and r separately,
when the ratio is also measured.2 2 2B p AM S/AN S ∝ (Q /b)ap m
Although this ratio is not constant with scale, does not dependB
much on the assumed power spectrum (in particular, on scales
less than 10!). Unfortunately, our data are not sufficient to obtain
a good measurement of , but with more data we will be2AM Sap
able to measure both r and b as a function of scale.

4. REDSHIFT DISTRIBUTIONS

In order to interpret the observed value of , we have toR
evaluate equations (9) and (10), and this requires knowledge
of the redshift distributions of the lens galaxies and the source
galaxies. For the sample of lens galaxies, we use the redshift
distribution found from the second Canadian Network for Ob-
servational Cosmology (CNOC2) Field Galaxy Redshift Sur-
vey (e.g., Lin et al. 1999; Yee et al. 2000; Carlberg et al. 2000).
The CNOC2 Survey provides a well-determined (spectroscop-
ically) redshift distribution for field galaxies down to R pC

, which is ideal given our limits of . The21.5 19.5 ! R ! 21C
adopted redshift distribution gives a median redshift z p

for the lens galaxies.0.35

For the source galaxies, the situation is more complicated.
These galaxies are generally too faint for spectroscopic surveys,
although recently Cohen et al. (2000) measured spectroscopic
redshifts around the Hubble Deep Field–North down to R ∼C
. Cohen et al. (2000) find that the spectroscopic redshifts agree24

well with the photometric redshifts derived frommulticolor pho-
tometry. Because of likely field-to-field variations in the redshift
distribution, we prefer to use the photometric redshift distribu-
tions derived from both Hubble Deep Fields (Fernández-Soto,
Lanzetta, & Yahil 1999; Chen et al. 1998). Photometric redshift
distributions generally work well, as has been demonstrated by
Hoekstra et al. (2000). This redshift distribution yields a median
redshift of for the source galaxies.z p 0.53
We computed the value of for a range of cosmologicalR

parameters and find that, for the adopted redshift distributions,
can be approximated with a fractional accuracy of 2% usingR

rQm 0.63 0.63 1.23R p [(5.8! 1.6Q )" (4.6! 2.6Q )Q ]. (14)m m L100b

5. MEASUREMENT OF THE BIAS PARAMETER

To measure and from the data, we use the2AM N S AN Sap
estimators for and introduced by Schneider (1998):M Nap

NfNb! Q(v )wg 1ip1 i i T, i2 ˜M̃ p pv and N p U(v ), (15)!ap ap iN ¯b! w N ip1ip1 i

where and are, respectively, the number of lens and sourceN Nf b
galaxies found in the aperture of radius . The weightsv wap i
correspond to the inverse square of the uncertainty in the shape
measurement (see Hoekstra et al. 2000 for a detailed discussion).
The observed value of as a function of aperture size isR

presented in Figure 1a. We note that the points are somewhat
correlated. A significant signal is detected at all scales. The
results are consistent with a value of that is constant withR
scale, which implies that is constant as well. This is anb/r
important result since the smallest scales that we are probing
are comparable to the sizes of galaxy halos. We obtain an
average value of , where we have used theR p 0.021! 0.002
covariance matrix to account for the correlation between the
points at different scales.
To examine possible systematic effects, we also computed

when the galaxies are rotated by 45". This signal shouldAM N Sap
vanish in the case of lensing. The results presented in Fig-
ure 1b are consistent with no signal, indicating that the cor-
rections for the systematic distortions have worked well (more
details will be provided in H. Hoekstra et al. 2001, in prepa-
ration). As another check, we correlated for each fieldN(v )ap
with of the other pointings and find that the signalM (v )ap ap
also vanishes in this case.
In Figure 2, we present the resulting value of as a functionb/r

of aperture radius for the currently favored cosmology (Q pm
, ). In this case, we find that . For"0.120.3 Q p 0.7 b/r p 1.05L !0.10

an open model ( , ), we obtainQ p 0.3 Q p 0.0 b/r pm L

. For comparison, we have also indicated the effective"0.080.73!0.07
physical scale (the approximate FWHM of the filter function)
probed by the compensated filter at the median redshift ofU(f)
the lenses .(z p 0.35)
A direct comparison with dynamical studies is difficult be-

cause different galaxy types cluster differently and because of
the different scales probed in our study. However, our results
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although recently Cohen et al. (2000) measured spectroscopic
redshifts around the Hubble Deep Field–North down to R ∼C
. Cohen et al. (2000) find that the spectroscopic redshifts agree24

well with the photometric redshifts derived frommulticolor pho-
tometry. Because of likely field-to-field variations in the redshift
distribution, we prefer to use the photometric redshift distribu-
tions derived from both Hubble Deep Fields (Fernández-Soto,
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distributions generally work well, as has been demonstrated by
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galaxies found in the aperture of radius . The weightsv wap i
correspond to the inverse square of the uncertainty in the shape
measurement (see Hoekstra et al. 2000 for a detailed discussion).
The observed value of as a function of aperture size isR

presented in Figure 1a. We note that the points are somewhat
correlated. A significant signal is detected at all scales. The
results are consistent with a value of that is constant withR
scale, which implies that is constant as well. This is anb/r
important result since the smallest scales that we are probing
are comparable to the sizes of galaxy halos. We obtain an
average value of , where we have used theR p 0.021! 0.002
covariance matrix to account for the correlation between the
points at different scales.
To examine possible systematic effects, we also computed

when the galaxies are rotated by 45". This signal shouldAM N Sap
vanish in the case of lensing. The results presented in Fig-
ure 1b are consistent with no signal, indicating that the cor-
rections for the systematic distortions have worked well (more
details will be provided in H. Hoekstra et al. 2001, in prepa-
ration). As another check, we correlated for each fieldN(v )ap
with of the other pointings and find that the signalM (v )ap ap
also vanishes in this case.
In Figure 2, we present the resulting value of as a functionb/r

of aperture radius for the currently favored cosmology (Q pm
, ). In this case, we find that . For"0.120.3 Q p 0.7 b/r p 1.05L !0.10

an open model ( , ), we obtainQ p 0.3 Q p 0.0 b/r pm L

. For comparison, we have also indicated the effective"0.080.73!0.07
physical scale (the approximate FWHM of the filter function)
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the lenses .(z p 0.35)
A direct comparison with dynamical studies is difficult be-

cause different galaxy types cluster differently and because of
the different scales probed in our study. However, our results
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Fig. 2.—Value of as a function of angular scale, under the assumptionb/r
that and . Note that the points are slightly correlated. TheQ p 0.3 Q p 0.7m L

error bars (which indicate the 68% confidence limits) are computed using the
scatter in the measurements of the individual fields. The upper axis indicates
the effective physical scale probed by the compensated filter at the medianU(f)
redshift of the lenses . The results are consistent with a value of(z p 0.35)

that is independent of scale. For this cosmology, we find thatb/r b/r p
(indicated by the hatched region), whereas for an open model!0.121.05"0.10

( , ), we obtain . The error on the average has!0.08Q p 0.3 Q p 0.0 b/r p 0.73m L "0.07
been computed using the full covariance matrix, in order to account for the
correlation between the points at various scales.

are in fair agreement with the results from dynamical studies,
in the sense that we find (e.g., Berlind et al. 2001;b/r ∼ 1
Peacock et al. 2001). Therefore, from scales ranging from 0.15
out to ∼10 Mpc, i.e., from the scales of galaxy halos out"1h50
to the linear regime, the measurements are consistent with a
value of , suggesting that the light distribution tracesb/r ∼ 1
the dark matter distribution quite well.

6. PROSPECTS

For the first time, we have measured the parameter as ab/r
function of scale using weak lensing based on 16 deg2 of data
from the RCS. With the analysis of the full survey, the error
bars are expected to decrease by a factor of ∼2, thus improving
the constraints on a possible variation of with scale. Also,b/r
we will be able to probe larger scales since we have limited
the analysis to the individual pointings rather than the full
patches that are ∼ . Other cosmic shear surveys will2!.1# 2!.3
place additional constraints, eventually allowing us to measure
r and b separately as a function of scale.
The lens galaxies were selected on the basis of their apparent

magnitude, but with planned multicolor photometry, it is also
possible to measure the biasing properties as a function of
galaxy type or luminosity (using photometric redshifts). Even-
tually, using bigger surveys, it might even be possible to study
the evolution of galaxy biasing as a function of redshift.
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GGL results: model-indep. measurement of b and r I
868 P. Simon et al.: Galaxy bias in GaBoDS. VI.

Fig. 3. Redshift distribution of the foreground and background galaxies as estimated from the photometric redshifts in the COMBO-17 fields
A901, AXAF (CDFS) and S11 (dashed doted lines); the histograms are not normalised to unity. The solid lines are maximum-likelihood fits of
Eq. (42) to the histograms.

Table 2. Best-fit parameters of the template redshift distribution,
Eq. (42), to the COMBO-17 histograms. z̄ is the mean of the template
redshift distribution. The statistical errors of z̄ are derived from the field-
to-field variance in COMBO-17.

Galaxy sample z0 α β z̄
FORE-I 0.534 0.509 3.173 0.35 ± 0.03
FORE-II 0.765 0.617 5.839 0.47 ± 0.03
FORE-III 0.945 0.830 5.103 0.61 ± 0.02

BACK 1.069 0.809 7.369 0.68 ± 0.02
BACK-II 1.072 0.988 7.655 0.70 ± 0.02
BACK-III 1.073 1.611 8.560 0.77 ± 0.02

of the three fields are combined. With three ways of combin-
ing this yields overall N = 3 Jackknife samples. To estimate the
standard deviation of the mean redshift, z̄, one computes from
each Jackknife sample the mean redshift, z̄i. According to the
Jackknife method the statistical 1σ-error of the mean is then
roughly:

σ2(z̄) =
N − 1

N

∑

i

(zi − z̄)2, (43)

where z̄ is the mean redshift obtained by combining all three
COMBO-17 redshift distributions. The results for σ(z̄) are listed
in Table 2. As can be seen there the uncertainty of z̄ ranges
from σ(z̄)/z̄ ≈ 10% to σ(z̄)/z̄ ≈ 2% for FORE-I to BACK, re-
spectively. This behaviour makes sense because the number of
galaxies increases when going from the shallower to the deeper
samples.

The problem of the calibration of redshift distributions
for cosmic shear studies has recently been studied by

van Waerbeke et al. (2006). They find a statistical uncertainty of
σ(z̄) = 0.03−0.04 for a 0.75 deg2 survey with mean z̄ ∼ 1. This
value is somewhat higher than our estimate.

The Jackknife samples can also be used to assess how the
statistical uncertainty of the full p(z)’s translates into the in-
ferred galaxy bias parameters. This problem will be addressed
in Sect. 4.3.

4. Outline of the method

The approach to obtain the bias parameters from lensing adopted
here proceeds in several steps:

1. estimating the binned correlators ω(θ), ⟨γt⟩(θ) and ξ±(θ) in
all individual survey fields;

2. numerical integration of the correlators to obtain
⟨Nm(θap)Mn

ap(θap)⟩ for m + n = 2 (E-modes and B-modes);
3. repetition of 1. and 2. with bootstrapped data sets to obtain

statistical errors of the aperture statistics in the single fields;
4. combining the individual field measurements and evaluating

the bias parameters as a function of aperture radius from the
combined signal (includes calibration);

5. bootstrapping of the combined signal to estimate the error
in the final signal and the covariances between the different
bins.

A detailed account of these steps is given in the following.

4.1. Practical estimators for the correlators

The correlators are estimated by using

ω (θ) =
DD
RR
− 2

DR
RR
+ 1, (44)

Redshift distributions for GaBoDS samples, estimated from COMBO-17. From (Simon

et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Fig. 6. The aperture number count dispersions, as measured in GaBoDS,
for FORE-I (filled boxes), FORE-II (open stars) and FORE-III (open
crosses). The 1σ error bars have the size of the data points. Upper
panel: comparison to ΛCDM predictions assuming unbiased galaxies,
upper to lower line: FORE-I (solid), FORE-II (dashed) and FORE-III
(dotted). Lower panel: power laws give excellent descriptions of the
measurements. The dotted-dashed line denotes ⟨N2⟩ as measured by
Hoekstra et al. (2002) (Aω = 0.115, δ = 0.7).

The angular correlation of the galaxies in FORE-I – a sample
roughly comparable to the foreground sample of Hoekstra et al.
(2002) – has a slope slightly steeper than what is found in the
sample of Hoekstra et al. (there δ = 0.7 and Aω = 0.115) and is
smaller in amplitude for aperture radii larger than θap ≈ 3′. This
discrepancy in Aω and δ is not as drastic as it may seem if one
takes into account that the errors of Aω and δ are anti-correlated:
a smaller Aω results in a steeper δ. Another issue that may play a
role in this context is the fact that Hoekstra et al. use a different
filter, Rc, which is somewhat different from our R-band filter.
All in all we think that the measurement of ω(θ) for FORE-I is
consistent with the measurement of Hoekstra et al.

Compared to the ΛCDM prediction of ⟨N2⟩ for unbiased
galaxies, which trace the dark matter distribution, our measure-
ments are clearly different, namely exceeding the dark matter
expectation on scales smaller than θap ≈ 5′, and falling slightly
below the prediction for the largest aperture radii. This already
suggests a scale-dependence of the bias factor.

Dark matter clustering. The clustering of the total matter con-
tent as derived from the ellipticities of the background galaxies is
expressed by the dispersion of the aperture mass, Fig. 7. We cal-
culated this quantity for a range of different aperture radii from
the cosmic shear two-point correlators, ξ±, which are shown in
Fig. 8 (rebinned for that plot).

In all figures, the prediction for the adopted fiducial cos-
mological model and the estimated redshift distributions in our
galaxy samples is plotted. We conclude that this prediction is in
good agreement with our measurements. Therefore the fiducial
cosmology taken for the bias parameter calibration seems to be
reasonable.

Judging from the B-modes, ⟨M2
×⟩, in Fig. 7, which serve as

an indicator for systematics in the PSF correction, the PSF cor-
rection is ok. Over the whole range of aperture radii considered

the B-modes are consistent with zero, maybe with a minor ex-
ception at about θap ≈ 3′. See Hetterscheidt et al. (2006) for a
detailed discussion on this issue.

Correlation between galaxy and matter distribution. The
cross-correlation between the N-maps and the Map-maps is plot-
ted in Fig. 7. Apart from θap ≈ 3′ in FORE-II the B-modes
of the signal are all consistent with zero. The cross-correlation
has been worked out on the basis of the mean tangential shear
about galaxies in the foreground samples. Results for the galaxy-
galaxy lensing signal are depicted in Fig. 9.

The data points (E-mode) on intermediate scales are be-
low the theoretical prediction for ⟨NMap⟩ based on an unbiased
galaxy population. This again indicates that either the bias fac-
tor or the correlation parameter or both differ from unity, hinting
towards a population of galaxies that does not perfectly trace the
(dark) matter distribution.

5.2. Galaxy bias parameters

The final result of our work is displayed in Fig. 10. The bias pa-
rameters calculated from the aperture statistics, Eqs. (50), have
been calibrated, and the aperture radii have been converted into
a typical physical scale, R, based on the mean redshift of the
range over which the parameters are averaged. As this redshift
range stretches over about 40%−50% (1σ) of the mean red-
shift (see Fig. 5), there is a relative uncertainty attached to the
physical range, R, which is of the same order; for instance for
R = 6 h−1 Mpc we have as resolution for the effective scale
σR = 3 h−1 Mpc (see Sect. 4.5).

Over the range of (comoving) physical scales investigated,
below about R ! 10 h−1 Mpc, the bias factor stays more or less
constant, rising towards smaller and possibly also larger scales
with a valley on intermediate scales, where b becomes slightly
inconsistent with b = 1 at a 68% confidence level; this im-
plies a scale-dependence of the bias factor. As absolute mini-
mum we obtain bmin = 0.78 ± 0.10, 0.74 ± 0.10, 0.78 ± 0.10 at
roughly θap ≈ 10′. The position of the minimum is not well de-
fined, however, due its width. In order to get an average value
for the bias factor, we make a maximum likelihood fit assum-
ing a constant bias over the range 2′ ≤ θap ≤ 19′ while tak-
ing into account the covariance between the errors, as estimated
from the bootstrap samples, shown in Fig. 11. This fit yields:
b̄ = 0.81 ± 0.11, 0.79 ± 0.10, 0.81 ± 0.11 for FORE-I, FORE-II
and FORE-III, respectively. Therefore, over the selected range of
scales, galaxies are anti-biased, i.e. less clustered than the dark
matter.

The correlation factor, r, has a larger relative uncertainty
than the bias factor, b, since it is based on two lensing
quantities, ⟨NMap⟩ and ⟨M2

ap⟩, which are generally noisier
than ⟨N2⟩. Broadly speaking, the correlation of the galaxies
to the (dark) matter distribution is relatively high. A scale-
dependence of the correlation factor is hard to determine
due to the large uncertainties and the high correlation of
neighbouring bins; it may be present in the sample FORE-I.
Averaging the correlation factor over 2′ ≤ θap ≤ 19′ yields
r̄ = 0.61 ± 0.16, 0.64± 0.16, 0.58± 0.19 (FORE-I to FORE-III)
which reflects both the high correlation and the unfortunately
still large error bars. Obviously, a much larger survey area is re-
quired to obtain better constraints. We are going to discuss our
results in the following section.

Filled boxes, open stars, open crosses = FORE-I, FORE-II, FORE-III.

Galaxy clustering: Bias on small scales is not constant, but scale-dependent.
Stronger galaxy clustering than from constant bias. (Simon et al. 2007),
GaBoDS (Garching-Bonn Deep Survey).
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Fig. 7. Top row panels and lower left panel: cross-correlation between aperture mass and aperture number count for the three different foreground
samples FORE-I (solid boxes), FORE-II (open stars) and FORE-III (open crosses). The panels are subdivided; the lower panel shows the B-mode,
upper panel is the E-mode of ⟨NMap⟩. The curves are ΛCDM predictions assuming unbiased galaxies. Lower right: aperture mass dispersion,
lower and upper panel are B-mode and E-mode, respectively. The solid line is a ΛCDM prediction. The solid lines in the B-mode panel are the
E-mode prediction with positive and negative sign, which have been inserted for comparison.

6. Discussion and conclusions

Observationally, the galaxy-dark matter bias can be probed by
means of various methods (see introduction). Gravitational lens-
ing provides a promising new method in this respect. It is spe-
cial because it allows for the first time to map the total matter
content (mainly dark matter) with a minimum of assumptions
and independent of the galaxy distribution. Such a map can be
compared to the distribution of galaxies, or particular types of
galaxies, in order to investigate the galaxy bias. In particular,
correlations between galaxy and dark matter density become di-
rectly visible. For working out the galaxy-dark matter bias, older
methods rely on assumptions regarding the growth of dark mat-
ter density perturbations, the peculiar velocities of galaxies and
their correlation to the dark matter density. Moreover, they of-
ten only allow one to measure the bias on large (linear) scales,
!8 h−1 Mpc, whereas the non-linear regime is also accessible
with lensing. However, gravitational lensing has the disadvan-
tage that it is not equally sensitive at all redshifts. The cosmic
shear signal is most sensitive to matter fluctuations roughly half-
way between z = 0 and the mean redshift of the background.
This defines a natural best-suited regime for the method at a
redshift of about z ≈ 0.5, often even slightly lower, consider-
ing the depth of current galaxy surveys. It is expected that the
most sensitive regime will be shifted towards higher redshifts
by future space-based lensing surveys. Furthermore, lensing

observables are quite noisy so that large survey areas are re-
quired for a good signal-to-noise. Impressively large surveys
with instruments such as the CFHT (CFHT-Legacy-Survey,
CFHTLS), the VST (Kilo-Square-Degree-Survey, KIDS), Pan-
STARRS, or SNAP are either ongoing or about to start within
the next years, providing us with plenty of high signal-to-noise
information on dark matter and galaxy clustering.

In this paper, we employed aperture statistics to quantify
the relation between the dark matter and galaxy density. We
tested the evaluation software against Monte Carlo simulated
WFI fields, assuming an unbiased galaxy population, and found
that the software is working to at least a few percent accuracy
(Simon 2005). The data used is the GaBoDS with restriction
to galaxies brighter than 24 mag in the R-band; this allowed us
to estimate the redshift distribution of the galaxies on the ba-
sis of three COMBO-17 fields (A901, AXAF/CDFS and S11)
for which photometric redshifts in 0 ≤ z " 1.4 are available. For
all the other fields, only R-band magnitudes can be used to se-
lect galaxies. For this selection, we defined foreground galaxy
samples by choosing galaxies from three R-band magnitude bins
that have increasingly fainter median magnitudes. The sample
FORE-I is comparable to the foreground selection in Hoekstra
et al. (2002) who applied the same technique as we are using
here. By means of the photometric redshifts of the COMBO-17
fields we can translate a GaBoDS R-band magnitude interval

GGL and cosmic shear. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Fig. 10. The linear stochastic bias parameters of galaxies in the samples FORE-I, FORE-II and FORE-III (left to right column); the bias factor,
b, is upper, the correlation parameter, r, is in the lower row. The parameters have been calibrated assuming Ωm = 0.3 and ΩΛ = 0.7 (see Fig. 4).
The effective comoving scale is based on the aperture radius and the mean redshift of the weight functions h1/3, Fig. 5. The bias parameters for a
particular aperture radius are averages over different physical scales and redshifts (Sect. 4.5). The shaded area denotes the average bias factor or
correlation factor over all aperture radii between θap = 2′ . . . 19′; the maximum-likelihood of this average and its statistical uncertainty are shown
in numbers inside the panels.

foreground sample which was not possible in our case, because
we did not allow background galaxies fainter than 24 mag.

Going back to the observed scale-dependence of the bias fac-
tor, galaxies become anti-biased on intermediate scales; they are
less strongly clustered than the matter. In our data, the minimum
value of the bias factor is determined to be bmin ∼ 0.76. This
kind of scale-dependence has also been detected by Pen et al.
(2003) (VIRMOS-DESCART survey) and Hoekstra et al. (2002)
(VIRMOS-DESCART and RCS) which both rely on weak gravi-
tational lensing to probe galaxy bias. While Pen et al. use I-band
luminosities to select galaxies, which results in a larger value
for the minimum bias factor but at a similar scale of about
R ≈ 3 h−1 Mpc (k = 2π/R ≈ 2 h Mpc−1), the data and sample
selection of Hoekstra et al. is relatively similar to our sample
FORE-I; their value of bmin = 0.71+0.06

−0.04 is in agreement (1σ) with
our measurement, but the quoted scale of R ≈ 1 h−1 Mpc is dif-
ferent. However, as emphasised before, the position of the min-
imum is not well defined in our data. Considering the statistical
errors one has to admit that the position of the bias minimum is
not well determined also in the Pen et al. analysis (their Fig. 19).
Hence, there is no contradiction between our data and that of the
other authors.

