Al

Weak Gravitational Lensing
Part I1/11

Martin Kilbinger

CEA Saclay, Irfu/SAp - AIM, CosmoStat; IAP

Euclid Summer School, Roscoff
August 2018

martin.kilbinger@cea.fr
www.cosmostat.org/kilbinger
Slides: http://www.cosmostat.org/events/ecolel8

L

Q@energie_sombre #EuclidRoscoff2018

~EE .

< COSMOSTAT unwversité i



Outline

Overview

Part 1T day 1: E- and B-modes
Very brief reminders from day I
E-/B-mode decomposition recap
E-/B-mode estimators
Galaxy-galaxy lensing: motivation

Part II day 2: Shear estimation
Galaxy-galaxy lensing in detail
Back to the aperture mass: Filter function relation
Spherical-sky lensing projections
Shear calibration

Part II day 3: Cosmological parameter estimation
Numerical simulations
Covariance estimation
Likelihood and parameter estimation

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 2 / 153



Reminder from last year ...

Weak Gravitational Lensing Part II



Part II day 1: E- and B-modes Very brief reminders from day I

Books, Reviews and Lecture Notes

e Bartelmann & Schneider 2001, review Weak gravitational lensing,
Phys. Rep., 340, 297 arXiv:9912508

e Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
ITT (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

e Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

e Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

e Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

e Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

e Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

What has gravitational lensing ever done for us?
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Microlensing rules out objects between 10~7 and few 10 M.

Milky Way Galaxy

Large Magellanic Cloud
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Part II day 1: E- and B-modes | Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Detection of Earth-like exoplanets with microlensing.
Masses and distances to host star similar to Earth.
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Structure of QSO inner emission regions.
Microlensing by stars in lens galaxies.

[J. Wambsganss|
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results

Dark matter profiles in outskirts of galaxies.
Measuring halo mass to very large galactic scales.

A% [hyg Mg pc?]
1

Projected excess mass

Martin Kilbinger (CEA)
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(Velander et al. 2014)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Galaxy clusters are dominated by dark matter.
Bullet cluster and others: bulk of mass is collisionless.
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results
Observation of very-high (z > 7) galaxies.
Galaxy clusters as “natural telescopes”.
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results

Hints of inconsistency of our cosmological model at low and high 27
Planck and WL in tension? Also WL cluster masses for Planck SZ clusters;
Hj from cepheids + SL.

T T T T
KiDS-450 |

CFHTLenS (MID J16)

WMAP9+ACT+SPT

10k Planck15 |
00
N)

0.8 |- .

0.6 |- -

1 1 1 1
0.16 0.24 0.32 0.40
L9

(Hildebrandt et al. 2017)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing
Outstanding results
General relativity holds on cosmological scales.
Joint WL and galaxy clustering cosmology-independent GR test.
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(Reyes et al. 2010)
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Part II day 1: E- and B-modes Very brief reminders from day I

Science with gravitational lensing

Outstanding results

Dark matter is not in form of massive compact objects (MACHOs).
Detection of Earth-mass exoplanets.

Structure of QSO inner emission regions.

Dark matter profiles in outskirts of galaxies.

Galaxy clusters are dominated by dark matter.

Observation of very-high (z > 7) galaxies.

Hints of inconsistency of our cosmological model at low and high 27
General relativity holds on cosmological scales.

Most important properties of gravitational lensing
Lensing probes total matter, baryonic + dark.
Independent of dynamical state of matter.
Independent of nature of matter.
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Part II day 1: E- and B-modes Very brief reminders from day I

Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

e Continuous deflection: sensitive to
projected 2D mass distribution.

e Differential deflection:
magnification, distortions of
images.

e Small distortions, few percent
change of images: need statistical
measurement.

e Coherent distortions: measure
correlations, scales few Mpc to few
100 Mpc.
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Part II day 1: E- and B-modes Very brief reminders from day I