An anti-bias on the scales considered here and a charac-
teristic “dip” in the functional form of the bias factor is in

concordance with recent numerical simulations of dark matter
structure formation (Springel et al. 2005; Weinberg et al. 2004;
Guzik & Seljak 2001; Pearce et al. 2001; Yoshikawa et al. 2001;
Somerville et al. 2001; Jenkins et al. 1998). The scale-
dependence is due to the fact that the galaxy clustering is a
power-law over a wide range of scales, reflected by ⟨N2⟩ in
Fig. 6, while the dark matter clustering has different shape in
CDM simulations and in the observations suggested by, for in-
stance, ⟨M2

ap⟩ in Fig. 7.
For the linear correlation parameter, we observe as Hoekstra

et al. (2002) and Pen et al. (2003) a high correlation between
galaxy and matter distribution. Averaging the measurement of
Hoekstra et al. over the range 2′ ≤ θap ≤ 19′ yields roughly
r ≈ 0.8 which is consistent with our average (1σ). Our observed
correlations between fluctuations in the galaxy number and mass
density appear to be a bit lower, though (Hoekstra, private com-
munication). This could hint to an hitherto undiscovered system-
atic effect in our data. However, it should be kept in mind that the
statistical errors in r are highly correlated and quite large so that
this slightly lower value of r may be just a statistical fluke. The
clear scale-dependence of the correlation parameter observed by
Hoekstra et al. is not visible in our data, because this feature
probably gets lost within the statistical uncertainties.

The figures for the correlation parameter – r is smaller than
unity with 68% confidence – show that the galaxies are either

Bias and correlation coefficient. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 66 / 153



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: HOD model measurements

increasing luminosity →

CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
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70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
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curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1
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70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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−0.04 8.44 4.63 12.7+10.9
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L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09
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L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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a larger dark matter halo, consistent with previous findings (see
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and as the luminosity increases the satellite fraction decreases. This
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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where the number of bootstraps ensure convergence of the mean.
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70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
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of these factors should perhaps be dependent on galaxy type, but
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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(Velander et al. 2014)
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 67 / 153
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GGL: HOD model measurements
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CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that

CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that

CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that

Halo profile around stacked fg galaxies
8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
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values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
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sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

P
ro

je
ct

ed
 e

xc
es

s 
m

as
s

6 CFHTLenS

⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1
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70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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(Velander et al. 2014)
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.
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−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14
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L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that
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a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that

CFHTLenS: galaxy baryon-dark matter relation 2119

Figure 5. Galaxy–galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model
described in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, !", of the red (blue) lenses, and the solid
line shows the best-fitting halo model. The triangles represent negative points that are included unaltered in the model fitting procedure, but that have here
been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the negative points. The squares represent
distance bins containing no objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙];

(2) mean stellar mass for red lenses [1010 h−2
70 M⊙]; (3) scatter-corrected best-fitting halo mass for red lenses

[1011 h−1
70 M⊙]; (4) best-fitting satellite fraction for red lenses; (5) mean luminosity for blue lenses [1010 h−2

70 L⊙];
(6) mean stellar mass for blue lenses [1010 h−2

70 M⊙]; (7) scatter-corrected best-fitting halo mass for blue lenses
[1011 h−1

70 M⊙]; (8) best-fitting satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ

errors. Note that the blue results from the L7 and L8 bins are not used for fitting the power-law relation in
Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 – – – –

L8 25.4 20.3 690+294
−183 0.20+0.00

−0.20 – – – –

L5, the mass-to-light ratio for red lenses continues to increase,
reaching 272+116

−72 h70 M⊙ L−1
⊙ in bin L8. In these highest luminos-

ity bins, a significant fraction of the red lenses may be associated
with groups or small clusters, as pointed out by VU11.

4.2 Satellite fraction

The lower panel of Fig. 6 shows the satellite fraction α as a func-
tion of luminosity for both the red and the blue samples. At lower

luminosities, the satellite fraction is ∼25 per cent for red lenses,
and as the luminosity increases the satellite fraction decreases. This
indicates that a fair fraction of faint red lenses are satellites inside
a larger dark matter halo, consistent with previous findings (see
Mandelbaum et al. 2006; VU11; Coupon et al. 2012). In the highest
luminosity bins, the satellite fraction is difficult to constrain due
to the shape of the halo model satellite terms (light green lines in
Fig. 3) becoming indistinguishable from the central 1-halo term
(dark purple dashed), as discussed in Appendix D. To ensure that

Halo profile around stacked fg galaxies
8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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objects. For a detailed decomposition into the halo model components, we refer to Appendix D.
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obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-
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nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.
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Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
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of these factors should perhaps be dependent on galaxy type, but
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⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)

Tuesday, February 11, 14

Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

• Red galaxies have larger associated mass than blue galaxies.

• Exceess mass increases with luminosity. Light traces mass.

• Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

• Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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in about 50 per cent of the subhalo dark matter being stripped, and
we acquire a satellite term which supplies a signal on small scales.
Thus, satellite galaxies add three further components to the total
lensing signal: the contribution from the stripped subhalo (!"strip),
the satellite 1-halo term which is off-centre since the satellite galaxy
is not at the centre of the main halo and the 2-halo term from nearby
haloes. Just as for the central galaxies, the three terms add to give
the satellite lensing signal:

!"sat = !"
strip
sat + !"1h

sat + !"2h
sat . (7)

There is an additional contribution to the lensing signal, not yet
considered in the above equations. This is the signal induced by
the lens baryons (!"bar). This last term is a refinement of the halo
model presented in VU11, necessary since weak lensing measures
the total mass of a system and not just the dark matter mass. Fol-
lowing Leauthaud et al. (2011) we model the baryonic component
as a point source with a mass equal to the mean stellar mass of the
lenses in the sample:

!"bar = ⟨M∗⟩
πr2

. (8)

This term is fixed by the stellar mass of the lens, and we do not
fit it. Note that we choose not to include the baryonic term for
neighbouring haloes, but its contribution is negligible.

Finally, to obtain the total lensing signal of a galaxy sample of
which a fraction α are satellites, we combine the baryon, central
and satellite galaxy signals, applying the appropriate proportions:

!" = !"bar + (1 − α)!"cent + α!"sat . (9)

All components of our halo model are illustrated in Fig. 3. In this ex-
ample, the dark matter halo mass is M200 = 1012 h−1

70 M⊙, the stellar
mass is M∗ = 5 × 1010 h−2

70 M⊙, the satellite fraction is α = 0.2,
the lens redshift is zlens = 0.5 and Dls/Ds = 0.5. On small scales the
1-halo components are prominent, while on large scales the 2-halo
components dominate.

Figure 3. Illustration of the halo model used in this paper. Here we
have used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =
5 × 1010 h−2

70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is
zlens = 0.5. The dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while the light green lines correspond
to satellite quantities. The dark purple dash–dotted line shows the baryonic
component, the light green dash–dotted line shows the stripped satellite halo,
the dashed lines denote the 1-halo components induced by the main dark
matter halo and the dotted lines represent the 2-halo components originating
from nearby haloes.

We note here that the halo model is necessarily based on a number
of assumptions. Some of these assumptions may be overly stringent
or inaccurate, and some may differ from assumptions made in other
implementations of the galaxy–galaxy halo model. To be able to
make useful comparisons with other studies (such as the compar-
ison done in this paper, see Section 6), particularly considering
the statistical power and accuracy afforded by the CFHTLenS, we
attempt to provide a quantitative impression of how large a role
the assumptions actually play in determining the halo mass and
satellite fractions. The full evaluation is recounted in Appendix A
where we study the effect of the following modelling choices: the
inclusion of a baryonic component, the NFW mass–concentration
relation as applied to the central halo profile, the truncation radius
of the stripped satellite component, the distribution of satellites
within a given halo, the HOD and the bias prescription. Our general
finding is that, given reasonable spans in the parameters affect-
ing these choices, the best-fitting halo mass can change by up to
∼15–20 per cent for each individual assumption tested. The magni-
tude of the effect depends on the luminosity or stellar mass, and bins
with a greater satellite fraction will often be more strongly affected.
In essentially all cases the effect is subdominant to observational
errors and we therefore do not take them into account in what fol-
lows, though we do acknowledge that several effects may conspire
to cause a non-negligible change to our results.

4 LU M I N O S I T Y TR E N D

The luminosity of a galaxy is an easily obtainable indicator of
its baryonic content. To investigate the relation between the dark
matter halo mass and galaxy mass, we therefore split the lenses
into eight bins according to MegaCam absolute r′-band magnitudes
as detailed in Table 1 and illustrated in Fig. 4. The lens property
averages quoted in this and forthcoming tables are pure averages
and do not include the lensing weights, unless explicitly specified.
The choice of bin limits follows the lens selection in VU11. This
choice will allow us to directly compare our results to the results
shown in VU11 since the RCS2 data have been obtained using the
same filters and telescope. We also split each luminosity bin into
red and blue subsamples as described in Section 2.1 and proceed
to measure the galaxy–galaxy lensing signal for each sample, with
errors obtained via bootstrapping 104 times over the full CFHTLenS
area, where the number of bootstraps ensure convergence of the
mean. We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and the
satellite fraction α are left as free parameters while we keep all other
variables fixed. When fitting, we assume that the covariance matrix
of the lensing measurements is diagonal. Off-diagonal elements
are generally present due to cosmic variance and shape noise, but

Table 1. Details of the luminosity bins. (1) Absolute
magnitude range; (2) number of lenses; (3) mean redshift;
(4) fraction of lenses that are blue.

Sample Mr ′ (1) nlens
(2) ⟨z⟩(3) fblue

(4)

L1 [−21.0, −20.0] 91 224 0.32 0.70
L2 [−21.5, −21.0] 33 633 0.32 0.45
L3 [−22.0, −21.5] 23 075 0.32 0.32
L4 [−22.5, −22.0] 12 603 0.32 0.20
L5 [−23.0, −22.5] 5344 0.32 0.11
L6 [−23.5, −23.0] 1704 0.31 0.05
L7 [−24.0, −23.5] 344 0.30 0.03
L8 [−24.5, −24.0] 76 0.30 0.09

2134 M. Velander et al.

Figure D1. Galaxy–galaxy lensing signal around red lenses which have been split into luminosity bins according to Table 1, and modelled using the halo
model described in Section 3.2. The black dots denote the measured differential surface density, !", and the black line shows the best-fitting halo model with
the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model
fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the
negative points. The grey squares represent distance bins containing no objects.

Figure D2. Galaxy–galaxy lensing signal around blue lenses which have been split into luminosity bins according to Table 1, and modelled using the halo
model described in Section 3.2. The black dots denote the measured differential surface density, !", and the black line shows the best-fitting halo model with
the separate components displayed using the same convention as in Fig. 3. The grey triangles represent negative points that are included unaltered in the model
fitting procedure, but that have here been moved up to positive values as a reference. The dotted error bars denote the unaltered error bars belonging to the
negative points. The grey squares represent distance bins containing no objects.

HOD model, (Velander et al. 2014).
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙]; (2) Mean stellar mass for red lenses

[1010 h−2
70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.

Sample ⟨Lred
r ⟩(1) ⟨M red

∗ ⟩(2) M red
h

(3) αred(4) ⟨Lblue
r ⟩(5) ⟨Mblue

∗ ⟩(6) Mblue
h

(7) αblue(8)

L1 0.91 1.83 5.64+1.62
−1.36 0.25+0.03

−0.03 1.08 0.50 1.73+0.55
−0.39 0.00+0.01

−0.00

L2 1.74 3.74 13.6+2.02
−2.29 0.14+0.02

−0.02 2.23 1.10 1.50+1.05
−0.86 0.00+0.01

−0.00

L3 2.73 5.97 19.4+3.39
−2.88 0.11+0.02

−0.02 3.52 1.83 8.33+2.40
−2.44 0.00+0.01

−0.00

L4 4.28 9.35 39.3+6.88
−5.08 0.05+0.03

−0.03 5.51 3.00 9.68+4.97
−3.85 0.00+0.02

−0.00

L5 6.69 14.9 60.4+8.96
−9.01 0.08+0.04

−0.04 8.44 4.63 12.7+10.9
−8.18 0.00+0.05

−0.00

L6 10.4 23.9 109+22.1
−18.4 0.13+0.07

−0.07 13.7 7.88 21.2+33.2
−18.9 0.00+0.09

−0.00

L7 16.4 35.6 309+54.6
−75.1 0.02+0.14

−0.02 — — — —
L8 25.4 20.3 690+294

−183 0.20+0.00
−0.20 — — — —

Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL

(10)
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙]; (2) Mean stellar mass for red lenses

[1010 h−2
70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.
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Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL

(10)
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Figure 13. Comparison between four different datasets, showing the ra-
tio of measured halo mass to stellar mass as a function of stellar mass.
The top (bottom) panels show the results for red/early-type (blue/late-type)
galaxies. The datasets used are all based on galaxy-galaxy lensing analy-
ses with solid dots showing the CFHTLenS results from this paper. Also
shown are halo masses measured using the RCS2 (open stars; VU11), the
SDSS (open squares Mandelbaum et al. 2006) and COSMOS (solid band;
Leauthaud et al. 2012). In the case of COSMOS we use the results from
their lowest redshift bin. Also note that no distinction between red and blue
lenses was made in the COSMOS analysis, so the same results are shown
in both panels.

type, while VU11 use the brightness distribution profiles to sepa-
rate their lenses in a bulge-dominated and a disk-dominated sample.
Even though the resulting samples are expected to be fairly similar,
they are not identical. As the mass-to-luminosity ratio of galax-
ies strongly depends on their colour, even small colour differences
between the samples could result in different masses. This may ex-
plain why our halo mass estimates of the red lenses at the high lu-
minosity end are lower than those of VU11 and Mandelbaum et al.
(2006), who both use identical galaxy type separation criteria and
whose masses agree in this regime. The difference is smaller for the
stellar mass results, providing further support for this hypothesis.
Furthermore, in our halo model we account for the baryonic mass
of each lens, something that was not done in VU11. As shown in
Appendix A, however, the slope and amplitude of our power laws
do not change significantly when the baryonic component is re-
moved. Hence this does not explain why VU11 find a steeper slope
than we do.

Another factor to take into account is the fact that we limit
our lens samples to redshifts of 0.2 ! zlens ! 0.4 keeping
our mean lens redshift fairly stable at ⟨zlens⟩ ∼ 0.3. This is not
done in VU11, and as a result the median redshift of our lower
luminosity or stellar mass bins is higher than for the same bins
in VU11, with the opposite being true for the higher bins. Re-
cent numerical simulations indicate that the relation between stel-
lar mass and halo mass will evolve with redshift (see for example

Conroy & Wechsler 2009; Moster et al. 2010). Lower-mass host
galaxies (M∗ < 1011 M⊙) increase in stellar mass faster than their
halo mass increases, i.e. for higher redshifts the halo mass is lower
for the same stellar mass. The opposite trend holds for higher-
mass host galaxies (M∗ > 1011 M⊙). As a result, the relation
between halo mass and stellar mass (or an indicator thereof, such
as luminosity) steepens with increasing redshift. This means that
for the lower-luminosity bins, where our redshifts are higher, we
may measure a steeper slope than VU11 and vice-versa for higher-
luminosity bins. The effect is likely small, however, because of the
relatively small redshift ranges involved.

Finally we note that the lenses in the sample studied by VU11
are rather massive and luminous as only galaxies with spectroscopy
are used. Our lens sample includes many more low luminosity and
low stellar mass objects, however. Hence the difference in slope
may be partly due to the fact that we probe different regimes, and
that the relation between baryonic observable and halo mass is not
simply a power law but turns upward at high luminosities/stellar
masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn
our attention to the comparison with the Mandelbaum et al. (2006)
analysis of 3.5 × 105 lenses in the SDSS DR4, shown as open
squares in Figures 12 and 13. Their lens sample is, similarly to
the VU11 sample, also divided into early- and late-type galaxies
based on their brightness profiles. To allow for a comparison be-
tween our results and theirs we first have to consider the differ-
ences in the luminosity definition. Mandelbaum et al. (2006) use
absolute magnitudes which are based on a K correction to a red-
shift of z = 0.1 and a distance modulus calculated using h = 1.0.
Furthermore, their luminosities are corrected for passive evolution
by applying a factor 1.6(z −0.1). However, VU11 convert their lu-
minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and find that for low-luminosity low-redshift sam-
ples the difference between the two definitions is negligible. The
more luminous lenses reside at higher redshifts and for them the
correction is found to be greater, most likely due to the differ-
ence in the passive evolution corrections. Since our lenses are con-
fined to relatively low redshifts, and since the main difference be-
tween luminosity definitions is the passive evolution factor, we can
compare our results to Mandelbaum et al. (2006) without correct-
ing the luminosities. Our halo mass definition is also different to
that used by Mandelbaum et al. (2006) though. Mandelbaum et al.
(2006) define the mass within the radius where the density is 180
times the mean background density while we set it to be 200 times
the critical density. The correction factor stemming from the dif-
ferent definitions amounts to ∼ 30%. Having corrected for this,
our results are then very similar to those from Mandelbaum et al.
(2006), but the same concerns of object selection and baryonic
contribution discussed above apply here as well. The relation that
Mandelbaum et al. (2006) find between halo mass and luminosity
for red lenses is shallower than the one found by VU11, as dis-
cussed therein, and are therefore more in agreement with our re-
sults. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their highest
stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙]; (2) Mean stellar mass for red lenses

[1010 h−2
70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.
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Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L
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)βL

(10)
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Table 2. Results from the halo model fit for the luminosity bins. (1) Mean luminosity for red lenses [1010 h−2
70 L⊙]; (2) Mean stellar mass for red lenses

[1010 h−2
70 M⊙]; (3) Scatter-corrected best-fit halo mass for red lenses [1011 h−1

70 M⊙]; (4) Best-fit satellite fraction for red lenses; (5) Mean luminosity for
blue lenses [1010 h−2

70 L⊙]; (6) Mean stellar mass for blue lenses [1010 h−2
70 M⊙]; (7) Scatter-corrected best-fit halo mass for blue lenses [1011 h−1

70 M⊙];
(8) Best-fit satellite fraction for blue lenses. The fitted parameters are quoted with their 1σ errors. Note that the blue results from the L7 and L8 bins are not
used for fitting the power law relation in Section 4.1.
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Figure 6. Satellite fraction α and bias-corrected halo massM200 as a func-
tion of r′-band luminosity. Dark purple (light green) dots represent the re-
sults for red (blue) lens galaxies, and the dash-dotted lines show the power
law scaling relations fit to the Figure 5 galaxy-galaxy lensing signal (rather
than to the points shown) as described in the text. The dotted line in the
lower panel shows the α prior applied to the highest-luminosity bins.

4.1 Luminosity scaling relations

Before determining the relation between halo mass and luminosity
we have to correct our raw halo mass estimates for two systematic
effects. Firstly, we rely on photometric redshift estimates which do
not benefit from the absolute accuracy of spectroscopic redshifts.
We can therefore not be certain that a lens which is thought to be at
a certain redshift is in fact at that redshift. If the redshift is different,
then the derived luminosity will also be different which means that
the lens may have been placed in the wrong bin. Though the lenses
can scatter randomly according to their individual redshift errors,
the net effect will be to scatter lenses from bins with higher abun-
dances to those with lower abundances. The measured halo mass
will therefore be biased. To correct for this effect we create mock

Figure 7. Constraints on the power law fits shown in Figure 6. In dark
purple (light green) we show the constraints on the fit for red (blue) lenses,
with lines representing the 67.8%, 95.4% and 99.7% confidence limits and
stars representing the best-fit value.

lens catalogues and allow the objects to scatter according to their
redshift error distributions. Secondly, the halo masses in a given lu-
minosity bin will not be evenly distributed, which means that the
measured halo mass does not necessarily correspond to the mean
halo mass. The derivation of the factor we apply to our halo masses
to correct for both these effects is detailed in Appendix B2.

The estimated halo masses for all luminosity bins, corrected
for the above scatter effects, are shown as a function of luminosity
in the top panel of Figure 6. Red lenses display a slightly steeper
relationship between halo mass and luminosity than blue lenses,
and the haloes of the blue galaxies are in general less massive for
a given luminosity bin. Following VU11, we fit a power law of the
form

M200 = M0,L

(
L

Lfid

)βL
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Figure 13. Comparison between four different datasets, showing the ra-
tio of measured halo mass to stellar mass as a function of stellar mass.
The top (bottom) panels show the results for red/early-type (blue/late-type)
galaxies. The datasets used are all based on galaxy-galaxy lensing analy-
ses with solid dots showing the CFHTLenS results from this paper. Also
shown are halo masses measured using the RCS2 (open stars; VU11), the
SDSS (open squares Mandelbaum et al. 2006) and COSMOS (solid band;
Leauthaud et al. 2012). In the case of COSMOS we use the results from
their lowest redshift bin. Also note that no distinction between red and blue
lenses was made in the COSMOS analysis, so the same results are shown
in both panels.

type, while VU11 use the brightness distribution profiles to sepa-
rate their lenses in a bulge-dominated and a disk-dominated sample.
Even though the resulting samples are expected to be fairly similar,
they are not identical. As the mass-to-luminosity ratio of galax-
ies strongly depends on their colour, even small colour differences
between the samples could result in different masses. This may ex-
plain why our halo mass estimates of the red lenses at the high lu-
minosity end are lower than those of VU11 and Mandelbaum et al.
(2006), who both use identical galaxy type separation criteria and
whose masses agree in this regime. The difference is smaller for the
stellar mass results, providing further support for this hypothesis.
Furthermore, in our halo model we account for the baryonic mass
of each lens, something that was not done in VU11. As shown in
Appendix A, however, the slope and amplitude of our power laws
do not change significantly when the baryonic component is re-
moved. Hence this does not explain why VU11 find a steeper slope
than we do.

Another factor to take into account is the fact that we limit
our lens samples to redshifts of 0.2 ! zlens ! 0.4 keeping
our mean lens redshift fairly stable at ⟨zlens⟩ ∼ 0.3. This is not
done in VU11, and as a result the median redshift of our lower
luminosity or stellar mass bins is higher than for the same bins
in VU11, with the opposite being true for the higher bins. Re-
cent numerical simulations indicate that the relation between stel-
lar mass and halo mass will evolve with redshift (see for example

Conroy & Wechsler 2009; Moster et al. 2010). Lower-mass host
galaxies (M∗ < 1011 M⊙) increase in stellar mass faster than their
halo mass increases, i.e. for higher redshifts the halo mass is lower
for the same stellar mass. The opposite trend holds for higher-
mass host galaxies (M∗ > 1011 M⊙). As a result, the relation
between halo mass and stellar mass (or an indicator thereof, such
as luminosity) steepens with increasing redshift. This means that
for the lower-luminosity bins, where our redshifts are higher, we
may measure a steeper slope than VU11 and vice-versa for higher-
luminosity bins. The effect is likely small, however, because of the
relatively small redshift ranges involved.

Finally we note that the lenses in the sample studied by VU11
are rather massive and luminous as only galaxies with spectroscopy
are used. Our lens sample includes many more low luminosity and
low stellar mass objects, however. Hence the difference in slope
may be partly due to the fact that we probe different regimes, and
that the relation between baryonic observable and halo mass is not
simply a power law but turns upward at high luminosities/stellar
masses, as the results from Leauthaud et al. (2012) suggest.

Having compared our analysis to that of VU11, we now turn
our attention to the comparison with the Mandelbaum et al. (2006)
analysis of 3.5 × 105 lenses in the SDSS DR4, shown as open
squares in Figures 12 and 13. Their lens sample is, similarly to
the VU11 sample, also divided into early- and late-type galaxies
based on their brightness profiles. To allow for a comparison be-
tween our results and theirs we first have to consider the differ-
ences in the luminosity definition. Mandelbaum et al. (2006) use
absolute magnitudes which are based on a K correction to a red-
shift of z = 0.1 and a distance modulus calculated using h = 1.0.
Furthermore, their luminosities are corrected for passive evolution
by applying a factor 1.6(z −0.1). However, VU11 convert their lu-
minosities, which are similar to ours, using the Mandelbaum et al.
(2006) definition and find that for low-luminosity low-redshift sam-
ples the difference between the two definitions is negligible. The
more luminous lenses reside at higher redshifts and for them the
correction is found to be greater, most likely due to the differ-
ence in the passive evolution corrections. Since our lenses are con-
fined to relatively low redshifts, and since the main difference be-
tween luminosity definitions is the passive evolution factor, we can
compare our results to Mandelbaum et al. (2006) without correct-
ing the luminosities. Our halo mass definition is also different to
that used by Mandelbaum et al. (2006) though. Mandelbaum et al.
(2006) define the mass within the radius where the density is 180
times the mean background density while we set it to be 200 times
the critical density. The correction factor stemming from the dif-
ferent definitions amounts to ∼ 30%. Having corrected for this,
our results are then very similar to those from Mandelbaum et al.
(2006), but the same concerns of object selection and baryonic
contribution discussed above apply here as well. The relation that
Mandelbaum et al. (2006) find between halo mass and luminosity
for red lenses is shallower than the one found by VU11, as dis-
cussed therein, and are therefore more in agreement with our re-
sults. For the stellar mass relation, however, they find a steeper
power law slope, though this result is mostly driven by their highest
stellar mass bin as pointed out by VU11.

Finally, Leauthaud et al. (2012) perform a combined analy-
sis of galaxy-galaxy lensing, galaxy clustering and galaxy number
densities using data from the COSMOS survey, shown as a solid
band in the right panels of Figure 12 and in Figure 13. For our com-
parison we select the results from their lowest redshift bin, since its
redshift range of 0.22 < z < 0.48 is very similar to the redshift
range used here. Contrary to the other datasets, Leauthaud et al.
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

Modified gravity

General, perturbed Friedmann-Lemâıtre Robertson Walker (FLRW) metric:

ds2 =

(
1 +

2Ψ

c2

)
c2dt2 − a2(t)

(
1− 2Φ

c2

)
dl2,

Valid for weak fields, (Bardeen) potentials Ψ,Φ� c2.

• In GR, and absence of anisotropic stress: Ψ = Φ.

• In most modified gravity models: Ψ 6= Φ! Very generic signature for MoG.

Some characteristics

• Ψ is Newtonian potential. Time-like. Quantifies time dilation.

• Ψ is gravitational action on non-relativistic objects (e.g. galaxies).

• Φ is space-like. Describes spatial curvature.

• Ψ + Φ is gravitational action on relativistic objects (e.g. photons;
lensing!). [Photons travel equal parts of space and time. This is the origin
for the factor two in GR equations compared to Newtonian mechanics!]
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

Testing GR I
Idea of a null test
Measure difference in potentials to test GR: Galaxy clustering for Ψ, weak
lensing for Ψ + Φ.

Modified Poisson equation
Potentials are related to density contrast δ via Poisson equation. Generalise to
account for MoG, and write in Fourier space:

k2Ψ̃(k, a) = 4πGa2 [1 + µ(k, a)] ρ δ̃(k, a);

k2
[
Ψ̃(k, a) + Φ̃(k, a)

]
= 8πGa2 [1 + Σ(k, a)] ρ δ̃(k, a).

With free parameters/functions µ,Σ. GR: µ = Σ = 0.
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

Testing GR II

Probes of Bardeen potentials
Assuming linear, deterministic bias (b =const, r = 1).

• Galaxy clustering measures Ψ and b; 〈δ2
g〉 ∝ b2PΨ.

• GGL measures Ψ + Φ and b; 〈δgδ〉 ∝ bPΨ+Φ.

→ form ratio to get rid of cosmology dependence!
However, bias still remains, need another observable.

• RSD anisotropy parameter; β = 1
b

d lnD+(a)
d ln a .

Can be measured from redshift space galaxy clustering along
(µ = cos θ = 1) and perpendicular (µ = 0) to line of sight. Linear power
spectrum:

P (k, µ) = P (k)
(
1 + βµ2

)2
.

EG parameter

EG '
1

β

〈δgδ〉
〈δ2

g〉
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Parenthesis: Anisotropic clustering

4 Samushia et al.

Figure 2. The two-dimensional correlation function of DR11 sample measured in bins of 1h�1 ⇥ 1h�1 Mpc2. We use first two Legendre multipoles of the
correlation function in our study rather than the two-dimensional correlation function displayed here.

the total weight is a product of three wtot = wFKPwsys(wcp +wzf � 1).
The weight of the pair is the product of individual weights for two
galaxies. Since the stellar and close-pair effects are absent in the
random catalogue we apply only the FKP weight to them.

The observed correlation function is a function of two vari-
ables: we use r, the distance between galaxies, and µ, the cosine of
the angle between their connecting vector and the LOS. The opti-
mal choice of binning for the correlation function measurements
depends on two competing effects. Using small bin size retains
more information, but since we estimate covariance matrices by
computing a scatter of finite number of mock catalogues (see sec-
tion 4), using more bins deteriorates the precision at which the ele-
ments of the covariance matrices can be estimated. Empirical tests
performed on the mock catalogues suggest that the RSD signal is
more or less insensitive to the binning choice, while the BAO mea-
surements are optimal at ⇠ 8h�1 Mpc (for details see Percival et
al. 2014). We bin r in 16 bins of 8h�1 Mpc in size in the range of
24h�1 Mpc < r < 152h�1 Mpc and µ in 200 bins in 0 < µ < 1,
and estimate the correlation function on this two-dimensional grid.
The information in the correlation function below 24Mpc h�1 is
strongly contaminated by non-linear effects, and the scales above
152Mpc h�1 have low signal-to-noise ratio and contribute little in-
formation.

We compress the information in the two-dimensional correla-
tion function by computing the Legendre multipoles with respect
to µ by approximating the integral with a discrete sum:

⇠̂`(ri) =
2` + 1

2

Z 1

�1
dµ ⇠̂(ri, µ)L`(µ) (7)

⇡ 2` + 1
2

X

k

�µk ⇠̂(ri, µk)L`(µk), (8)

where L`(µ) is the Legendre polynomial of the order of `.
In the subsequent analysis we only use the monopole (` = 0)

and the quadrupole (` = 2) moments. The higher order mo-
ments contain significantly less information and are more difficult
to model. (For the contribution of the higher order moments see
e.g. Taruya, Saito & Nishimichi 2011; Kazin, Sanchez & Blanton
2012).

The RSD signal in the measured correlation function varies
within the sample due to redshift evolution [via the redshift depen-
dence of f (z)�8(z) and b(z)�8(z)]. If we keep track of the redshift
of individual galaxy pairs in equation (6), we effectively measure

⇠̂ =

X
⇠(zi)w2

iX
w2

i

, (9)

c� 0000 RAS, MNRAS 000, 1–16

BOSS, from (?).
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Testing GR: results I

(Reyes et al. 2010)SDSS

3 

linearly related by the galaxy bias14, but the value of the bias itself is poorly constrained. 

Moreover, galaxy-galaxy lensing and galaxy clustering depend on the amplitude of the 

matter perturbations A, which we also do not know a priori. However, the combination 

of these quantities inEG is such that both nuisance parameters cancel out. Thus, unlike 

in previous analyses15, we do not require additional observations and assumptions to 

estimate the galaxy bias, and are able to obtain more robust results.  

We use a sample of 70,205 luminous red galaxies16 (LRGs) from the Sloan Digital 

Sky Survey (SDSS)17, a homogeneous dataset ideal for the study of large-scale 

structure. The galaxies have been selected according to the same criteria as in Eisenstein 

et al.18 They cover an area of 5215 sq. degrees and a range of redshifts z = 0.16 − 0.47. 

The redshift z = λmeas/λemis - 1 of the radiation emitted by a distant galaxy is a measure 

of the time of emission. The redshift of our galaxy sample, z = 0.32, corresponds to a 

lookback time of 3.5 billion years, when the universe was about 77 per cent of its 

current size, and is already well into the accelerated phase of the cosmic expansion. The 

sample also spans a large comoving volume, 1.02h-3 Gpc3, where the Hubble constant 

H0 = 100h km s-1 Mpc-1, and 1 Gpc (giga-parsec) = 1000 Mpc (mega-parsec) = 3.086 × 

1025 m. 

Tegmark et al.19 measured the anisotropy in the power spectra of an equally 

selected sample of LRGs to determine the redshift distortion parameter β ≡ f(z)/b, where 

f (z) is the logarithmic linear growth rate of structure at redshift z. Their analysis found 

β = 0.309 ± 0.035 on large scales and at z = 0.32. In this work, we use this result forβ , 

together with new measurements of the galaxy-galaxy lensing and galaxy clustering 

signals of the full LRG sample, to determine EG at mega-parsec scales and effective 

redshift of z = 0.32. 

from SDSS galaxy clustering  
(redshift-space distortions)  
Tegmark et al. (2006)

11 

 

Figure 1 | Probes of large-scale structure measured from ~70,000 

luminous red galaxies (LRGs).  Observed radial profiles for two 

complementary probes, galaxy-galaxy lensing (a) and galaxy clustering (b) are 

shown for scales R = 1.5 – 47h-1 Mpc (open circles). The 1σ error bars (s.d.) are 

estimated from jackknife resampling of 34 equal-area regions in the sky. 

Profiles measured from mock galaxy catalogues are also shown (solid curves). 
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fg clustering
<δgδg>

Testing General Relativity on cosmological scales
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Testing GR: results II

Introducing new observable to exclude small scales:

Υgm(R) = ∆Σgm(R)−
(
R0

R

)2

∆Σgm(R0)

=
2

R2

∫ R

R0

dR′R′Σ|rmgm(R′)− Σgm(R′) +

(
R0

R

)2

Σgm(R0),

(Baldauf et al. 2010).

Define in analogy Σgg.

Then modified EG probe of gravity:

EG(R) =
1

β

Σgm(R)

Σgg(R)
.
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Testing GR: results III

Modifying general relativity

Galaxy-galaxy lensing: 
measures ! + " and b#

Galaxy clustering:  
measures "

13 

 

Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1σ error bars (s.d.) including the statistical error on the measurement19 of β 

(filled circles). The grey shaded region indicates the 1σ  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+ΛCDM model, EG = Ωm,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+ΛCDM 

(EG = 0.408 ± 0.029(1σ ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001− 0.1 

(EG = 0.328 − 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

Friedmann-Lemaître-Robertson-Walker metric with perturbations:

(Reyes et al. 2010)

Parameterisation

Gravitational potential as experienced by galaxies:

Gravitational potential as experienced by photons:

 ds
2 = −(1+ 2ϕ )dt 2 + (1− 2φ)a2drx 2

∇2ϕ = 4πGa2ρδ

∇2 (ϕ + φ) = 8πGa2ρδ 1+ Σ[ ]

1+ µ[ ] µ(a)∝ΩΛ (a)

Σ(a)∝ΩΛ (a)

time dilation spatial curvature

From (Reyes et al. 2010).

RCSLenS: gravitational physics through cross-correlation 17

Figure 14. The annular differential surface density statistic for the galaxy-mass cross-correlation, Υgm(R, R0), measured for the different
combinations of lens-source datasets assuming R0 = 1.5 h−1 Mpc. We also plot the best-fitting model for each cross-correlation using
both the wp(R) and ∆Σ(R) measurements. The errors are based on measurements for a set of 374 mock catalogues. The horizontal
dotted line marks Υgm = 0.

Figure 15. EG(R) measurements in two independent redshift bins 0.15 < z < 0.43 and 0.43 < z < 0.7, after combining the results
from the different cross-correlations. In the former case, the measurements of Reyes et al. (2010) are plotted as the open circles for
comparison. The horizontal solid lines are the prediction of standard gravity, EG = Ωm/f , for our fiducial model Ωm = 0.27. The
horizontal dotted lines indicate the 1-σ variation that would result given ∆Ωm = 0.02, which is indicative of both the WMAP and
Planck error in determining this parameter. We note that the data points are correlated, with a covariance matrix displayed in Figure
16.

RCSLenS producing the most and least accurate determi-
nations, respectively.

As a cross-check of the methodology we performed the
same fits to the ∆Σ(R) measurements from the mock cat-
alogues for all the combinations of source-lens datasets, us-
ing the full-survey realizations including masks. The aver-
age parameter measurement across the realizations is σ8 =

0.80 ± 0.03 with average value of χ2/dof = 50.5/47, com-
pared to the input parameter value σ8 = 0.826. The slight
offset of the fit to lower values than the input is due to the
artificial reduction in the clustering amplitude of high-bias
mocks constructed via Equation 36, as discussed in Section
5. For b = 1 mocks we recover the input cosmology within
the statistical error in the mean.

c⃝ 0000 RAS, MNRAS 000, 000–000

From (Blake et al. 2016).
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Recall: Aperture-mass definition

Yesterday we introduced the aperture-mass as convolution of the shear field
with a filter Q,

Map(θ,ϑ) =

∫
d2ϑ′Qθ(|ϑ− ϑ′|) γt(ϑ

′)

and claimed that this was equivlaent of convolving the convergence with
another filter U ,

Map(θ,ϑ) =

∫
d2ϑ′ Uθ(|ϑ− ϑ′|)κE(ϑ′), (3)

(Kaiser et al. 1994, Schneider 1996).
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and Q I
First, place aperture at center, ϑ = 0. Assume that the filter function Uθ(ϑ)
has support [0; θ], (note that θ can be ∞.)
Introduce angle-averaged convergence,

〈κ〉(ϑ) :=
1

2π

∫ 2π

0

dϕκ(ϑ, ϕ),

and write aperture-mass

Map(θ) =

∫ θ

0

dϑϑUθ(ϑ)〈κ〉(ϑ).

Integrate in parts, defining

ϑUθ(ϑ) =:
dXθ(ϑ)

dϑ
← Xθ(ϑ) =

∫ ϑ

0

dϑ′ ϑ′ Uθ(ϑ
′)

to get

Map(θ) = [Xθ(ϑ)〈κ〉(ϑ)]
θ
0 −

∫ θ

0

dϑUθ(ϑ)
d〈κ〉(ϑ)

dϑ
.
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Relation between U and Q II

To get rid of the boundary term, we demand that U be a compensated filter
function, i.e.

Xθ(θ) =

∫ θ

0

dϑϑUθ(ϑ) = 0.

This means, that Map is not sensitive to a constant convergence κ0.
Why?
This makes it independent of the mass-sheat degeneracy.

We insert the expression for the derivative of the circularly averaged
convergence from the TD,

d〈κ〉(ϑ)

dϑ
=

dκ̄(≤ ϑ)

dϑ
− dγ̄(≤ ϑ)

dϑ
=

2

ϑ
〈γt〉 (ϑ)− d〈γ〉(ϑ)

dϑ

to get

Map(θ) =

∫ θ

0

dϑUθ(ϑ)

[
2

ϑ
Xθ(ϑ) 〈γt〉 (ϑ)− d〈γ〉(ϑ)

dϑ

]
.
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Relation between U and Q III
The second term is again integrated by parts. The boundary term vanishes as
before and we are left with

Map(θ) =

∫ θ

0

dϑ

[
ϑ

2

ϑ2
Xθ(ϑ)− dX(ϑ)

dϑ

]
〈γ〉(ϑ).

This can be transformed back to the form

Map(θ) =

∫
d2ϑQθ(ϑ) 〈γt〉(ϑ)

and we get the relation between U and Q:

Qθ(ϑ) =
2

ϑ2

∫ ϑ

0

dϑ′ ϑ′Uθ(ϑ
′)− Uθ(ϑ).
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and Q IV

Some properties

• If U has finite support, so has Q. [This follows from U being
compensated]. That means that aperture-mass can be obtained from
shear on finite region.
[This is not true when computing κ from γ without filters. Formally, this
relation requires all of R2.]
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Part II day 2: Shear estimation Spherical-sky lensing projections

Reminders: lensing potential and convergence I

On day I we defined thee lensing potential ψ at sky 2D coordinate θ for a
source galaxy at comoving distance χ, in a flat universe

ψ(θ, χ) =
2

c2

∫ χ

0

dχ′
χ− χ′
χχ′

φ(χ′θ, χ′).

The lensing convergence κ is given by a 2D Poisson equation,

κ =
1

2
∆ψ.

We pulled the 2D Laplacian through the integral, and add the 3-component
∆χ′χ′ to yield the 3D Laplacian.
We then used the 3D Poisson equation to transform the 3D potential φ to the
density contrast δ,

∆Φ =
3H2

0 Ωm

2a
δ,
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Reminders: lensing potential and convergence II
and obtained

κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .

Finally, we introduced a source galaxy distribution p(χ)dχ = p(z)dz to get the
convergence for a population of galaxies

κ(θ) =

χlim∫

0

dχp(χ)κ(θ, χ) =

χlim∫

0

dχG(χ)χ δ (χθ, χ)

with the lensing efficiency

G(χ) =
3

2

(
H0

c

)2
Ωm

a(χ)

∫ χlim

χ

dχ′ p(χ′)
χ′ − χ
χ′

.

We then introduced the variance of the convergence,

〈κ(ϑ+ θ)κ(ϑ)〉 = 〈κκ〉(θ),
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Reminders: lensing potential and convergence III
and wrote it in Fourier space to define the convergence power spectrum

〈κ̂(`)κ̂∗(`′)〉 = (2π)2δD(`− `′)Pκ(`).

End reminder.

Spherical transformations
The Fourier transformation is only defined on a flat space. To perform Fourier
transforms on fields define on the spherical sky is fine on small scales, but
breaks down on very large angles. The Fourier transform should be replaced
by a spherical harmonic transformation.

However, we have to go back one step further: Convergence and shear are
defined as second derivatives of the lensing potential,

κ =
1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ; γ1 =

1

2
(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ.

These derivatives are defined in flat space and should als be replaced on the
sphere.

So, we have to start again with the lensing potential.
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Lensing potential on the sphere I

The lensing potential ψ from a population of source galaxies with redshift
distribution pi(z) is given, in analogy to κ(θ defined above, as

ψ(θ) =
2

c2

∞∫

0

dχ

χ
Φ[χ, χθ;χ] q(χ), ,

where the lensing efficiency qi is given as

q(χ) =

χlim∫

χ

dχ′ p(χ′)
χ′ − χ
χ′

.

[Note: On day I we defined the lensing efficienty G for the convergence, which
is different from q by just the “Poisson” prefactor,

G(χ) =
3

2

(
H0

c

)2
Ωm

a(χ)

∫ χlim

χ

dχ′ p(χ′)
χ′ − χ
χ′

=
3

2

(
H0

c

)2
Ωm

a(χ)
q(χ).]
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Lensing potential on the sphere II
Let us now derive the angular harmonics spectrum of ψ (spherical analogue of
power spectrum)
Decompose potential into spherical harmonics,

ψ(θ) =

∞∑

`=0

∑̀

m=−`
ψ`mY`m(θ); ψ`m =

∫

S2
dΩψ(θ)Y∗`m(θ).

Completely analogous to CMB temperature — both ψ and T are scalar fields.

The harmonics expansion coefficient is, after insertion of the expression for ψ,
and Fourier-transforming the 3D potential (note: in R3, not on the sphere),

ψ`m =
2

c2

∫
dΩY∗`m(θ, ϕ)

∫ ∞

0

dχ

χ
q(χ)

∫
d3k

(2π)3
Φ̂(k;χ)e−ik·r.

Insert spherical harmonics expansion of the plane wave basis function,

eik·r = 4π

∞∑

`=0

∑̀

m=−`
i` j`(kχ)Y`m(θ, ϕ)Y`m(θk, ϕk),
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Lensing potential on the sphere III
and make use of orthogonality relation of the spherical harmonics

∫
dΩY`m(θ, ϕ)Y∗`′m′(θ, ϕ) = δ``′δmm′ ,

to yield

ψ`m =
i`

c2π2

∫ ∞

0

dχ

χ
q(χ)

∫
d3k Φ̂(k;χ)j`(kχ)Y`m(θk, ϕk).

Angular harmonics (cross-)spectrum (between redshift bins i and j) of the
lensing potential is defined as

〈
ψ`m,i ψ

∗
`′m′,j

〉
= δ``′δmm′Cψij(`).

Using once more the orthogonality of the Y`m’s, we get finally

Cψij(`) =
8

c4π

∫ ∞

0

dχ

χ
qi(χ)

∫ ∞

0

dχ′

χ′
qj(χ

′)

∫
dkk2 j`(kχ)j`(kχ

′)PΦ(k;χ, χ′)

=
8

π

[
3

2
Ωm

(
H0

c

)2
]2 ∫ ∞

0

dχ

χ

qi(χ)

a(χ)

∫ ∞

0

dχ′

χ′
qj(χ

′)

a(χ′)

∫
dk

k2
j`(kχ)j`(kχ

′)Pm(k;χ, χ′);
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Shear on the sphere I

Preparation
Define complex derivative operator

∂ := ∂1 + i∂2.

From that we get
∂∂ = ∂1∂1 − ∂2∂2 + 2i∂1∂2.

Thus, we can rewrite the shear

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ; γ2 = ∂1∂2ψ.

in complex form

γ =
1

2
∂∂ψ; γ∗ =

1

2
∂∂∗ψ.

The corresponding derivative on the sphere is called edth derivative ∂̄ (Castro
et al. 2005).
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Shear on the sphere II

We write

γ(θ) =
1

2
ð ðψ(θ); γ∗(θ) =

1

2
ð ∗ ð ∗ψ(θ).

Inserting the spherical harmonics expansion of ψ → 2nd edth derivatives of
Y`m.
This defines a new object, the spin-weighted spherical harmonics 2Y`m.
[Note: Spin s = 2 because second-derivatives; each derivative ð (ð ∗) raises
(lowers) spin by one.]
Therefore,

(γ1 ± iγ2)(θ) =
∑

`m

±2γ`m ±2Y`m(θ);

2γ`m =

∫

S2
dΩ γ(θ) 2Y

∗
`m(θ);

−2γ`m =

∫

S2
dΩ γ∗(θ)−2Y

∗
`m(θ).
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Shear on the sphere III

These objects ±2Y`m are eigen functions of ð :

 l (`, 2) 2Y`m(θ) = ð 2Y`m(θ);  l (`, 2) −2Y`m(θ) = (ð ∗)2
Y`m(θ).

with the spin pre-factor (Bernardeau et al. 2012)

 l (`, 2) =

√
(`+ 2)!

(`− 2)!
=
√

(`− 1)`(`+ 1)(`+ 2),

And we get the relation between shear and potential coefficients,

±2γ`m =
1

2
 l (`, 2)ψ`m.
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Shear on the sphere IV

Now it is easy to write down the shear angular harmonics spectrum, again for
bins i and j to be general:

Cγij(`) =
2

π
 l 2(`, 2)

[
3

2
Ωm

(
H0

c

)2
]2 ∫ ∞

0

dχ

χ

qi(χ)

a(χ)

∫ ∞

0

dχ′

χ′
qj(χ

′)
a(χ′)

×
∫ ∞

0

dk

k2
Pm(k, χ, χ′) j`(kχ) j`(kχ

′)
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Flat-sky approximation

Going back to flat sky from the full spherical expression, we replace again the
edth by the ordinary flat-space derivatives.
(Hu 2000) calculates the derivatives of the spherical harmonics as

`2 ±2Y`m(θ, ϕ) ≈ e∓2iφ`(∂1 ± i∂2)2 Y`m(θ, ϕ)

and we get a slightly different expression for the shear power spectrum, with
the replacement

 l 2(`, 2) = (`− 1)`(`+ 1)(`+ 2)→ `4.

[Note: this is a slightly strange approach, since we first expand the field into
spherical harmonics, and then perform the flat-sky approximation of the
derivatives. More consistent would be to start with the Fourier transform. But
I don’t know how to derive the `4 factor in this case without making
additional assumptions, see later.]
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Limber approximation I

In short:
We use the identity of the Bessel functions

j`(x) =

√
π

2x
J`+1/2(x)

and replace Bessel function J`+1/2(kχ) by a Dirac delta δD(`+ 1/2− kχ)
(maximum of Bessel function).
Thus:

• Only modes `+ 1/2 ≈ kχ contribute.

• Only modes at χ ≈ χ′ contribute.
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Limber approximation II

Note: From linear perturbation theory, which holds on large scales:

δ̂(k, χ) = D+(χ)δ̂0(k)→ Pδ(k, χ, χ
′) = D+(χ)D+(χ′)Pδ,0(k),

modes at arbitrary distances χ 6= χ′ are correlated.
The shear harmonic spectrum then simplifies to:

Cγij(`) =  l 2(`, 2)

[
3

2
Ωm

(
H0

c

)2
]2 ∫ ∞

0

dk

k3

×
∫ ∞

0

dχ

χ3/2

qi(χ)

a(χ)
δD(`+ 1/2− kχ)

∫ ∞

0

dχ′

χ′3/2
qj(χ

′)
a(χ′)

δD(`+ 1/2− kχ′)Pm(k, χ).

The comoving integrals are solved trivially with the Dirac delta, yielding a
further k−2 due to a variable transformation dχ = d(kχ)/k.
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Limber approximation III

We then substitute (`+ 1/2)3 = (kχ)3, and perform another variable
transformation
dk k−2 = d[(`+ 1/2)χ−1]k−2 = (`+ 1/2)dχχ−2k−2 = dχ(`+ 1/2)−1, and get

Cγij(`) =
 l 2(`, 2)

(`+ 1/2)4

[
3

2
Ωm

(
H0

c

)2
]2 ∫

dχ
qi(χ)qj(χ)

a2(χ)
Pm

(
`+ 1/2

χ
;χ

)
.
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Approximations accuracy I
Most pre-2014 used the flat-sky approximation ( l 2(`, 2) ≈ `4) and further
`+ 1/2 ≈ `. Then the prefactor cancels.

This standard Limber approximation is accurate to 1% (10%) for ` < 60(4).

The next logical approximation is extended Limber, with `+ 1/2 kept in
prefactor and power-spectrum argument. This is actually a worse
approximation than standard Limber, since the approximated prefactor
converges only with O(`1).

Better is hybrid, with ` in prefactor denominator, but `+ 1/2 in integral.

Even better is second-order Limber.
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Approximations accuracy II

10-8

10-7

 10  100

ℓ 
C

(ℓ
)

ℓ

L1Fl
ExtL1Fl

ExtL1FlHyb
ExtL1Sph

ExtL2Fl
ExtL2FlHyb

ExtL2Sph
FullSph

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10  100

KiDS

Euclid

|∆
C

(ℓ
)|

/C
(ℓ

)

ℓ

|L1Fl/FullSph-1|
|ExtL1Fl/FullSph-1|

|ExtL1FlHyb/FullSph-1|
|ExtL1Sph/FullSph-1|

|ExtL2Fl/FullSph-1|
|ExtL2FlHyb/FullSph-1|

|ExtL2Sph/FullSph-1|

From (Kilbinger et al. 2017).
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Spherical correlation function I
For the correlation function on the sphere, the Bessel functions J0,4 are
replaced by the reduced Wigner D-matrices,

ξ+(θ) =
1

4π

∞∑

`=2

(2`+ 1)Cγ(`)d`2 2(θ); ξ0(θ) =
1

4π

∞∑

`=2

(2`+ 1)Cγ(`)d`2−2(θ).

These are defined as follows:

D`
ss′(α, β,−γ) =

∑

m

4π

2`+ 1 s
Y∗`m(θ, ϕ) ′sY

∗
`m(θ′, ϕ′)

= exp−is′α d`ss′(β) expisγ .

Angles:
β = angle between (θ, ϕ) and (θ′, ϕ′).
α[γ]: angle to rotate êθ about (θ, ϕ) [(θ′, ϕ′)] perpendicular to connecting line
between (θ, ϕ) and (θ′, ϕ′).
(Chon et al. 2004).
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Spherical correlation function II
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Shear bias
For basically all shape measurement methods: observed shear 6= true shear.
This is called shear bias.
Reminder: Write as multiplicative and additive bias:

〈εobs
α 〉 = gobs

α = (1 +mα)gtrue
α + cα; α = 1, 2.

There is also ellipticity bias, which is different:

εobs
i = (1 +m′i)ε

true
i + c′i; i = 1, 2.

Typical values:

year program m c σ(c)
2006 STEP I 0.1 10−3

2012 CFHTLenS 0.06 0.002
2013 great3 0.01 10−3

2014 DES 0.03–0.04 10−3

2016 KiDS 0.01–0.02 8 · 10−4

2021 Euclid required 2 · 10−3 5 · 10−4
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Shear bias and simulations I
From the STEP I shear measurement challenge (Heymans et al. 2006).

STEP: weak lensing analysis of simulated data 1331

Figure 2. Examples of two analyses of PSF 3 simulations using KSB+ (HH
implementation, upper panel) and BJ02 (MJ implementation, lower panel)
comparing the measured shear γ 1 and input shear γ true

1 . The best-fitting to
equation (11) is shown dashed, and the optimal result (where γ 1 = γ true

1 )
is shown dot–dashed. Both analyses have additive errors that are consistent
with shot noise (fitted y-offset parameter c) and low 1 per cent calibration
errors (fitted slope parameter m). The weighting scheme used in the BJ02
analysis introduces a non-linear response to increasing input shear (fitted
quadratic parameter q), reducing the shear recovery accuracy for increasing
shear. The accuracy of the KSB+ analysis responds linearly to increasing
input shear and so these results were refit with a linear relationship, i.e.
q = 0.

range of sheared images, the best-fitting parameters to

γ1 − γ true
1 = q

(
γ true

1

)2 + mγ true
1 + c1, (11)

where γ true
1 is the external shear applied to each image. Fig. 2 shows

fits to two example analyses of PSF 3 simulations using KSB+ (HH
implementation) and BJ02 (MJ implementation). In the absence of
calibration bias, we would expect m = 0. We would also expect
c1 = 0 in the absence of PSF systematics and shot noise, and q =
0 for a linear response of the method to shear. In the case where

the fitted parameter q is consistent with zero, we refit with a linear
relationship, as demonstrated by the KSB+ example in Fig. 2.

For all simulations the external applied shear γ true
2 = 0 and we

therefore also measure for each PSF type c2 = ⟨γ 2⟩, averaged over
the range of sheared images. In the absence of PSF systematics and
shot noise, we would expect to find c2 = 0. From this analysis, we
found the values of m and q to be fairly stable to changes in PSF type
and we therefore define a measure of calibration bias to be ⟨m⟩ and
a measure of non-linearity to be ⟨q⟩ where the average is taken over
the six different PSF sets. We find the value of ⟨ci⟩ averaged over the
six different PSF sets to be consistent with shot noise at the 0.1 per
cent level for all authors, with the highest residuals seen with PSF
model 1 (coma) and PSF model 2 (jitter). We therefore define σ c as
a measure of our ability to correct for all types of PSF distortions,
where σ 2

c is the variance of c1 and c2 as measured from the six
different PSF models. As the underlying galaxy distributions are the
same for each PSF this measure removes most of the contribution
from shot noise, although the galaxy selection criteria will result in
slightly different noise properties in the different PSF data sets. σ c

therefore provides a good estimate of the level of PSF residuals in
the whole STEP analysis. A more complicated set of PSF distortions
will be analysed in Massey et al. (in preparation) to address the issue
of PSF-dependent bias more rigorously.

Fig. 3 shows the measures of PSF residuals σ c and calibration bias
⟨m⟩ for each author, where the author key is listed in Table 2. For the
non-linear cases where q ̸= 0, denoted with a circle, the best-fitting
⟨q⟩ parameter is shown with respect to the right-hand scale. Results
in the shaded region suffer from less than 7 per cent calibration bias.
All methods which have been used in a cosmological parameter
cosmic shear analysis lie within this region. With regard to PSF
contamination, these results show that PSF residuals are better than
1 per cent in all cases and are typically better than 0.1 per cent.
Note that for clarity the results plotted in Fig. 3 are also tabulated
in Table 5.

Figure 3. Measures of calibration bias ⟨m⟩, PSF residuals σ c and non-
linearity ⟨q⟩ for each author (key in Table 2), as described in the text. For
the non-linear cases where ⟨q⟩ ̸= 0 (points enclosed within a large circle),
⟨q⟩ is shown with respect to the right-hand scale. In short, the lower the
value of σ c, the more successful the PSF correction is at removing all types
of PSF distortion. The lower the absolute value of ⟨m⟩, the lower the level
of calibration bias. The higher the q value the poorer the response of the
method to stronger shear. Note that for weak shear γ < 0.01, the impact of
this quadratic term is negligible. Results in the shaded region suffer from
less than 7 per cent calibration bias. These results are tabulated in Table 5.

C⃝ 2006 The Authors. Journal compilation C⃝ 2006 RAS, MNRAS 368, 1323–1339
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Shear bias and simulations II

From the great3 shear measurement challenge (Mandelbaum et al. 2015).GREAT3 results I 2983

Figure 17. Multiplicative and additive biases for constant-shear branches in the control (left) and realistic galaxy (right) experiments, for ground (top) and
space (bottom) branches. For each branch, we show the averaged (over components) multiplicative bias ⟨m⟩ versus c+, the additive bias term defined in the
coordinate system defined by the PSF anisotropy. The axes are linear within the target region (|m| < 2 × 10−3 and |c| < 2 × 10−4, shaded grey) and logarithmic
outside that region.

calibration biases, although the sign of the change in ⟨m⟩ depended
on method.

The top-right panel of Fig. 18 shows how ⟨m⟩ changes from
control to realistic galaxy experiment for space-based simulations.
Again, some methods exhibit no significant model bias due to real-
istic galaxy morphology (but note that sFIT included this effect in
their simulations, and explicitly calibrated it out), while others have
typically ∼1 per cent level calibration changes.

The bottom-left panel of Fig. 18 shows c+ for CGC versus RGC,
with everything from complete consistency to strong differences in
c+ in these branches, implying that realistic galaxy morphology can
in some cases cause additive biases.

Finally, in the bottom-right panel of Fig. 18, the c+ are consistent
between control and realistic galaxy experiments for space-based
simulations for most methods. It seems that for space simulations,
removing the PSF anisotropy is similarly difficult for both paramet-
ric and realistic galaxy models.

5.3.2 Impact of ground- versus space-based PSF

Comparing the top and bottom rows of Fig. 17 reveals the effects
of using a space-based PSF rather than a ground-based PSF. Note

that the numerical values of the c+ and ⟨m⟩ changes are shown in
Table D3. Focusing first on the control experiment (left-hand side),
the c+ values shifted to the right (more positive) in space data for
the majority of the methods. Note that if c+ scales linearly with PSF
ellipticity (a model that we will validate in Section 5.4), then c+ for
the space branches should be larger than in the ground branches by a
factor of ∼2. This may explain the changes in c+ for several teams,
but not all, implying that in some cases the additive systematics
have some additional dependence on the form of the PSF beyond
its ellipticity.

Comparing multiplicative biases for CGC and CSC, they are ei-
ther statistically consistent between space and ground or more nega-
tive for space branches; curiously, they did not become more positive
for any teams. Given the wide diversity of methods and the apparent
lack of commonality between many that exhibit similar behaviour
between ground and space data, it is difficult to draw conclusions,
but the pattern is indeed interesting.

These results were for the control experiment. If we compare
RGC versus RSC (right-hand panels), we see that the differences in
c+ and ⟨m⟩ between space and ground simulations in the realistic
galaxy experiment are similar to what was seen for the control
experiment for all teams except CEA_denoise. This finding suggests
that the effect of the type of PSF (space versus ground) on additive

MNRAS 450, 2963–3007 (2015)
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Shear bias and simulations III
Interprete with caution!

• Small biases because simulations are not realistic enough? E.g. constant
PSF, analytical galaxy light distributions, simplistic noise, (constant
shear)

• Simulation (challenges) only address part of the problem. Usually no
blended galaxy images, star-galaxy separation, color effects, . . .

• Calibrated or un-calibrated?

Amplitude of m, c not that important, since they can be calibrated emirically.
What counts are ∆m,∆c after calibration!

More on this in a few slides.
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Shear bias and simulations IV

A very general statement (see Part I day 2):

Most ellipticity estimators are non-linear pixel light distribution. Noise then
creates biases in the estimator. This is called noise bias.

Thus, observed shear needs to be de-biased (calibrated) using simulations.

There are a few unbiased estimators:

• Not normalised to total flux: maybe unbiased, but very large variance

• Bayesian estimators, sample posterior distribution, unbiased if correct
model, likelihood and prior.
Prior needs to be estimated from simulations or deep survey!
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Sources of bias

Reminder:

• Noise bias

• Model bias

• Model-fitting method: incorrect model, complex galaxy morphology
• Direct estimation: inappropriate filter function for weighted moments;

truncated eigenfunction decomposition
• Ellipticity gradients
• Color gradients

• PSF residuals

• CTI (charge transfer inefficiency)

• Selection effects (population biases). Detection probability depends on
ellipticity, orientation with PSF, pixel scale

• New: Environmental effects

• Unresolved faint galaxies
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Shear calibration

The bias should be robust for method to be calibratable.
Define sensitivity as dependence of bias with respect to parameters, or

|∂m/∂pi|, for p = set of parameters.

A method is calibratable, see (Hoekstra et al. 2017), if

• the sensitivity is small (otherwise simulation sampling in p too costly)

• does not depend on too many parameters

• those parameters can be measured accurately (e.g. intrinsic ellipticity
dispersion σε from Euclid Deep Survey → requirement on accuracy of
measured σε sets area of calibration fields)

• those parameters can be reasonably simulated to estimate sensitivity

• difficult if parameter is correlted with shear signal (e.g. local galaxy
density with large-scale structure, correlated with shear signal,
magnification)
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Shear calibration: Unresolved faint galaxies I

Martin Kilbinger, CEA
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Shape measurement - image simulations

Shear bias from unresolved background galaxies

Henk Hoekstra
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How faint do we need to go? 

1074!!

Sensitivity of shape measurements 9

Figure 6. Multiplicative bias for galaxies with 20 < m < 24.5

when only galaxies with magnitudes brighter than mlim are in-
cluded in the simulation. Because of the small PSF, even galaxies
as faint as m ∼ 29 affect the bias.

Figure 7. Change in bias when the sizes of the input galaxies
with m > 27 are increased by a factor fsize compared to our
reference distribution.

radii of galaxies with m > 27 by a factor fsize and measure
the difference ∆µ compared to the reference simulation. To
reduce the number of the positions and intrinsic ellipticities
of the galaxies are the same for the different values of fsize.

The results, based on 50 sets of simulations for each
value of fsize, are presented in Figure 7. We find that the
multiplicative bias is smaller (corresponding to positive ∆µ

Figure 8. Multiplicative bias as function of the slope of the

counts of galaxies fainter than magnitude 24.5; the reference sim-
ulation assumes a powerlaw slope of 0.36 for all magnitudes,
whereas the UDF counts suggest a slope of 0.24 for faint mag-
nitudes.

because µ < 0.) when the faint galaxies are larger. This
is expected, because the galaxies are more spread out and
thus introduce noise that is less skewed. To ensure |∆µ| <
5 × 10−4 our results indicate that the mean size of galaxies
with m > 27 should be determined to better than ∼ 5%.

The measurements by Coe et al. (2006) are based on an
earlier release of the UDF. Some comments on how well
we think we can measure this from the UDF based
on the number of galaxies.

7.2 Varying the count slope of faint galaxies

For our reference model we assume a single powerlaw slope
for the galaxy counts of 0.36 down to magnitude 29. The
actual counts from the UDF from Coe et al. (2006) shown
in Figure 1 suggests that the actual slope is lower, with a
best fit value of XXX.

Here we examine the change in bias when we modify
the slope for galaxies with m > 24.5. αfaint

The results indicate that the bias increases linearly with
increasing slope. We find a best fit dµ/dαfaint = −0.0239 ±
0.0014, which suggests we need to determine the mean slope
with a precision of ∼ 0.002 if we wish a multiplicative bias
µ = 5 × 10−5.

From the UDF we estimate that the slope can be de-
termined to XXX.

A more realistic scenario, taking into account all avail-
able HST observations is likely to give better constraints,
because the slope at brighter magnitides can be constrained
much better, whereas the impact of the faintest galaxies is
smaller, as can be inferred from the flattening of the bias as
a function of mlim in Figure 6.

Cosmic variance can be reduced further by combining

c⃝ 0000 RAS, MNRAS 000, 000–000

Note:!this!took!31,000!core!hours!to!compute!!Multiplicative bias m (here µ) for galaxies 20 < m <

24.5 as function of limiting magnitude of simulated

galaxies. From (Hoekstra et al. 2017).

Overall values on y-axis (ampli-
tude of m) not really important,
will be corrected for.

Need simulation up to very high
depth, until plateau in m is
reached (∂m/∂mlim = 0).

Error bars need to decrease to
match hashed region.
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Shear calibration: Unresolved faint galaxies II

Martin Kilbinger, CEA
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Sensitivity to galaxy density 

The bias depends on the local density of 
galaxies: it will increase towards high density 
regions.  It also depends on the sizes.  
 
This needs to be accounted for, which is 
possible using machine-learning tools. 

1074!!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

Sensitivity to magnification 

The bias depends on the number density of 
faint galaxies: magnification will affect the 
bias which is thus coupled to the lensing 
signal! 

1074!!

Shear bias depends on local galaxy density,  
magnification, galaxy clustering 

Not yet accounted for: galaxy substructure 

Method-dependent? 

Alternative ways to calibrate, using less simulations?
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade I

Again: multiplicative and additive bias,

〈εobs
α 〉 = gobs

α = (1 +mα)gtrue
α + cα; α = 1, 2.

for sample of galaxies with vanishing intrinsic ellipticity 〈εI
α〉 = 0.

How can we determine the multiplicative bias?
Simple method
From linear fit of many simulated pairs (εobs

α , gtrue
α ).

A&A proofs: manuscript no. shear_bias_measurements

Fig. 2. Scheme of the estimation of biases m1 and c1 from the
linear fit of the distribution of eobs

1 as a function of g1.

where eobs
↵,A and eobs

↵,B are the observed ellipticities of respec-
tively two orthogonal galaxies, whose intrinsic ellipticities
cancel exactly, eI

↵,A = �eI
↵,B for both ↵ = 1, 2.

The shear bias is then estimated from a linear fit of
gobs
↵ as a function of g↵. This estimator is an improvement

over the simple linear fit reviewed in the previous section,
with reduced contribution from shape noise. However, the
observed ellipticities in the absence of shear do not cancel
in general, due to various effects. First, the stochasticity
of the two (assumed independent) ellipticity measurements
means that eobs

↵,A + eobs
↵,B is a random variable with non-zero

dispersion. We model this dispersion in Sect. 4.3. Second,
the response of the measurement to ellipticity, or ellipticity
bias, that depends on the galaxies orientation, either with
respect to the pixel coordinate system or to the PSF, can
cause the estimated shear to be biased with respect to g↵
(Kacprzak et al. 2012; Pujol et al. 2017). Third, selection
effects can break the symmetry if one of the two galaxies
is missed. This selection can occur at the detection level
or the shape measurement stage, both of which can fail for
one of the two objects. This could be due to a dependence
on the relative orientation of the galaxy with respect to the
PSF, or random noise fluctuations in particular in the low-

SNR range. Fourth, when accounting for galaxy weights the
ellipticity cancellation is broken.

A generalisation of this method consist on simulating
sets of n galaxies on a ring with constant |eI|, rotated
uniformly such that their mean intrinsic ellipticity is zero
(Nakajima & Bernstein 2007). The case with n = 2 cor-
responds to the case of orthogonal pairs discussed above.
In Sect. 4.3 we show that increasing n beyond n = 2 does
not reduce the shape noise contribution to the shear bias
estimator.

4. Error estimation

In this section we study and compare the precision and pre-
cision of the different shear bias estimators. In this section,
a latin index of shear, ellipticity, bias, etc. serve to indicate
a galaxy number from a population.

4.1. Our method: shape-noise-free shear bias estimation

Each galaxy i with properties Pi has a shear response Ri

estimated as described in Sect. 3.1, from different sheared
versions of the original simulated galaxy image with the
same noise realisation. We assume that the statistical un-
certainty of this measurement given Pi is negligible. This
is based on the results shown in App. A. The response Ri

depends deterministically on Pi, given by the input parame-
ters of the simulated image, the PSF, and the stochastically
of the random processes of the image realisation. The latter
in our case is a simple Gaussian pixel noise realisation, but
we can easily include other effects such as Poisson noise,
cosmic rays, etc. The effects on R from this stochasticity
can be measured by repeatedly estimating Ri for fixed Pi

with different noise realisations. This provides us with sam-
ples from the probability density function (PDF) of Ri(Pi).
This PDF defines the uncertainty �N,↵ for both components
of the estimated shear response due to stochastic effects.

In Fig. 3 we show two examples of this stochasticity
coming from noise. We have measured R 10, 000 times
for 10, 000 different noise realisations for the two galaxies
shown in the figure (see Sect. 5 for details on the simu-
lated images and shape measurement). As before, for each
realisation we do not change the noise for the original and
the 4 sheared versions of the image. The mean responses
hRii depend on the galaxy properties Pi. In general, the
response is further from 1 for small galaxies (the top panel)
and closer for large galaxies (bottom panel), and the two
response components can be different as in the top panel.
These results are consistent with the bias results from Pujol
et al. (2017).

The dispersion for each component �N,↵ of the response
depends on the noise level and on the properties P of the
object. The dispersion is generally larger for smaller ob-
jects. For our shear estimation method we only measure
R↵↵ once per galaxy, which means that each shear response
R↵↵i(Pi) has a stochasticity �N,↵i.

Quantifying �N,↵ allows us to estimate the number of
galaxies we need to simulate such that the stochasticity
is subdominant in the final bias uncertainty originating in
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Fig. 2. Scheme of the estimation of biases m1 and c1 from the
linear fit of the distribution of eobs

1 as a function of g1.

where eobs
↵,A and eobs

↵,B are the observed ellipticities of respec-
tively two orthogonal galaxies, whose intrinsic ellipticities
cancel exactly, eI

↵,A = �eI
↵,B for both ↵ = 1, 2.

The shear bias is then estimated from a linear fit of
gobs
↵ as a function of g↵. This estimator is an improvement

over the simple linear fit reviewed in the previous section,
with reduced contribution from shape noise. However, the
observed ellipticities in the absence of shear do not cancel
in general, due to various effects. First, the stochasticity
of the two (assumed independent) ellipticity measurements
means that eobs

↵,A + eobs
↵,B is a random variable with non-zero

dispersion. We model this dispersion in Sect. 4.3. Second,
the response of the measurement to ellipticity, or ellipticity
bias, that depends on the galaxies orientation, either with
respect to the pixel coordinate system or to the PSF, can
cause the estimated shear to be biased with respect to g↵
(Kacprzak et al. 2012; Pujol et al. 2017). Third, selection
effects can break the symmetry if one of the two galaxies
is missed. This selection can occur at the detection level
or the shape measurement stage, both of which can fail for
one of the two objects. This could be due to a dependence
on the relative orientation of the galaxy with respect to the
PSF, or random noise fluctuations in particular in the low-

SNR range. Fourth, when accounting for galaxy weights the
ellipticity cancellation is broken.

A generalisation of this method consist on simulating
sets of n galaxies on a ring with constant |eI|, rotated
uniformly such that their mean intrinsic ellipticity is zero
(Nakajima & Bernstein 2007). The case with n = 2 cor-
responds to the case of orthogonal pairs discussed above.
In Sect. 4.3 we show that increasing n beyond n = 2 does
not reduce the shape noise contribution to the shear bias
estimator.

4. Error estimation

In this section we study and compare the precision and pre-
cision of the different shear bias estimators. In this section,
a latin index of shear, ellipticity, bias, etc. serve to indicate
a galaxy number from a population.

4.1. Our method: shape-noise-free shear bias estimation

Each galaxy i with properties Pi has a shear response Ri

estimated as described in Sect. 3.1, from different sheared
versions of the original simulated galaxy image with the
same noise realisation. We assume that the statistical un-
certainty of this measurement given Pi is negligible. This
is based on the results shown in App. A. The response Ri

depends deterministically on Pi, given by the input parame-
ters of the simulated image, the PSF, and the stochastically
of the random processes of the image realisation. The latter
in our case is a simple Gaussian pixel noise realisation, but
we can easily include other effects such as Poisson noise,
cosmic rays, etc. The effects on R from this stochasticity
can be measured by repeatedly estimating Ri for fixed Pi

with different noise realisations. This provides us with sam-
ples from the probability density function (PDF) of Ri(Pi).
This PDF defines the uncertainty �N,↵ for both components
of the estimated shear response due to stochastic effects.

In Fig. 3 we show two examples of this stochasticity
coming from noise. We have measured R 10, 000 times
for 10, 000 different noise realisations for the two galaxies
shown in the figure (see Sect. 5 for details on the simu-
lated images and shape measurement). As before, for each
realisation we do not change the noise for the original and
the 4 sheared versions of the image. The mean responses
hRii depend on the galaxy properties Pi. In general, the
response is further from 1 for small galaxies (the top panel)
and closer for large galaxies (bottom panel), and the two
response components can be different as in the top panel.
These results are consistent with the bias results from Pujol
et al. (2017).

The dispersion for each component �N,↵ of the response
depends on the noise level and on the properties P of the
object. The dispersion is generally larger for smaller ob-
jects. For our shear estimation method we only measure
R↵↵ once per galaxy, which means that each shear response
R↵↵i(Pi) has a stochasticity �N,↵i.

Quantifying �N,↵ allows us to estimate the number of
galaxies we need to simulate such that the stochasticity
is subdominant in the final bias uncertainty originating in
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade II

Error on best-fit mα given by width in εobs (including measurement errors),
gtrue, and stochasticity of galaxy images (from pixel noise),

σm,α =
1√
N

√
σ2
R,α +

σ2
S,α

σ2
g,α

Second terms is dominant in most cases.

A&A proofs: manuscript no. shear_bias_measurements

Fig. 5. The distributions of eI
1 and g1 used for the 2 million

simulated galaxies. The second component shows similar distri-
butions.

will be dominated by the intrinsic ellipticity eI
↵i. We write

the dependence of observed to intrinsic ellipticity as S↵i =
f(eI

↵i) with some generic function f . In general, f is not the
identity that would represent a perfect measurement. Nor
is this relation S↵i = R↵↵ie

I
↵i, since the ellipticity response

has been shown to be different from the shear response. Be-
cause ellipticity is typically larger than shear, this relation
is likely to be non-linear. When comparing the predictions
with results from data, we will only make the weak assump-
tion that S↵ is dominated by eI

↵.
For the linear fit to (10) we use a set of values of g↵

and eI
↵, whose distributions have dispersions �g,↵ and �e,↵,

respectively. In Fig. 5 we show these distributions measured
on our simulated images, which we describe in more detail
in Sect. 5.

The best values of (1+m↵) and c↵ obtained from a linear
regression fit from equation (10) are given by (Kenney &
Keeping 1962) as,

1 + m↵ =
h(eobs

↵ � heobs
↵ i)(g↵ � hg↵i)i
hg2
↵i

; (11)

c↵ = heobs
↵ i �m↵hg↵i. (12)

Assuming hg↵i = 0, these relations become:

1 + m↵ =
h(eobs

↵ � c↵)g↵i
�2

g,↵

; (13)

c↵ = heobs
↵ i. (14)

We assume that R↵↵ and g↵ are not correlated, which is a
very good approximation since the shear bias is linear with
g↵. Then, with

h(eobs
↵ � c↵)g↵i = hR↵↵g2

↵ + S↵g↵i = hR↵↵i�2
g,↵ + hS↵g↵i,

(15)

we find

1 + m↵ = hR↵↵i+
hS↵g↵i
�2

g,↵

. (16)

Note that the estimated m↵ is consistent with our
method if hS↵g↵i = 0. A correlation between these two
quantities would effectively modify the slope of the distri-
bution of equation (10), resulting in a biased estimate of
m↵. Note that for our method this condition does not need
to be fulfilled.

We can estimate the error �m,↵ on m↵ via simple Gaus-
sian error propagation assuming that the uncertainties in
R↵↵i and S↵i are uncorrelated. This assumption would be
violated if the shape estimator has a shear bias that depends
on ellipticity. We test our assumptions and approximations
in Sect. 6, where we compare the numerical predictions with
measurements from simulated images. The sensitivity of the
bias with respect to these two quantities is

✓
@m↵

@R↵↵i

◆2

=
1

N2
;

✓
@m↵

@S↵↵i

◆2

=
g2
↵↵i

N2hg2
↵i2

. (17)

Replacing for simplicity the individual galaxies’ dispersions
�R,↵i and �S,↵i by the mean values, we get

�m,↵ =

vuut
NX

i=1

 ✓
@m↵

@R↵↵i

◆2

�2
R,↵ +

✓
@m↵

@S↵i

◆2

�2
S,↵

!
(18)

=
1p
N

s
�2

R,↵ +
�2

S,↵

�2
g,↵

. (19)

Compared to (7) this expressions shows the additional
term �2

S,↵/�2
g,↵. In most scenarios this is indeed the domi-

nant term for the bias dispersion, which is the main reason
why the linear fit achieves a much lower precision in bias
estimation compared to our method.

The uncertainty on the additive bias comes directly from
the dispersion in the stochasticity,

�c,↵ =
�S,↵p

N
. (20)
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Fig. 3. The stochasticity of the measurement of R due to noise.
The upper and lower panel show the distribution of R11 (blue
histogram) and R22 (in green) for two different galaxies, respec-
tively, shown as inlayed postage stamps, with different proper-
ties.

the distribution of galaxy properties Pi. To meet an allowed
shear bias uncertainty of �req,↵, assuming that all galaxies
have the same stochasticity �N,↵ (alternatively one can use
the mean, or a worst-case value), we would need at least
Nmin ⇠ �2

N,↵/�2
req,↵ image simulations not to be dominated

by pixel noise.
In the following, for the calculation of the precision of

our estimator, we do not try to disentangle the contribu-
tions from noise and galaxy properties.

Our bias estimator m↵ for a sample of N galaxies is the
average of the individual shear responses,

1 + m↵ = hR↵↵i =

PN
i=1 R↵↵i(Pi)

N
. (6)

The uncertainty of the estimated response is

�m,↵ =
�R,↵p

N
, (7)

where �R,↵ is the standard deviation of the distribution of
R↵↵.

Fig. 4. The distribution of R11 (top) and a1 (bottom) for the 2
million simulated galaxies. The second component of the biases
shows similar distributions.

Analogously, the additive bias is estimated as

c↵ = ha↵i =

PN
i=1 a↵i(Pi)

N
, (8)

with uncertainty

�c,↵ =
�a,↵p

N
, (9)

where now �a,↵ corresponds to the dispersion of the addi-
tive bias over the galaxy population. Fig. 4 shows the dis-
tributions of the of R11 and a1 for our sample of simulated
images (see in Sect. 5).

Note that only the multiplicative bias is insensitive to
intrinsic ellipticity noise. The additive bias estimated via
(9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can
be defined as

eobs
↵i = R↵↵i(Pi)g↵i + a↵i(Pi) + S↵i (10)

where g↵i is the shear, and S↵i is the stochasticity around
the linear regression of the measurement for galaxy i that

Article number, page 5 of 14

Stochasticity for low SNR.

Arnau Pujol, Martin Kilbinger, Florent Sureau, et al.: shear bias estimator

Fig. 3. The stochasticity of the measurement of R due to noise.
The upper and lower panel show the distribution of R11 (blue
histogram) and R22 (in green) for two different galaxies, respec-
tively, shown as inlayed postage stamps, with different proper-
ties.

the distribution of galaxy properties Pi. To meet an allowed
shear bias uncertainty of �req,↵, assuming that all galaxies
have the same stochasticity �N,↵ (alternatively one can use
the mean, or a worst-case value), we would need at least
Nmin ⇠ �2

N,↵/�2
req,↵ image simulations not to be dominated

by pixel noise.
In the following, for the calculation of the precision of

our estimator, we do not try to disentangle the contribu-
tions from noise and galaxy properties.

Our bias estimator m↵ for a sample of N galaxies is the
average of the individual shear responses,

1 + m↵ = hR↵↵i =

PN
i=1 R↵↵i(Pi)

N
. (6)

The uncertainty of the estimated response is

�m,↵ =
�R,↵p

N
, (7)

where �R,↵ is the standard deviation of the distribution of
R↵↵.

Fig. 4. The distribution of R11 (top) and a1 (bottom) for the 2
million simulated galaxies. The second component of the biases
shows similar distributions.

Analogously, the additive bias is estimated as

c↵ = ha↵i =

PN
i=1 a↵i(Pi)

N
, (8)

with uncertainty

�c,↵ =
�a,↵p

N
, (9)

where now �a,↵ corresponds to the dispersion of the addi-
tive bias over the galaxy population. Fig. 4 shows the dis-
tributions of the of R11 and a1 for our sample of simulated
images (see in Sect. 5).

Note that only the multiplicative bias is insensitive to
intrinsic ellipticity noise. The additive bias estimated via
(9) is still affected by shape noise.

4.2. Linear fit estimation

The observed ellipticity of a galaxy i with properties Pi can
be defined as

eobs
↵i = R↵↵i(Pi)g↵i + a↵i(Pi) + S↵i (10)

where g↵i is the shear, and S↵i is the stochasticity around
the linear regression of the measurement for galaxy i that
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade III

Noise suppression
Simulate pairs of galaxies with same shear and orthogonal intrinsic ellipticity
(rotated by 90 degrees),

εI
A + εI

B = 0.

This however does not mean that the observed ellipticity vanishes, due to:

• Measurement stochasticicy

• Ellipticity bias, if depends on galaxy orientation wrt PSF, shear,
(pixelization)

• Selection effects, one pair member might drop out of sample
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade IV

More advanced noise suppression: ring test. Simulate n galaxies with
equidistant intrinsic ellipticity on ring around 0.
Derivative method
Write shear bias for individual galaxies, and as matrix equation (?):

εobs
α = Rgtrue + c

The shear response tensor R generalizes m: 1 +mα = Rαα.
To get population bias, average over measured shear responses 〈R〉, and
correct measured ellipticities by 〈R〉−1.
Measure individual R as numerical derivatives

Rαβ =
∂εobs
α

∂gβ

by simulating the same galaxy several times with small added shear
±∆gα ∼ 0.02. With same noise realisation this measurement is extremely
precise!
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade VArnau Pujol, Martin Kilbinger, Florent Sureau, et al.: shear bias estimator

Fig. 1. Scheme of shear response estimation for a single galaxy
for R11.

We then approximate the shear response (2) by finite dif-
ferences, following Huff & Mandelbaum (2017),

R↵� ⇡
eobs,+
↵ � eobs,�

↵

2�g�
, (4)

where eobs,±
↵ is the measured ellipticity of the image with

additional small shear ±�g↵. We therefore create addi-
tional sheared images for each original one. With four
sheared images we can estimate all components of R for
each galaxy. To determine the shear response averaged over
a sample of galaxies, we only require two appropriately cho-
sen shear values, or three images in total, see Sect. 5 and
App. A for more details.

To further reduce the stochasticity of our response es-
timator, we use the same noise realisation for all image
copies for each galaxy. This guarantees that intrinsic ellip-
ticity cancels exactly for our bias estimator.

When randomising the noise for each image, we obtain
the same mean but noisier response values. Keeping the
same noise realisation of our five images is not an artificial
noise reduction in the bias estimate, it only helps us to ob-
tain a noise-free numerical derivative. The noise properties
will be sufficiently well sampled by the different simulated
galaxies.

The additive shear bias for each galaxy is measured via
(3), on the original, non-sheared image.

In Fig. 1 we show an example of the estimated com-
ponent of the response, R11, for one galaxy image. The
finite-difference estimate is insensitive to the shear value as
long as it is small, |�g↵| <⇠ 0.05 for ↵ = 1, 2. More details
about the robustness of our new estimator are presented in
App. A.

From the measurements of individual galaxy shear bi-
ases, we estimate the ensemble multiplicative and additive
bias of a galaxy population as the average of the individ-
ual estimates, respectively hR↵↵i and ha↵i. This can be a
weighted average if galaxies have different weights.

We ignore the non-diagonal terms of R, as we have
found that their contribution averages out to zero if the
shear values are symmetrical around zero, see App. A.

We emphasise again that our new bias estimator is not
affected by shape noise coming from the intrinsic galaxy el-
lipticity. This is true not only for the estimated mean, but
for the bias distribution. In our method, the intrinsic ellip-
ticity can be considered as just as another property of the
galaxy (such as the flux, radius, etc.) and as such affects the
shear bias in a deterministic way, but does not contribute to
the statistical uncertainty. Therefore, we can obtain a much
more precise bias estimation compared to methods that av-
erage over observed galaxy ellipticities. Consequently, our
method requires a much smaller number of simulated im-
ages. This will be quantified in Sect. 4. Note also that our
simulations do not require a vanishing mean intrinsic ellip-
ticity, which can be a hurdle when dealing with selection
biases or galaxy weights.

In the following two subsections, we review two com-
monly used calibration methods to estimate the shear bias.

3.2. Linear fit estimation

The most common methods to estimate the shear bias in
the literature is to perform a linear fit of (1) to simulated
sheared galaxy images (e.g. Heymans et al. 2006; Miller
et al. 2013; Zuntz et al. 2013; Mandelbaum et al. 2015;
Fenech Conti et al. 2017; Huff & Mandelbaum 2017; Hoek-
stra et al. 2017; Pujol et al. 2017; Zuntz et al. 2017; Man-
delbaum et al. 2017). For each galaxy population (e.g. for
each bin of given galaxy properties) we obtain the addi-
tive and multiplicative biases c↵ and m↵ from a linear fit
of the measured ellipticities as function of simulated input
shear, as illustrated in the top panel of Fig. 2. The error
of the parameter estimation can then be obtained by jack-
knife resampling, and obtaining the distribution of best-fit
parameters for each resample.

Alternatively, the straight line can be fitted to the av-
erage measured ellipticities for each input shear, heobs

↵ i, as
shown in the bottom panel of Fig. 2. Both fitting schemes
provide consistent values and error bars for the shear bias
parameters.

3.3. Linear fit estimation with shape-noise suppression

The precision of the linear fitting technique to measure
shear bias is limited by shape noise stemming from the
intrinsic ellipticity distribution. To beat down this noise
requires the use of a very large number of galaxy images.
An alternative method to reduce the shape-noise contribu-
tion is to force the mean ellipticity to cancel, by simulating
orthogonal pairs of galaxy images (Massey et al. 2007; Man-
delbaum et al. 2014), As described in Massey et al. (2007),
the estimated shear of a pair of orthogonal objects is

gobs
↵ =

eobs
↵,A + eobs

↵,B

2
, (5)

Article number, page 3 of 14

This measurement is independent of ellipticity (observed and intrinsic) and
thus removes the main uncertainty of error!
Note: For a different noise realisation, the obtained R can be quite different.
But the use of many simulated galaxy images assures the sampling of the
distribution of R, no additional error is introduced on the population bias.
Error on bias estimate:

σm,α =
σR,α√
N
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade VI

This method requires a factor of several hundred fewer image simulations.A&A proofs: manuscript no. shear_bias_measurements

Fig. 6. Multiplicative shear bias as a function of the disk flux Fd,
measured with our method (black lines) and (in orange) from
the linear fit to equation (1). Solid (dashed) lines correspond
to m1 (m2). The top panel shows the results using the same
number of object for both methods. In the bottom panel, only
1/1300 objects have been used for our method.

property we use the input disk flux Fd of the simulated
bulge+disk galaxies. As shown in the top panel of that fig-
ure, both methods give consistent results when using all
two million galaxies. However, our method estimates the
biases with a significantly better precision. The location of
the points on the x-axis corresponds to the centre of the
Fd bins. In addition to a small shift that we apply for an
easier visual comparison, the bin centres for our method in
the lower panel are modified, since the galaxies are now a
random subsample. It is remarkable that when using all two
million galaxies, the curves of m1 and m2 for our method
are almost identical.

We quantify the precision of the different shear bias es-
timation methods in Fig. 7. as a function of the number of
simulated galaxies Nsim. We create different random sub-
sets of galaxies with size Nsim, and measure for each subset
the shear bias for the three methods as described in Sect. 3.
We compute the RMS for each sub-set by jackknife resam-
pling of the input galaxies for all methods, using 50 sub-
samples (other numbers of subsamples have given the same
results).

Fig. 7. RMS of the multiplicative (top panel) and additive (bot-
tom panel) shear bias. We compare our method (red/orange
lines) to the linear fit with (green) and without (cyan/blue)
shape-noise suppression. The solid lines are measurement from
the numerical simulations. Dashed lines show the analytical pre-
dictions derived in Sect. 4.

We compare these uncertainties as measured from the
simulations to the numerical predictions derived in Sect. 4.
For the latter, we measure the parameters �R,↵, �a,↵, �S,↵,
�eobs,↵, and �g,↵ directly from the simulations, as illustrated
in Figs. 4 and 5. The amplitude and N

�1/2
sim -dependence

of the uncertainty measured from the data shows excel-
lent agreement with the analytical calculations for all three
methods. This suggests that the assumptions we made
to derive these expressions are valid for the system and
regime studied here. For the linear fit predictions, we set
�S,↵ = �I

e,↵, assuming that stochasticity S↵ is entirely de-
termined by the intrinsic ellipticity. For the linear fit with
shape noise suppression, we measure �eout,↵ directly from
the distribution of the sum of observed ellipticities of the
orthogonal pairs, (eobs

A,↵ + eobs
B,↵)/2.

Our method has a much higher precision on the mul-
tiplicative shear bias estimation. Compared to the lin-
ear fit, �m,↵ for our method is smaller by a factor of
35.9. This means that for this study our method requires
35.92/n0 ⇠ 1300/n0 times fewer simulated images to obtain
the same precision, where n0 is the number of sheared ver-
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Shear calibration using image simulations: tricks of the
trade VII

From (?).
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Part II day 3: Cosmological parameter estimation Numerical simulations

Why do we need N -body simulations for WL I

• WL probes LSS on small, non-linear scales.
Cosmic shear: down to sub-Mpc. Surveys sensitive to k ∼ 50h/Mpc.
Need theoretical prediction of non-linear power spectrum.
(Semi-)analytical approaches go to k ∼ 0.5h/Mpc.

• Shear field follows non-Gaussian distribution.
Follows from the fact that δ in non-linear regime is non-Gaussian.
Complex survey geometry modify distribution.
At the least, need non-Gaussian covariance for likelihood.
Difficult from (semi-)analytical models (see previous point).

• Baryonic physics modifies dark-matter halo properties (profile,
concentration, . . .).
Model with hydro-dynamical simulations.

• Systematic effects that correlate to astrophysics or the LSS.
Can use forward modelling for complex physical processes in N -body
simulation.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Why do we need N -body simulations for WL II

Examples

• Blended galaxy images lead to deselection of galaxies in crowded fields,
which are correlated to high-density regions, that are then
under-represented. This leads to biases in inferred n(z), cosmological
parameters.

• ξsys = correlation between stars and PSF-corrected galaxies = measure of
PSF residuals in galaxy shapes. But: Need to account for chance
alignment between PSF and LSS.

• Test mathematical useful approximations: Born, neglecting lens-lens
coupling, reduced shear g = γ/(1− κ) versus shear γ. Most of these
effects introduce higher-order correlations, again difficult to solve unless
Gaussian limits.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-tracing I

Principle of Ray-tracing

• Numerical evaluation of projection integral from particle distribution in
N -body simulation.

• Most algorithms first project particles on multiple lens planes (Blandford
& Narayan 1986), with ∆z/z of order 0.03 - 0.05.
Corresponds to a finite-sum discretization of the projection integral.

α = ∇θψ =
2

c2

∫ χ

0

dχ′
χ− χ′
χ

∇⊥Φ(x(χ′), χ′).

On each lens plane, compute Jacobi matrix Aij = ∂βi/∂j = δij − ∂i∂jψ.
Algorithm (Hilbert et al. 2009):

34 S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing

k(  −2) k(  −1) k(  −1) k(  )k(  −1)

k(  −1)

k(  −2)

k(  )

k(  −1)

...

...f

...

f f fK,UfKK,LKKK f
(1)

ε...

α

1 −2k −1k k

(1) β

β

β
β

Fig. 1. Schematic view of the observer’s backward light cone in the multiple-lens-plane approximation. A light ray (red line) experiences a deflec-
tion only when passing through a lens plane (solid blue lines). The deflection angle α(k−1) of a ray passing through the lens plane at distance f (k−1)

K

from the observer is obtained from the matter distribution between f (k−1)
K,U and f (k−1)

K,L projected onto the plane. Using the deflection angle α(k−1) of
the light ray at the previous lens plane and the ray’s angular positions β(k−1) and β(k−2) on the two previous planes, the angular position β(k) on the
current plane can be computed.

Hence,

β(k) =

⎛⎜⎜⎜⎜⎜⎝1 −
f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

⎞⎟⎟⎟⎟⎟⎠ β(k−2) +
f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

β(k−1)

− f (k−1,k)
K

f (k)
K

α(k−1)
(
β(k−1)

)
. (15)

For a light ray reaching the observer from angular position θ on
the first lens plane, one can compute its angular position on the
other lens planes by iterating Eq. (15) with initial values β(0) =
β(1) = θ.

Differentiating Eq. (15) with respect to θ, we obtain a recur-
rence relation for the distortion matrix:

A(k)
i j =

⎛⎜⎜⎜⎜⎜⎝1 −
f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

⎞⎟⎟⎟⎟⎟⎠ A(k−2)
i j +

f (k−1)
K

f (k)
K

f (k−2,k)
K

f (k−2,k−1)
K

A(k−1)
i j

− f (k−1,k)
K

f (k)
K

U(k−1)
ik A(k−1)

k j . (16)

With the knowledge of the involved distances and shear matri-
ces, this equation allows us to iteratively compute the distortion
matrix of a light ray from the observer to any lens plane. This
equation requires in practice much fewer arithmetic operations
and memory than the commonly used relations (e.g. by Jain et al.
2000) based on Eq. (13).

For comparison and testing, we will also use the multiple-
lens-plane algorithm to calculate the distortion in the first-order
approximation by:

A(k)
i j (θ) = δi j −

k−1∑

n=1

f (n,k)
K

f (k)
K

U(n)
i j (θ). (17)

3. The ray-tracing algorithm

The methods we use for ray-tracing through N-body simula-
tions to study lensing are generally similar to those used by, e.g.,

Jain et al. (2000) or Vale & White (2003). First, the matter distri-
bution on the past light cone of a fiducial observer is constructed
from the simulation data. Then, the past light cone is partitioned
into a series of redshift slices. The content of each slice is pro-
jected onto a lens plane. Finally, the multiple-lens-plane approx-
imation is used to trace back light rays from the observer through
the series of lens planes to the sources.

The purpose of our ray-tracing algorithm is to simulate
strong and weak lensing in a way that takes full advantage of the
unprecedented statistical power offered by the large volume and
high spatial and mass resolution of the Millennium Simulation8.
Therefore, our ray-tracing method differs in many details from
previous works. Most notably, we use a multiple-mesh method
and adaptive smoothing to calculate light deflections and distor-
tions from the projected matter distribution on the lens planes.
This allows us to simulate lensing on the full range of scales cov-
ered by the Millennium Simulation, ranging from strong lens-
ing on scales >∼1 arcsec to cosmic shear on scales <∼1 deg. A
brief outline of our algorithms for the construction of the past
light cones and the lens planes has been given in an earlier work
(Hilbert et al. 2007b). Here, we extend the discussion and pro-
vide a more detailed description.

3.1. The Millennium Simulation

The Millennium Simulation (Springel et al. 2005) is a large
N-body simulation of cosmic structure formation in a flat
ΛCDM universe. The following cosmological parameters were
assumed for the simulation: a matter density of Ωm = 0.25 in
units of the critical density, a cosmological constant with ΩΛ =
0.75, a Hubble constant h = 0.73 in units of 100 km s−1 Mpc−1,
a spectral index n = 1 and a normalisation parameter σ8 = 0.9
for the primordial linear density power spectrum. These cho-
sen parameters are consistant with the 2dF (Colless et al. 2003)
and WMAP 1st-year data analysis (Spergel et al. 2003). The

8 This work concentrates on weak lensing, but the algorithm is also
used for strong-lensing studies (Hilbert et al. 2007b, 2008; Faure et al.
2009).
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and γ2 = γ2(θ, w) of the shear, which may be combined into the
complex shear γ = γ1 + iγ2.

The shear field γ(θ, w) can be decomposed into a rotation-
free part γE(θ, w) and a divergence-free part γB(θ, w). For infinite
fields, the decomposition into these E/B-modes is most easily
written down in Fourier space:

γ̂E(ℓ, w) =
ℓ2

|ℓ|4
[
(ℓ2

1 − ℓ2
2)γ̂1(ℓ, w) + 2ℓ1ℓ2γ̂2(ℓ, w)

]
, (6a)

γ̂B(ℓ, w) =
ℓ2

|ℓ|4
[
(ℓ2

1 − ℓ2
2)γ̂2(ℓ, w) − 2ℓ1ℓ2γ̂1(ℓ, w)

]
. (6b)

Here, hats denote Fourier transforms, ℓ = (ℓ1, ℓ2) denotes the
Fourier wave vector, and ℓ = ℓ1 + iℓ2. Care must be taken when
decomposing the shear in fields of finite size, where the field
boundaries can cause artifacts (Seitz & Schneider 1996). These
artifacts can be avoided by using aperture masses to quantify
the shear E- and B-mode contributions (Crittenden et al. 2002;
Schneider et al. 2002).

Equations (3) and (4) are implicit relations for the light path
and the Jacobian. The solution of Eq. (3) to first order in the po-
tential is obtained by integrating along undisturbed light paths:

β(θ, w) = θ − 2
c2

∫ w

0
dw′

fK(w − w′)
fK (w) fK(w′)

×∇θΦ
(
t(w′), θ, w′

)
. (7)

The distortion to first order reads:

Ai j(θ, w) = δi j − 2
c2

∫ w

0
dw′

fK(w − w′)
fK (w) fK(w′)

×
∂2Φ

(
t(w′), θ, w′

)

∂θi∂θk
· (8)

The first-order approximation to the distortion contains the Born
approximation, which ignores deviations of the actual light path
from the undisturbed path on the r.h.s. of Eq. (4). Moreover,
lens-lens coupling is neglected, i.e. the appearance of the dis-
tortion on the r.h.s. of Eq. (4). The neglected lens-lens coupling
and corrections to the Born approximation account for the ef-
fect that light from a distant source “sees” a distorted image of
the lower-redshift matter distribution due to higher-redshift mat-
ter inhomogeneities along the line-of-sight. Thus, the first-order
approximation works well in regions where larger matter inho-
mogeneities are absent or confined to a small redshift range, but
fails in regions where noticeable distortions arise from matter
inhomogeneities at multiple redshifts.

Born corrections and lens-lens coupling effects may cre-
ate shear B-modes. The perturbative calculation of the shear
B-modes by iteratively solving Eq. (4) is possible (Cooray &
Hu 2002; Hirata & Seljak 2003), but tedious, and the accuracy
of this approach is not known. However, multiple deflections and
lens-lens coupling effects are fully included in the multiple-lens-
plane approximation as described below. We will thus use this
approximation to investigate these effects and assess the quality
of perturbative calculations of these effects.

2.2. The multiple-lens-plane approximation

In the multiple-lens-plane approximation (see, e.g., Blandford &
Narayan 1986; Schneider et al. 1992; Seitz et al. 1994; Jain et al.
2000), a series of lens planes perpendicular to the central line-of-
sight is introduced into the observer’s backward light cone. The

continuous deflection that a light ray experiences while propa-
gating through the matter inhomogeneities in the light cone is
then approximated by finite deflections at the lens planes. The
deflections are calculated from a projected matter distribution on
the lens planes. This corresponds to solving the integral Eqs. (3)
and (4) by discretisation (and using the impulse approximation).

The deflection α(k)(β(k)) of a light ray intersecting the kth lens
plane (here, we count from the observer to the source) at angu-
lar position β(k) can be expressed as the gradient of a lensing
potential ψ(k):

α(k)(β(k)) = ∇β(k) ψ(k)(β(k)). (9)

The differential deflection is then given by higher derivatives of
the lensing potential. The second derivatives can be combined
into the shear matrix

U(k)
i j =

∂2ψ(k)(β(k))

∂β(k)
i ∂β(k)

j

=
∂α(k)

i (β(k))

∂β(k)
j

· (10)

The lensing potential ψ(k) is a solution of the Poisson equation:

∇2
β(k)ψ

(k)(β(k)) = 2σ(k)(β(k)). (11)

The dimensionsless surface mass density σ(k) is given by a pro-
jection of the matter distribution in a slice around lens plane:

σ(k)(β(k)) =
3H2

0Ωm

2c2

f (k)
K

a(k)

∫ w(k)
U

w(k)
L

dw′δm

(
β(k), w′

)
. (12)

Here, H0 denotes the Hubble constant, Ωm the mean matter
density in terms of the critical density, f (k)

K = fK(w(k)) and
a(k) = a(w(k)), with w(k) denoting the line-of-sight comoving dis-
tance of the plane. Furthermore, δm

(
β(k), w′

)
denotes the three-

dimensional density contrast at comoving position
(
β(k), w′

)
rel-

ative to the mean matter density. The slice boundaries w(k)
L and

w(k)
U have to satisfy w(k)

L < w
(k) < w(k)

U and w(k)
U = w

(k+1)
L . They

are usually chosen to correspond to the mean redshifts (e.g. Jain
et al. 2000) or comoving distances (e.g. Wambsganss et al. 2004)
of successive planes7. These conditions ensure that every region
of the light cone contributes exactly to one lens plane, which is
the closest plane in redshift or comoving distance.

Given the deflection angles on the lens planes, one can
trace back a light ray reaching the observer from angular po-
sition β(1) = θ on the first lens plane to the other planes:

β(k)(θ) = θ −
k−1∑

i=1

f (i,k)
K

f (k)
K

α(i)(β(i)), k = 1, 2, . . . (13)

Here, f (i,k)
K = fK

(
w(k) − w(i)

)
.

Equation (13) is not practical for tracing rays through many
lens planes. An alternative expression is obtained as follows (see,
e.g., Hartlap 2005; or Seitz et al. 1994 for a different derivation):
the angular position β(k) of a light ray on the lens plane k is re-
lated to its positions β(k−2) and β(k−1) on the two previous lens
planes by (see Fig. 1):

f (k)
K β

(k) = f (k)
K β

(k−2) + f (k−2,k)
K ϵ − f (k−1,k)

K α(k−1)
(
β(k−1)

)
, (14)

where ϵ =
f (k−1)
K

f (k−2,k−1)
K

(
β(k−1) − β(k−2)

)
.

7 The exact choice for the projection boundaries becomes unimportant
for sufficiently small spacings between the lens planes.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-shooting versus ray-tracing
Two methods are common to propagate photons for the projection:

1. Ray shooting:
Compute cumulative lensing potential φ on a grid. Light rays travel on
(unperturbed) straight lines, corresponds to Born approximation.

2. Ray tracing:
Additionally compute deflection angle α, change direction of light ray
accordingly.
Light rays travel on straight lines between lens planes, where they change
direction.
Start at observer and shoot backwards. Why?

5 Ray-Tracing

also the deflections itself are expected to be minute, for practical computation the
necessary gradient is taken in the lens planes for all rays.

The general setup is shown in Fig. 5.1, where each N -body box is projected onto its own
lens plane. This is the preferred situation, because projections of only a fraction of the
box can cause trouble in several respects, as detailed in Sect. 5.2.

w=wsw=0 w=(l−0.5)L

L

l=2l=1 ...

Figure 5.1: General setup of a ray-tracing simulation

From Fig. 5.1, it is easy to show that the angular position of a light ray on the N -th lens
plane is given by

(5.1) θ(N) = θ(1) −
N−1∑

l=1

fK(wN − wl)

fK(wN)
α̂(l)(θ(l)),

where α̂(l) is the deflection angle at the l-th lens plane. The infinitesimal deflection angle
is given by

(5.2) dα̂ =
2

c2
∇⊥φ(x) dw,

as follows from (3.10) in differential form with dw=−dl. In the framework of the approx-
imations listed above, the density contrast is projected plane-parallely onto a lens plane,
and likewise the deflection angle: the deflections are small, and so the light ray essentially
is given by a straight line, and within the flat-sky approximation the ray is perpendicular
to the lens plane. Defining the lensing potential

(5.3) ψ(l)(θ) ≡ 2

c2

1

fK(wl)

∫ (l+1)L

lL

dw φ(fK(w)θ, w),

the total deflection is

(5.4) α̂(l)(θ(l)) = ∇θ ψ
(l)(θ(l)).

The relation of ψ to the projected density contrast can be seen by projecting the three-
dimensional Poisson-Equation in the same way:

(5.5) ∇2
θψ(θ) =

2

c2
fK(wl)

(l+1)L∫

lL

dw ∇2
xφ = fK(wl)

3H2
0Ωm

c2a

(l+1)L∫

lL

dw δ ≡ 2σ(l)(θ),

44

From Hartlap, PhD thesis 2005
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the total deflection is

(5.4) α̂(l)(θ(l)) = ∇θ ψ
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The relation of ψ to the projected density contrast can be seen by projecting the three-
dimensional Poisson-Equation in the same way:
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray shooting
For cosmic shear ray-shooting is a very good (percent-level) approximation.

However, for galaxy-galaxy lensing this is not the case.
S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing 41

simulation particles on each lens plane at random and using their
positions as lens galaxy positions in the algorithm described in
Sect. 3.4. We then obtain a catalogue of source galaxies by ran-
domly sampling positions in the image plane assuming a uni-
form image distribution over the field-of-view.

The GGL signal we are interested in is given by the mean
tangential shear ⟨γt⟩ (ϑ) at the image positions of the source
galaxies as a function of angular separation ϑ to the positions
of the lens galaxies. In the simple case of unbiased galaxies con-
sidered here, the expected GGL signal can be computed in the
first-order approximation by:

⟨γt⟩ (ϑ) =
1

2π

∫
dw

pl(w)q(w)
fK(w)

×
∫

dℓℓJ2(ϑℓ)Pδ

(
t(w),

ℓ

fK(w)

)
, (28)

where J2 is a Bessel function of the first kind, pl(w) is the prob-
ability distribution of the lens galaxies’ distances, the lensing
weight q(w) is given by Eq. (23), and Pδ denotes again the
3D matter power spectrum. For simplicity, we will consider a
volume-limited sample of lens galaxies with constant comoving
density in the following.

Due to statistical parity invariance, the cross component γ× is
expected to vanish when averaged over many source-lens pairs.
The observed mean cross component ⟨γ×⟩ can therefore be used
as a test for systematic effects and “cosmic variance”. As shown
in Fig. 13, ⟨γ×⟩ is consistent with zero in our ray-tracing.

While the cross component γ× provides a test for system-
atic effects, the tangential shear γt contains the desired infor-
mation about the matter and galaxy distribution. As can be
seen in Fig. 13, the mean tangential shear ⟨γt⟩ is significantly
smaller (≈10−20% at an angular separation of 1 arcmin) in the
ray-tracing than expected from the first-order prediction (28).

The reason for this discrepancy is magnification bias: lenses,
i.e. dense matter structures such as galaxies or clusters with their
dark matter halos, magnify the regions behind them. The magni-
fication reduces the apparent number density of higher-redshift
lens galaxies around lower-redshift lenses in a volume limited
survey (as has been simulated here). Underdense regions, on the
other hand, demagnify the regions behind them, thereby increas-
ing the apparent number density of lens galaxies behind them.
The de-/magnification leads to an anticorrelation between the
positions of high-redshift lens galaxies and the tangential shear
induced by low-redshift structures. The anticorrelation reduces
the signal ⟨γt⟩ compared to the first-order approximation12. We
can suppress the magnification bias in the ray-tracing by switch-
ing off the deflections and using Eq. (17) to calculate the distor-
tions. In this case our simulations are fully consistent with the
first-order prediction, as is shown in Fig. 13.

The effect of the magnification bias on the GGL depends on
the redshift distribution of the sources and the lenses. Moreover,
the shape of the lens luminosity function may be important if the
lens population is selected using a magnitude limit. For example,
the first-order approximation may underestimate ⟨γt⟩ for a lens
population with a very steep luminosity function near the survey
magnitude limit. We reserve a more detailed investigation of this
effect with realistic source and lens distributions for future work.

12 Note that in the first-order approximation, magnification effects are
neglected. Thus, the positions of galaxies at any given redshift are un-
correlated with the shear induced by galaxies at different redshifts.

!

!

!
!
!
! ! ! !

!
!

!

!

!
!
!
!
! ! !

!

!
!
!
! !

! ! !
!
!
!

!
!
!
!
! ! ! !

!a"

0.1 1 10
0

2"10#4

4"10#4

6"10#4

8"10#4

$ #arcmin$

%Γ t&!$
"

! ! ! ! ! ! ! ! ! ! ! ! ! ! !
! !

! !
!

! ! ! ! ! ! ! ! ! ! ! ! !
! ! !

!
!
!
!

!b"

0.1 1 10

#3"10#5

#2"10#5

#1"10#5

0

1"10#5

2"10#5

3"10#5

$ #arcmin$

%Γ &&!$
"

Fig. 13. Galaxy-galaxy-lensing signal for sources at redshift z = 1
and unbiased lens galaxies with a constant comoving mean density
between z = 0 and z = 1. a) Shown are the measured tangential com-
ponent ⟨γt⟩ (ϑ) of the shear from full ray-tracing (diamonds) and ray-
tracing using the first-order approximation (17) (squares), and the first-
order prediction (28) (solid line). b) Measured cross component ⟨γ×⟩ (ϑ)
from full ray-tracing (diamonds) and first-order ray-tracing (squares).
Error bars denote the standard deviation calculated from a set of 24 sim-
ulated fields of 3 × 3 deg2.

5. Summary

In this work, we have described a new variant of the multiple-
lens-plane algorithm, which is particularly suited for ray-tracing
through very large cosmological N-body simulations. The al-
gorithm differs in some important details from previous works.
This allows us to take full advantage of the unprecedented sta-
tistical power offered by the large volume and high spatial and
mass resolution of the Millennium Simulation. The features dis-
cussed include: a tilted line-of-sight (to avoid periodic repetition
of structures along the line-of-sight), adaptive slice boundaries
(to avoid the slicing and duplication of bound structures), adap-
tive smoothing of the projected matter distribution on the lens
planes (to reduce shot noise from the particles), a mutliple-mesh
method for calculating the light deflections and distortions at the
lens planes (which takes into account the small-scale and large-
scale structure simultaneously), and a method to include galax-
ies (as lenses and sources) from semi-analytic galaxy-formation
models in the ray-tracing process.

We have used the ray-tracing code and the Millennium
Simulation to investigate the impact of lens-lens coupling and
multiple ray deflections on various cosmic shear two-point
statistics. We have computed convergence power spectra from
a set of ray-tracing realisations. For testing and comparison, we
have also computed a first-order prediction of the convergence

From (Hilbert et al. 2009).

This is because relative distance between light rays from two bg galaxies for
cosmic shear not much affected by coherent deflection.

But distance between light ray from bg galaxy and fg galaxy position (impact
parameter) is affected.
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-tracing approximations

• Ray-tracing through N -body output snapshot
boxes: Fixed cosmic time, neglecting LSS
evolution during photon travel time through
box. Limit box size to L <∼ 300 Mpc.

Larger boxes can be split and projected to
more than one lens plane, but:

• Avoid cutting through halos
• Leads to loss of power on large scales

Use snapshots at different output times to
account for time evolution.
If box size is small, boxes have to be
concatenated. To avoid photons to encounter
repeated structures at different epochs:

• Rotate and translate randomly.
• Shoot light rays under an skewed angle.

36 S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing

in slice
in slicematter
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Fig. 3. Schematic view of the adaptive slice boundaries to avoid the
truncation or double inclusion of halos that are located near a slice
boundary. Halos near the boundary of slice k and k + 1 are either
included as a whole in slice k or completely excluded depending on
the positions of their centres (a). Halos that are included (excluded) in
slice k, are excluded (included) from slice k+1 even if they have crossed
the slice boundary between redshift k and k + 1 (b).
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Fig. 4. The number NL of lens planes used for the ray-tracing as a
function of the source redshift zS.

Each lens plane is placed at the comoving distance of the cor-
responding snapshot’s redshift. The lens planes serve also as
source planes for the ray-tracing. The resulting number of lens
planes as a function of the source redshift is shown in Fig. 4.

The light deflection angles and distortions resulting from
the projected matter density on the lens planes are computed
by particle-mesh (PM) methods (Hockney & Eastwood 1981).
Mesh methods have the advantage that, once the deflection and
distortion are computed on a mesh (e.g. by Fast Fourier meth-
ods), the computation of the deflections and distortions for many
light rays intersecting the plane is very fast (compared to, e.g.,
direct-summation or tree methods). One disadvantage is that the
used mesh spacing limits the spatial resolution of the projected
matter distribution. However, any N-body simulation providing
the matter distribution for the ray-tracing has a limited reso-
lution as well. In dense regions, the spatial resolution of the
Millennium Simulation is effectively determined by the force
softening, which is 5 h−1 kpc comoving. Thus, a mesh spacing of
2.5 h−1 kpc comoving is required to avoid resolution degradation
for the projected matter density. However, a single mesh cover-
ing the full periodic area of the lens plane (i.e. 1.58 h−1 Gpc ×
1.66 h−1 Gpc comoving) with such a small mesh spacing would
be too demanding, in particular regarding the memory required
both for its computation and storage. We therefore use a hierar-
chy of meshes instead.

The lensing potential ψ is split into a long-range part ψlong
and a short-range part ψshort. The split is defined in Fourier
space by:

ψ̂long(ℓ) = ψ̂(ℓ) exp
(
−β2

splitℓ
2
)

, and (18)

ψ̂short(ℓ) = ψ̂(ℓ)
[
1 − exp

(
−β2

splitℓ
2
)]
. (19)

The splitting angle βsplit = rsplit/ fK(w), with comoving splitting
length rsplit and comoving angular diameter distance of the lens
plane fK(w), quantifies the spatial scale of the split. Different
meshes are then used to calculate ψlong and ψshort.

First, the particles in each slice are projected onto a coarse
mesh of 16 384 × 16 384 points covering the whole periodic
area of the lens plane using clouds-in-cells (CIC) assignment
(Hockney & Eastwood 1981). The long-range potential ψlong is
then calculated on this mesh by means of fast Fourier trans-
form (FFT) techniques (Cooley & Tukey 1965; Frigo & Johnson
2005). The splitting length rsplit = 175 h−1 kpc is chosen slightly
larger than the coarse mesh spacing (96 h−1 kpc and 101 h−1 kpc
comoving, respectively), so the coarse mesh samples ψlong with
sufficient accuracy. For each lens plane, the long-range potential
is calculated once, and the result is stored on disk for later use
during the ray-tracing.

The short-range potential ψshort is calculated “on the fly”, i.e.
during the actual ray-tracing. The area where the light rays in-
tersect the plane is determined and, if larger than 40 h−1 Mpc
comoving, subdivided into several patches up to that size.
Each patch is covered by a fine mesh with a mesh spacing of
2.5 h−1 kpc comoving and up to 16 384 × 16 384 mesh points.
The fine meshes are chosen slightly larger than the patches in
order to take into account all matter within the effective range
of ψshort, for which we assume 875 h−1 kpc (=5 rsplit). The lim-
ited range of ψshort ensures that the matter distribution outside the
mesh affects only mesh points close to its boundary (i.e. within
the effective range), but not the interior mesh points used for the
subsequent analysis. Periodic boundary conditions can therefore
be used for the FFT on the patches without “zero padding”.

In order to reduce the shot noise from the individual parti-
cles, either a fixed or an adaptive smoothing scheme is used for
the matter distribution on the fine meshes. In case of the fixed
smoothing, the particles in the slice are projected onto the fine
mesh using CIC. The resulting matter density on the fine mesh is
then smoothed in Fourier space with a Gaussian low-pass filter

K̂s(ℓ; βs) = exp
(
−β

2
s

2
ℓ2

)
(20)

whose filter scale βs = ls/ fK(w) is determined by the lens plane’s
comoving distance w and a fixed comoving filter scale ls. This
is done during the calculation of the short-range potential ψshort
with FFT methods.

In case of the adaptive smoothing, the mass associated with
each simulation particle contributes

Σp(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3mp

πr2
p

(
1 − |x−xp |2

r2
p

)2
, |x − xp| < rp,

0, |x − xp| ≥ rp,
(21)

to the surface mass density on the fine mesh. Here, x denotes co-
moving position on the lens plane, xp is the projected comoving
particle position, and rp denotes the comoving distance to the
64th nearest neighbour particle in three dimensions (i.e. before
projection). The adaptive smoothing is essentially equivalent to
the assumption that, in three-dimensional space, each simulation

From (Hilbert et al. 2009).5 Ray-Tracing

Figure 5.3: Illustration of the choice of
projection volume in case of partial projec-
tions of the simulation box, avoiding cuts
through halos.

(0,0)

(m  , m  )1 2

source plane

L

Figure 5.4: Setup of a ray-tracing simu-
lation for large box sizes

and its validity can thus be tested by measuring the strength of this effect. To first order,
the rotation angle can be computed by

(5.21) φ =
Φ12 − Φ21

2(1 − κ)
,

where the convergence can be computed as in the symmetric case using

(5.22) κ = 1 − 1

2
trΦ .

Finally, the shear is given by

(5.23) γ1 =
1

2
[(Φ22 − Φ11) + φ(Φ12 + Φ21)] , γ2 = −1

2
[(Φ12 + Φ21) + φ(Φ11 − Φ22)] .

5.2 The setup

The detailed setup of a ray-tracing simulation depends on the properties of the N -body
simulation that is used as input, the most important parameter being the size of the sim-
ulation volume. As already mentioned, it is preferable to project a complete N -body box
onto one lens plane for two reasons. First, it is in general not possible to make a plane cut
through the box without cutting halos into two pieces, each of which then would appear
on different lens planes, causing inaccuracies. Second, especially if there is power on scales
larger than the side lengths of the projection volume, discontinuities may arise, because
it is usually necessary to randomly flip, rotate and translate the projection volume before
projection in order to avoid periodic repetition of structure. If now for example a large
filament is cut and assigned to two different projection volumes, and these volumes are

48

From Hartlap, PhD thesis 2005
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Ray-tracing approximations

• Get shear and convergence by FFT, or finite
differences in real space:
Smoothing is necessary to reduce Poisson noise
of N -body discrete particle distribution.

However, other limitation is N -body
resolution.

S. Hilbert et al.: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing 39
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Fig. 9. Convergence power spectra Pκ(ℓ) for sources at redshift z = 1
(lower curves) and z = 2 (upper curves). The simulation results (from
∼30 random fields of 3 × 3 deg2) are shown as diamonds with errorbars
(indicating standard deviation calculated from the field-to-field vari-
ance), the corresponding first-order predictions as solid lines. The pre-
dictions using the Peacock & Dodds (1996) prescription together with
the transfer function from Eisenstein & Hu (1999) are given as dot-
ted lines, those obtained from the Smith et al. (2003) fitting formula as
dashed lines. The predictions of a halo model using the concentration
parameters of Neto et al. (2007) are shown as dash-dotted lines.

found, e.g., by Jain et al. (2000), the convergence and shear
power spectra from ray-tracing agree very well, too. On scales
ℓ > 1000, the difference between both is well below one percent
in our ray-tracing results.

If the first-order prediction for the convergence power-
spectra is assumed to be correct to very high accuracy, the
smoothing tests can be considered as a test of the accuracy of
our ray-tracing algorithm. Then the results shown in Fig. 9 sug-
gest that the ray-tracing is able to reproduce weak-lensing effects
within ∼3% accuracy on scales 300 <∼ ℓ <∼ 20 000.

The comparison of the ray-tracing power spectra with some
of the popular fitting formulae is less encouraging: Both the pre-
scriptions by Peacock & Dodds (1996) (with the transfer func-
tion by Eisenstein & Hu 1999) and Smith et al. (2003) strongly
underpredict the power on intermediate and small scales. These
fitting formulae are based on older simulations, whose matter
power spectra are noticeably different from the power spectra
of more recent, higher-resolution simulations. The deviations
from the simulated convergence power spectra exceed 30% for
ℓ > 10 000, so these fitting formulae seem to be of limited use
for the interpretation of data from future weak-lensing surveys.

A prediction based on the popular halo model (Seljak 2000;
Cooray & Sheth 2002) and the halo concentration-mass relation
of Neto et al. (2007) provides a better fit to the convergence
power spectrum. There are, however, still deviations (≈10%), in
particular for higher source redshifts and intermediate scales (i.e.
ℓ ≈ 1−2 × 103). This coincides with the transition region of the
one- and two-halo terms, which is difficult to model accurately
due to halo exclusion effects (see e.g. Tinker et al. 2005, and
references therein), which are not included in our prediction.

As mentioned above, the deviations of the measured power
spectra and the first-order predictions at large ℓ are due to
smoothing effects. In Fig. 10, we present the convergence power
spectra from ray-tracing runs of the same set of fields (with a
cumulative area of 80 deg2 and sources at z = 1), but with
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!!" smoothing:
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Fig. 10. Convergence power spectra Pκ(ℓ) for sources at redshift z = 1.
Compared are the results from ray-tracing (symbols) using various
smoothing schemes (none/Gaussian with fixed scale ls/adaptive) and
the corresponding first-order prediction (lines) obtained projecting and
smoothing the measured 3D power spectra of the actual mass distribu-
tion in the simulation.

different smoothing schemes. In addition to adaptive smooth-
ing, which is intractable analytically, we also employ smoothing
with a Gaussian kernel of fixed comoving size on the lens planes.
The ray-tracing simulations with Gaussian smoothing on the lens
planes show – apart from sampling variance – perfect agree-
ment with the first-order prediction if the smoothing is into taken
into account there. Only the spectrum for the smallest smooth-
ing length shows some aliasing effects on very small scales. The
spectrum of the adaptive-smoothing runs happens to match the
spectrum for a Gaussian smoothing length of 10 h−1 kpc comov-
ing quite well, but one should be cautious when considering this
as an “effective” smoothing length in a different context.

4.2. Aperture-mass statistics

A suitable cosmic-shear measure that allows one to decompose
the shear signal in a finite-sized field into E- and B-modes is the
aperture mass dispersion (Schneider et al. 1998, 2002). The E-
and B-mode aperture mass at position θ on the sky and scale ϑ
are defined by:

M2
E,B(θ,ϑ) =

∫
d2θ′ Q

(
θ′ − θ,ϑ) γt,×(θ′, θ′ − θ). (24)

In this work we use the polynomial filter function Q proposed
by Schneider et al. (1998):

Q (θ,ϑ) =
6|θ|2
πϑ4

(
1 − |θ|

2

ϑ2

)
· (25)

The tangential and cross components of the shear are defined by

γt(θ′, θ) = −ℜ
(
γ(θ′)e−2iφ(θ)

)
, (26a)

γ×(θ′, θ) = −ℑ
(
γ(θ′)e−2iφ(θ)

)
, (26b)

where φ(θ) is the polar angle for the direction defined by θ.
An estimate for the aperture mass dispersion

〈
M2

E,B

〉
(ϑ) as

a function of the filter scale ϑ can be computed from a given
shear field by a spatial average. Figure 11a shows the E-mode
aperture mass dispersion measured from our set of simulations.

From (Hilbert et al. 2009).

• From Cartesian flat-sky simulations, lens planes are by construction
parallel:

• Neglects sky curvature.
• Gradient of potential not orthogonal to light ray

This limits simulated field of view to a few degreees.
With convergence maps created on say grids of 10242 pixels → resolution
of around 0.2 arcmin.

• Newtonian physics, neglects GR effects. Also, MoG simulations not
possible under Newtonian approximation.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 123 / 153



Part II day 3: Cosmological parameter estimation Numerical simulations

Further methods

• Compute lensing Jacobian on the fly while running N -body simulation
(White & Hu 2000).
Circumvents lens plane projections, allows for slightly higher time
resolution.

Easy for ray-shooting where photon tractories are known before hand,
more difficult for ray tracing (Li et al. 2011).

• Store density field at different time steps on surface moving towards box
center (= observer) with speed of light, use those after run ends for
lensing projections (Teyssier et al. 2009).

• Full-sky simulations, for large upcoming surveys, CMB lensing.
Create spherical concentric shells around observer on the fly, project onto
lens spheres. (Fosalba et al. 2008, Das & Bode 2008, Teyssier
et al. 2009, Becker 2013).

• General-relativity simulations.

• Modified gravity simulations.
Take ∼ 5 times compared to Newtonian ones.
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Hydro-dynamical simulations I
Important processes to simulate:

• Gas pressure, R ∼ 1 - 0.1 Mpc, suppression of structure formation, gas
distribution is more diffuse than dark matter

• Baryonic cooling, R < 0.1 Mpc (k > 10/Mpc), gas condenses into stars
and galaxies, more strongly clustered than dark matter

• AGN and SN feedback

Simulation methods
Dark matter usually simulated as (very massive) particles.

Hydrodynamic physics often simulated in cells on a grid (adaptive).

Non-resolved physical processes, effective treatment within cell (“sub-grid
physics”).

Hydrodynamical simulation can often not reproduce observational results,
e.g. on AGN feedback. Need to calibrate simulations with observations.
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Hydro-dynamical simulations II
Influence on WL

• Need to know total (dark + baryonic) power spectrum to 1-2% at k up to
10h/Mpc.

• Baryons (15% of total matter) behave differently than dark matter, but
dark matter is influenced by this, e.g. slightly follows distribution of
baryons

• Pκ strongly influenced for ` ≥ 1000 to 3000 (depending on statistical
errors).

Mitigation of baryonic effects

• Removing small scales from survey analysis.

• Model baryonic effects e.g. with halo model. Fit to simulations,
marginalise over nuisance parameters or different models.

• Self-calibration using combination of observations. E.g. additional
observations of halo structure (Zentner et al. 2008), power spectrum and
bi-spectrum (Semboloni et al. 2013).
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WL covariance
General definition

Covariance of data vector d = {di}, i = 1 . . .m:

Cij = 〈∆di∆dj〉 = 〈didj〉 − 〈di〉〈dj〉,
Examples of d:

di = Pκ(`i); di = ξ+(ϑi); di = 〈Map(θi).

Case of data vector = ξ̂±

Recall the estimator for ξ±:

ξ̂±(θ) =

∑
ij wiwj (εt,iεt,j ± ε×,iε×,j)∑

ij wiwj
.

Very roughly:
C ∼ 〈ξ±ξ±〉 ∼ 〈εεεε〉.

With weak-lensing relation ε = εs + γ:

C ∼ 〈(εs)
4〉+ 〈(εsγ)

2〉+ 〈γ4〉 ≡ D +M + V
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WL covariance components

• D = σ4
ε : Poisson noise from intrinsic ellipticities, shape noise

• M : mixed term

• V : shear covariance, cosmic variance, if shear field approximated having
Gaussian distribution (which it does not):
V ∼ 3〈γ2〉.
Otherwise, need to account for connected 4-pt (tri-spectrum) term.

Gaussian covariance of power spectrum Pκ

〈(∆Pκ)2〉(`) =
1

fsky(2`+ 1)

(
σ2
ε

2n̄
+ Pκ(`)

)2

.
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Non-Gaussian covariance
Mode coupling

• Couples different `-modes, leads to saturation of information content on
small scales

• Tri-spectrum coupling on small scales

• Coupling of small with large scales: halo sample variance (HSV), beat
couping, super-survey covariance (SSC) (Takada & Hu 2013).
SSC descreses faster with fsky than other terms → sub-dominant for large
surveys.

Modelling

• Tri-spectrum from halo model (+ PT)

• N -body simulations, but: difficult to include SSC

• From data, by spatial averaging over sub-fields, or Jackknife.

Spatial averaging: number of independent lines of sight n

For non-singular covariance of data vector with length m, need n > m.
For precision covariance (error bars on cosmo parameters of < 5%, need
n > 10m (Taylor et al. 2013).
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Likelihood function

Gaussian likelihood

L(d|p,M) = (2π)−m/2|C(p,M)|−1/2

× exp

[
−1

2
(d− y(p,M))

t
C−1(p,M) (d− y(p,M))

]
.

with d = data vector, C = covariance matrix, y = model, p = (cosmo)
parameter vector, M = cosmological model.

But: True likelihood is non-Gaussian.

Model non-Gaussianity of observables:

• N -body simulations (very time-consuming)

• Transform data to be more Gaussian

• Approximate Bayesian Computation (ABC) sampling
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Bayesian parameter inference

Martin KilbingerWL: higher-order stats. / 45

Constraining parameters

29

p(⇡|x, m) =
L(x|⇡, m)P (⇡|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

� : model parameter

p(�|d, m) =
L(d|�, m)⇥(�|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3
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⇡ : parameters
x : data
m : model

Bayes’ theorem

Parameter constraints = integrals over the posterior

For example:

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation,  
frequentist evaluation, ABC, …

Z
dn⇡ h(⇡)p(⇡|x, m)

h(⇡) = ⇡ : mean
h(⇡) = 168% : 68% credible region
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WL peak counts: Why do we want to study peaks?

Martin KilbingerWL: higher-order stats. / 45

Weak-lensing peak counts

21

• WL peaks probe high-density regions ↔ non-Gaussian tail of LSS 
• First-order in observed shear: less sensitive to systematics, circular average! 
• High-density regions ↔ halo mass function, but indirect probe: 

• Intrinsic ellipticity shape noise, creating false positives, up-scatter in S/N 
• Projections along line of sight

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

Chapter 5 — Peak-count modelling

Figure 5.9: Similar to Fig. 5.4, comparison between four cases on the large field. Here, Case 1 is only
indicative since it is still the result from the small field.

Galaxy redshift, redshift errors, tomography One can either suppose a constant source
redshift or generate sources from a distribution law. If a model for photo-z or other redshift
errors is provided, our forward model generates without any di�culties a series of realis-
tic observed redshifts for galaxies. To better extract cosmological information, performing
tomographic studies is also feasible.

Galaxy shape noise & intrinsic alignment Another extension for our model is the noise
model. When isotropy for galaxy shape orientation is assumed, Gaussian noise is added.
Beyond Gaussian noise, some physically-motivated models for IA can be added easily. In this
case, one needs to identify pairs of galaxy and hosted halo. The galaxy orientation can be
provided by an IA model depending, on its type and the distance to the halo center.

Inversion & filtering A large number of options are available for our model to make a mass
map. For example, using a Ÿ-peak approach, one could compute directly the convergence
signal without worrying about the inversion problem (see Sect. 4.4), while a more realistic
way would be simulating shears and using inversion techniques (Kaiser & Squires 1993, Seitz &
Schneider 1995, etc.) to get convergence maps. Besides, one can also adopt an aperture-mass
approach: convolving the shear field with a zero-mean filter. By definition, the aperture mass
is already a smoothing, while both Ÿ-peak methods require in addition filtering techniques,
linear or nonlinear ones, to reduce noise (see further Chap. 8). For all three modelling
approaches, taking masking into account is not necessarily trivial. Reducing the e�ective
survey area, determining near-mask areas with a higher noise level (Liu X. et al. 2014), or
filling missing data with inpainting (method: Pires et al. 2009b, data application: Jullo et al.
2014), are di�erent options.

S/N determination In most studies, the noise level in S/N is a global value derived from
the whole survey, which yields a global significance. However, in reality, depending on mask
and the galaxy spatial distribution, the local noise level is not uniform. Taking the local
significance into account would make the modelling more accurate (see also Chap. 8).

100 PhD thesis of Chieh-An Lin

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

interpretation ?

modelling

counting
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WL peak counts. What are peaks good for?

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp-AIM)

What is peak counting?

What do we gain from peak counting?
• Additional and complementary

information and constraints
compared to 2nd order shear

• Non-Gaussian information

Figure from Dietrich & Hartlap 2010

red/orange: cosmic shear

green: shear & peak

CAMELUS: A New Model to Predict Weak Lensing Peak Counts IWCS2, Nice — September 9th, 2014 8
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WL peaks: A fast stochastic model

Martin KilbingerWL: higher-order stats. / 45

Fast simulations for WL peak counts

25

linc.tw Chieh-An Lin (CEA Saclay)

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term
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Fast simulations for WL peak counts
Hypotheses:

1. Clustering of halos not important for counting peaks  
(along los: Marian et al. 2013) 

2. Unbound LSS does not contribute to WL peaks

Test:

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Results (on a small field)

Field of view = 54 deg2; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, zs = 1.0

A New Model to Predict Weak Lensing Peak Counts IAS — January 27th, 2015 30
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Dependance on parameters
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WL peak counts: 
parameter constraint strategies

30

Data vector x = x(ti). Different cases:

- Abundance of peaks ni as fct. of SNR ν (PDF; binned histogram) or 
- SNR values νi at some percentile values of peak CDF) 

- with or without lower cut νmin.
Cosmology with the shear-peak statistics 5

Figure 2. Construction of the function S. The solid black line
is the cumulative SNR distribution of peaks detected in one
of our 35 realizations of the fiducial cosmology. The horizontal
dashed lines are the logarithmically spaced percentiles from
fmin = 0.5 to fmax = 0.98 at which the cumulative SNR dis-
tribution is sampled. The corresponding SNR values denoted
by the vertical dashed lines are the values in our data vector.

gives the SNR at which the cumulative distribution ex-
ceeds the fth percentile for nbin values of f ranging from
fmin to fmax. Figure 2 illustrates how S is constructed.

We measured S(Ωm, σ8) for nbin = 5 logarithmically
spaced values from fmin = 0.50 to fmax = 0.98. At the
fiducial cosmology these percentiles corresponds to SNR
values of 3.5σ and 5.7σ, respectively. Typically several
hundred peaks per 36 sq. deg. field were detected so that
the 98%ile could be reliably measured.

We used bilinear smoothing splines (Dierckx 1993)
to interpolate S(Ωm, σ8) on the grid covered by our N-
body simulations. In this section splines are a sufficient
description of the variation of S over our parameter space
because we only seek to qualitatively demonstrate the
ability of the peak statistics to constrain cosmological
parameters and to illustrate some of its properties. We
will use a more quantitative approach in the following
sections.

Figure 3 shows the confidence contours derived from
this statistics in the Ωm-σ8 plane. They have a shape
similar to that seen in constraints derived from clus-
ter cosmology (e.g., Henry et al. 2009) and cosmic shear
(Fu et al. 2008, e.g.,) for a CFHTLS like 180 sq. deg.
surey. In order to achieve this, we scaled the covariance,
which we computed for the individual 36 sq. deg. fields
back to the full survey. The similarity of the constraints
is of course no surprise since the peak statistics measures
the same density fluctuations as clusters of galaxies and
cosmic shear.

Although the spline interpolation is mostly illustra-
tive, we defined a figure of merit (FoM), in analogy to
the FoM of the Dark Energy Task Force (Albrecht et al.
2006), as the inverse of the area inside the 95% confidence
contour. We used this FoM to characterize how the peak
statistics changes when parameters entering the function
S are modified. Here in particular we examined the de-

Figure 3. Confidence contours of the aperture mass peak
statistics. Shown are the 1-, 2-, and 3σ confidence contours
of the S statistics. The white cross denotes the fiducial cos-
mology.

pendence of the cosmological constrains on the minimum
significance of a detection.

The detection threshold employed in the produc-
tion of Fig. 3 is very low and a sizable fraction of the
peaks detected in this way are simply due to shape noise
(Dietrich et al. 2007) and do not carry cosmological in-
formation. However, at such a low detection threshold
most peaks not caused by noise fluctuations are also not
due to a single massive halo but caused by the alignment
of LSS along the LOS. We demonstrate that these low
significance peaks indeed carry cosmological information
by comparing the FoM of the statistics in Fig. 3 to the
FoM resulting from the same function S with a detection
threshold of 4.5σ. While the constraints in Fig. 3 cor-
respond to a FoM of 40, the higher detection threshold
results in a FoM of only 20. We note that the 95% con-
fidence interval is not fully contained in the support of
our flat prior. For the low SNR detection, the 95% con-
fidence interval is cut off by the prior only at the high
Ωm/low σ8 end. The prior terminates the banana shaped
confidence region at both ends for the high SNR detec-
tion constraints. Consequently, the true figures of merit

c⃝ 2009 RAS, MNRAS 000, 1–11

CDF

Dietrich & Hartlap (2010)

xi  = SNR values …
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pix =

�2
✏

2
1

ngApix
. (20)

We have �✏ = 0.4 and ngApix is chosen to be 1, so that
�pix ⇡ 0.283. We can also estimate �noise with Eq. (18) and ob-
tain �noise ⇡ 0.024. This shows that a real map is in general
dominated by the noise (Fig. 3). Even for a peak at ⌫ = 5, the
lensing signal is only at the order of  = 0.12, less than half of
the pixel noise amplitude.

5. Results

5.1. Validation of our model: comparison to N-body runs

To validate our model, we compare it to the N-body simulations.
We compute peak abundance histograms from both simulations,
together with two intermediate steps. This results in four cases
in total:

case 1: full N-body runs;
case 2: replacing N-body halos with NFW profiles with the

same masses;
case 3: randomizing angular positions of halos from case 2;
case 4: fast simulations, corresponding to our model.

These cases form a progressive transition from full N-body
runs towards our model. More precisely, case 2 tests the hypothe-
sis corresponding to the second step of our model (see Sect. 3.1),
i.e. di↵use, unbound matter contributes little to peak counts.
Case 3 additionally tests the assumption made in the third step
(halo clustering plays a minor role). Finally, case 4 completes
our model with the missing first step. As a result, the halo pop-
ulation and their redshifts are identical to N-body runs in case 2
and case 3.

Figure 4 shows the peak abundance histograms for the four
cases. In this section, the field of view is 53.7 deg2, since we
are limited by the available information of ray-tracing for the N-
body runs. For cases 1 and 2, we compute the average in each
histogram bin for 8 noise maps. For cases 3 and 4, this is done
with 8 realizations (of randomization and of fast simulations,
respectively), and 8 noise maps, thus 64 maps in total. Hence, the
error bars refer to the combination of the statistical fluctuation
due to the random process, and the shape noise uncertainty.

For low peaks, with ⌫  3.75, we observe that npeak(⌫) re-
mains almost unchanged between the di↵erent cases. This is not
suprising because in this regime, npeak(⌫) is mainly contributed
by noise. This argument is supported by the noise-only peak his-
togram, shown as the magenta dashed line. The lower panel of
Fig. 4 shows that there exist some systematic over-counts in this
regime at the order of 10%. The cause of this bias is ambiguous.
One possibility might be the use of NFW profiles for ray-tracing
simulations. It might also come from the subtraction of the mean
 value from the maps. We leave this to future studies. Another
observation in this regime is that by adding the signal to the noise
field, the number of peaks with ⌫  2.75 decreases. This proves
that the e↵ect of noise is not additive for peak counts.

In the regime of ⌫ � 3.75, we observe that replacement
by NFW profiles creates an enhancement for very high peaks,
⌫ � 5.75, whereas an under-count is produced for medium peaks,
3.75  ⌫  5.75. One possibility to explain this could be NFW
profiles. With the presence of the noise, peaks can be shifted
from the center of halos, thus some peak heights are determined
by the profile value at these shifted positions. If NFW profiles

systematically overestimate mass in the center region and un-
derestimate elsewhere, then peak histograms would match to the
scenario presented in Fig. 4. It could also be an e↵ect of tilted
M-c relation. We might over-estimate cNFW for large M and en-
der estimate for small M. Between case 1 and case 2, the di↵er-
ence in medium-peak bins is only few percent. This shows that
neglecting lensing contribution from unbound matter is a good
approximation for peak counting.

Comparing case 2 and case 3, we discover that position ran-
domization decreases peak counts by 10%–50%. Apparently,
decorrelating angular positions breaks down the two-halo term,
so that halos overlap less on the field of view and decreases high-
peak counts. Yang et al. (2011) showed that high peaks with
⌫ � 4.8 are majorly contributed by one single halo, and about
12% of total high-peak counts are contributed by multiple ha-
los. This number is in agreement with the under-count from our
hypothesis of randomization.

The impact of the mass function is shown by comparing case
3 to case 4. Peak counts are more numerous in our forward model
based on the mass function of Jenkins et al. (2001). This excess
compensates the deficit from randomization. However, as shown
by Fig. 2, the real mass function in N-body runs is coherent to
the analytical model that we use, except for the low-mass deficit
tails from N-body runs. To test the impact from this, we run fast
simulations with di↵erent lower limit for the halo sampling, and
we discover that peak counts do not depend on the lower sam-
pling limit Mmin when Mmin remains lower than 1013 M�/h. This
proves that the deficit tails are not the cause of the peak count
enhancement. Lack of explanation, we may have to test with
another N-body simulation set to understand the origin of this
e↵ect.

Fig. 5. Similar plot to Fig. 4, but on a larger field. Cases 2, 3, and 4 are
carried out for 859 deg2. Case 1 should only be taken as an indication
since its size of field is the same as in Fig. 4, and therefore 16 times
smaller than cases 2–4. Note that the fluctuation from high ⌫ bins is
much reduced compared to Fig. 4.

Figure 5 shows a similar study of case 2, 3 and 4 for a larger
field of 859 deg2. One can recover the same e↵ects: increase
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Parameter constraints: Gaussian

32
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Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with xabd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right
panel, while the colored areas are from Lsvg. The black star stands for ⇡in and grey areas represents the non-explored parameter space. The dotted
lines are di↵erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e↵ect. The parameter-dependent determinant term does not contribute significantly.

4. Testing the copula transform

4.1. Formalism

Consider a multivariate joint distribution P(x1, . . . , xd). In gen-
eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
is to evaluate the likelihood in a new observable space in which
the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)

where ui ⌘ Fi(xi). The function c is called the copula density.
On the other hand, let qi ⌘ ��1

i (ui), where �i is the CDF of the
normal distribution with the same means µi and variances �2

i as

the laws Pi, such that

�i(qi) ⌘
Z qi

�1
�i(q0)dq0, (12)

�i(qi) ⌘ 1q
2⇡�2

i

exp
266664� (qi � µi)2

2�2
i

377775 . (13)

We can then define a new joint PDF P0 in the q-space that corre-
sponds to P in x-space, i.e. P0(q) = P(x). The marginal PDF and
CDF of P0 are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P0 and �i, one gets

P0(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P0(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P0 are identical to a multi-
variate Gaussian distribution � with mean µ and covariance C,
where C is the covariance matrix of x. The PDF of � is given by

�(q) ⌘ 1p
(2⇡)d det C

exp

26666664�
1
2

X

i, j

(qi � µi)C�1
i j (q j � µ j)

37777775 . (16)

Finally, by approximating P0 to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) ⇡ �(x). Apply-
ing the Gaussian copula transform means that we carry out this
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Fig. 2. Middle panel: the likelihood value using xabd5 on the ⌦m-⌃8 plane. The green star represents the input cosmology ⇡in. Since log�8 and
log⌦m form an approximately linear degenerency, the quantity ⌃8 ⌘ �8(⌦m/0.27)↵ allows us to characterize the banana-shape contour thickness.
Right panel: the marginalized PDF of ⌃8. The dashed lines give the 1-� interval (68.3%), while the borders of the shaded areas represent 2-�
limits (95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give corresponding value for 1 and 2-�
significance levels, respectively.

Gaussian (labelled vg) log-likelihoods as

Lcg ⌘ �xT (⇡)dC�1(⇡obs) �x(⇡), (8)

Lsvg ⌘ �xT (⇡)dC�1(⇡) �x(⇡), and (9)

Lvg ⌘ ln
h
detbC(⇡)

i
+ �xT (⇡)dC�1(⇡) �x(⇡). (10)

Here, the termdC�1(⇡obs) in Eq. (8) refers todC�1(⇡in), where ⇡in is
described in Sect. 2.2. By comparing the contours derived from
di↵erent likelihoods, we aim to measure (1) the evolution of the
�2 term by substituing the constant matrix with the true vary-

ing dC�1, and (2) the impact from adding the determinant term.
Therefore, Lsvg is just an illustrative case to assess the influence
of the two terms in the likelihood.

3.2. The �2 term

The left panel of Fig. 3 shows the comparison between confi-
dence regions derived from Lcg and Lsvg with xabd. It shows a
clear di↵erence of the contours between Lcg and Lsvg. Since the
o↵-diagonal correlation coe�cients are weak (as shown in Ta-
ble 3), the variation of diagonal terms of C plays a major role in
the size of credible regions. The isolines for Ĉ55 are also drawn
in Fig. 3. These isolines cross the⌦m-�8 degenerency lines from
Lcg and thus shrink the credible region. We also find that the iso-
lines for Ĉ11 and Ĉ22 are noisy, and that those for Ĉ33 and Ĉ44
coincide well with the original degeneracy direction.

Table 4 shows the values of both criteria for di↵erent like-
lihoods. We observe that using Lsvg improves significantly the
constraints by 24% in terms of FoM. Regarding �⌃8, the im-
provement is weak. As a result, using varying covariance ma-
trices breaks down part of the banana-shape degenerency and
shrinks the contour length, but does not reduce the thickness.

We show in the left panels of Fig. 4 the same constraints de-
rived from two other observables xpct5 and xcut5. We see a similar
CDC e↵ect for both. We observe that xpct5 has less constraining
power than xabd5, and xcut5 is outperformed by both other data
vectors. This is due to the cuto↵ value ⌫min. Introducing a cuto↵
at ⌫min = 3 decreases the total number of peaks and amplifies
the fluctuation of high-peak values in the CDF. When we use

percentiles to define observables, the distribution of each com-
ponent of xcut5 becomes wider than the one of the corresponding
component of xpct5, and this greater scatter in the CDF enlarges
the contours. However, the cuto↵ also introduces a tilt of the
contours. Table 5 shows the best-fit ↵ for the di↵erent cases.
The di↵erence of the tilt could be a useful tool to improve the
constraining power. This has also been observed by Dietrich &
Hartlap (2010). Nevertheless, we do not procced any joint analy-
sis since xabd5 and xcut5 contain essentially the same information.

3.3. Impact from the determinant term

The right panel of Fig. 3 shows the comparison between Lsvg and
Lvg with xabd5. It shows that adding the determinant term does
not result in significant changes of the parameter constraints. The
isolines from ln(det Ĉ) explain this, since the graidents are per-
pendicular to the degenerency lines. We observe that including
the determinant makes the contours slightly larger, but almost
negligibly so. The total improvement of the contour area com-
pared to Lcg is 22%.

However, a di↵erent change is seen for xpct5 and xcut5.
Adding the determinant to the likelihood computed from these
observables induces a shift of contours toward the higher-⌦m
area. In the case of xcut5, this shift compensates the contour o↵-
set from the varying �2 term, but does not improve significantly
either �⌃8 or FoM, as shown in Table 4. As a result, using the
Gaussian likelihood, the total CDC e↵ect can be summed up as
an improvement of at least 14% in terms of thickness and 38%
in terms of area.

The results from Bayesian inference is very similar to the
likelihood-ratio test. Thus, we only show their �⌃8 and FoM in
Table 6 and best fits in Table 7. We recall that a similar analy-
sis has been done by Eifler et al. (2009) on shear covariances.
Our observations agree with their conlusions: a relatively large
impact from the �2 term and negligible change from the deter-
minant term. However, the total CDC e↵ect is more significant
in the peak-count framework than for the power spectrum.
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Approximate Bayesian Computation (ABC)

35

p(⇡|x, m) =
L(x|⇡, m)P (⇡|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

� : model parameter

p(�|d, m) =
L(d|�, m)⇥(�|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3

Monday, June 14, 2010

⇡ : parameters
x : data
m : model

xLikelihood: how likely is it that model prediction                 reproduces data    ?xmod(⇡)
C.-A. Lin & M. Kilbinger: A new model to predict weak-lensing peak counts II.

Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = xobs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(xobs|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� xobs|  ✏. What is retained after repeating this process is
an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs|  ✏ used above is generalized to
D(s(X), s(xobs))  ✏. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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ABC can be performed if: 

• it is possible and easy to sample from L 
 

ABC is useful when: 

• functional form of L is unknown 
• evaluation of L is expensive 
• model is intrinsically stochastic

Probability = p/N in frequentist sense. 

Magic: Don’t need to sample N models. 
One per parameter     is sufficient  
with accept-reject algorithm.

⇡

C.-A. Lin & M. Kilbinger: A new model to predict weak-lensing peak counts II.

Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = xobs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(xobs|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� xobs|  ✏. What is retained after repeating this process is
an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs|  ✏ used above is generalized to
D(s(X), s(xobs))  ✏. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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ABC: Approximate Bayesian Computation III
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
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ABC: Approximate Bayesian Computation IV

Martin KilbingerWL: higher-order stats. / 4538

Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
Easier: Make lots of soups with different ingredients, compare.
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Martin KilbingerWL: higher-order stats. / 4539

Example: let’s make soup.

Questions: 
• What aspect of data and simulations do we compare? (summary statistic) 
• How do we compare? (metric, distance) 
• When do we accept? (tolerance) 
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Parameter constraints: ABC

40

• Summary statistic 
 
s = x (data vector for 2 cases)  

• Metric  D: two cases 
 
 
 
 

• ABC algorithm: iterative importance 
sampling (PMC) with decreasing  
tolerance

A&A 593, A88 (2016)

Fig. 4. Distribution of evaluated parameter points on the ⌦m-�8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.

we use

xmod
i =

1
N

NX

k=1

x(k)
i , (32)

Ĉi j =
1

N � 1

NX

k=1

⇣
x(k)

i � xmod
i

⌘ ⇣
x(k)

j � xmod
j

⌘
, (33)

dC�1 =
N � d � 2

N � 1
bC�1
, and (34)

P̂i(xi) =
1
N

NX

k=1

1
hi

W

0BBBBB@
xi � x(k)

i

hi

1CCCCCA (35)

for the estimations, where d is the dimension of x, W is the
Gaussian kernel, and hi = (4/3N)1/5�̂i. Note that the model pre-
diction xmod is nothing but the average over the realization set;
the inverse covariance matrix is unbiased (Hartlap et al. 2007) to
good accuracy (see also Sellentin & Heavens 2016); and Eq. (35)
is a kernel density estimation (KDE).

We evaluated the copula likelihoods, given by Eq. (31), on a
grid. The range of wde

0 is [–1.8, 0], with �wde
0 = 0.04. Concerning

⌦m and �8, only some particular values were chosen for eval-
uation in order to reduce the computing cost. This resulted in
816 points in the ⌦m-�8 plane, as displayed in Fig. 4, and the
total number of parameter sets was 37536. For each parameter
set, we carried out N = 400 realizations of our model, to es-
timate L using Eqs. (31)–(35). Each realization produced data
vectors for three cases: (1) the Gaussian kernel; (2) the starlet
kernel; (3) MRLens, so that the comparisons between cases are
based on the same stochasticity. The aperture mass was not in-
cluded here because of the time consuming convolution of the
unbinned shear catalog with the filter Q. The FDR ↵ of MRLens
was set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated  field.

Table 2. Definition of the data vector x for PMC ABC runs.

Filter ✓ker [arcmin] or ↵ Number of bins d
Gaussian ✓ker = 1.2, 2.4, 4.8 9 ⌫ bins 27

Starlet ✓ker = 2, 4, 8 9 ⌫ bins 27
Map tanh ✓ker = 2.125, 4.25, 8.5 9 ⌫ bins 27
MRLens ↵ = 0.05 6  bins 6

Notes. The 9 bins of ⌫ are [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, and the 6 bins of
 are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +1[. The symbol d is the total
dimension of x, and ↵ stands for the input value of FDR for MRLens.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian compu-
tation (ABC) technique. ABC bypasses the likelihood evalua-
tion to estimate directly the posterior by accept-reject sampling.
It is fast and robust, and has already had several applications
in astrophysics (Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Paper II; Killedar et al. 2016). Here, we use
the Population Monte Carlo ABC (PMC ABC) algorithm to con-
strain parameters. This algorithm adjusts the tolerance level iter-
atively, such that ABC posterior converges. A detailed descrip-
tion of the PMC ABC algorithm can be found in Sect. 6 of
Paper II.

We ran PMC ABC for four cases: the Gaussian kernel, the
starlet kernel, the aperture mass with the hyperbolic tangent
function, and MRLens with ↵ = 0.05. For the three first lin-
ear cases, the data vector x was composed of three scales. The
S/N bins of each scale were [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, which
result in 27 bins in total (Table 2). For MRLens, x was a 6-
bin  histogram, which is the same as for the analysis using the
likelihood.

Concerning the ABC parameters, we used 1500 particles in
the PMC process. The iteration stoped when the success ratio
of accept-reject processes fell below 1%. Finally, we tested two
distances. Between the sampled data vector x and the observed
one, xobs, we considered a simplified distance D1 and a fully
correlated one D2, which are respectively defined as

D1

⇣
x, xobs

⌘
⌘

vuutX

i

⇣
xi � xobs

i

⌘2

Cii
, (36)

D2

⇣
x, xobs

⌘
⌘

q�
x � xobs�T C�1 �

x � xobs�, (37)

where Cii and C�1 are now independent from cosmology,
estimated using Eqs. (33) and (34) under (⌦m,�8, w

de
0 ) =

(0.28, 0.82,�0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also ran ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter ⌃8.
Here, we define ⌃8 di↵erently from the literature:

⌃8 ⌘
 
⌦m + �

1 � ↵
!1�↵ ✓

�8

↵

◆↵
· (38)

A88, page 8 of 14

D1 in Lin & MK 2015b  

D1 + D2 in Lin, MK & Pires 2016
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ABC: Approximate Bayesian Computation VII
chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Approximate Bayesian computation

ABC’s accept-reject process is actually a
sampling under P‘ (green curve):

P‘(fi|xobs) = A‘(fi)P(fi),

where P(fi) stands for the prior (blue curve) and

A‘(fi) ©
⁄

dx P(x|fi) |x≠xobs|Æ‘(x),

is the accept probability under fi (red area). One
can see that

lim
‘æ0

A‘(fi0)/‘ = P(xobs|fi0) = L(fi0),

so P‘ is proportional to the true posterior when
‘ æ 0.

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 B 5

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 146 / 153



Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

ABC: Approximate Bayesian Computation VIII
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Approximate Bayesian computation

Lin & Kilbinger (2015b)
A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 24

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II/II 147 / 153



Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

ABC: Approximate Bayesian Computation IX

Martin KilbingerWL: higher-order stats. / 45

Parameter constraints: comparison

42

A&A proofs: manuscript no. Submit1

Fig. 10. Weights of particles from t = 8 with s(x) = xabd5. The weight
is represented by the size and the color at the same time.

Fig. 11. Comparison between credible regions derived from Lcg (col-
ored areas) and ABC (solid and dashed lines).

that the CDC e↵ect can increase the constraining power up to
22%. The main contribution comes from the additional variation
of the �2 term and the contribution from the determinant term
is negligible. These observations conform a previous study by
Eifler et al. (2009).

We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di↵erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e↵ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
ables, we provide two straightforward ways to use the full PDF
information. The first one is the true likelihood. The direct eval-
uation of the likelihood is noisy due to the high statistical fluc-
tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e↵ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di↵erent data vectors is done in this
study. Although we find for all analyses that xabd5 outperforms
xpct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di↵erent percentile choice. Actually,
the performance of xpct depends on the correlation between its
di↵erent components. However, the xpct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the xcut fam-
ily is largely outperformed by xabd. Thus, we conclude that xabd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from xcut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e↵ects is desired. Our study displays two
di↵erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
on trade-o↵ between the unappropriatenss of analytic estimators
and the uncertainty of density estimation.
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We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di↵erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e↵ect if a varying covariance is taken into
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ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e↵ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di↵erent data vectors is done in this
study. Although we find for all analyses that xabd5 outperforms
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the performance of xpct depends on the correlation between its
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mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the xcut fam-
ily is largely outperformed by xabd. Thus, we conclude that xabd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from xcut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e↵ects is desired. Our study displays two
di↵erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
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ABC wider but less elongated and less bent contours than Gaussian with const cov.  
KDE smoothing effect?
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