Cosmic shear deflection angle

We derived the deflection angle as integral over the potential gradient
(continuous deflection along the line of sight):

source

observer

a(0.0 = % [ XK Vit x) - VsV W)

Geometrical relation: (Unobervable) unlensed source position 3 is observed
lensed position (direction of incoming light ray) 6 minus deflection angle a,

B(0,x) =0 —a(b,x) =0 — Voiy(0);
with the lensing potential

/

2 e X — X / ’
w(e,x)=—2/ dx = (x'0,x").
cJo XX
WS




Part II day 1: E- and B-modes Very brief reminders from day I

Convergence and shear

The lens equation is the mapping from lens to
soure 2D coordinates. The linearized lens
equation

9B
(’)gj = Ayj = by — 0,09,

is described by the symmetrical 2 x 2 Jacobi
matrix,

A (1-6—m =2 ’
—Y2 l1—rk+m
Which defines convergence « and shear 7.

e convergence k: isotropic magnification

e shear 7: anisotropic stretching
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap from part I

Shear patterns

We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for ~.
That results in radial pattern.

Projected matter density Distortion field
convergence £ shear

-0.041 0.095 0.23

tangential distortions around mass peaks

Source galaxies at z = 1, ray-tracing simulations by T. Hamana
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap from part I

Shear patterns

We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for ~.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the EF-mode. A so-called B-mode is not generated.

:;‘MN‘;’ .’.Mm.\.
peak .trough.
N N2
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap I

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

e Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

e Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

e Intrinsic alignment (although magnitude not well-known!)
e Varying seeing and other observational effects (table ronde topic!)

e Non-standard cosmologies (non-isotropic, TeVeS, ...)
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap 11

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain ¥ and &P from ~, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear +; is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering x with a function U that is related to Q.
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Part II day 1: E- and B-modes E-/B-mode decomposition recap

E- and B-modes: recap III

A Y
A Y
\&
-
<
N

.@_-___,

The resulting quantity is called aperture mass M,y (6), which is a function of
the filter size, or smoothing scale, 6. It is only sensitive to the E-mode.

If one uses the cross-component shear v, instead, the filtered quantity, My
captures the B-mode contribution only.

End of recap from part I.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 14 / 153



Convergence as potential field
Again convergence k and shear 7:

9Bi
875?]- =A;; = i — 0:0;¢;

l—Kk—m —2 )
A= .
( —2 1—Kk+m

From this, write k and 7 as second derivatives of the potential.
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Part I day 1: B~ and B-modes |

Convergence as potential field
Again convergence k and shear 7:

9Bi
875?]- =A;; = i — 0:0;¢;

a_(1-5-m  —m )
—2 I—Kk+m
From this, write k and 7 as second derivatives of the potential.

1 1 1
=3 (0101 + 0202) ¢ = §V2¢; m=g (0101 — 0202) ;2 = 01029).
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Part II day 1: E- and B-modes | E-/B-mode estimators

Convergence as potential field
Again convergence k and shear 7:

0p;
875?]- =A;; = bij — 0,0,

A 1-r—m 72
—2 l—k+m )’
From this, write x and v as second derivatives of the potential.

1 1 1
K=3 (0101 + 0202) ¢ = §V2¢; m=j; (0101 — 0202) ;o = 0102.

We can now define a vector field u for which the convergence is the
“potential”, with
u = VK.

Express u in terms of the shear.
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Part II day 1: E- and B-modes | E-/B-mode estimators

Convergence as potential field
Again convergence k and shear 7:

0p;
g =A;; = bij — 0,0,

26,
l—-k-—m -2
A= .
< —2 1—/€+W1)

From this, write x and v as second derivatives of the potential.

1 1 1
=3 (0101 + 0202) ¢ = §V2¢; mn=; (0101 — 0202) ;o = 0102.

We can now define a vector field u for which the convergence is the

“potential”, with
u = VK.

Express u in terms of the shear.

w— Ok _ %(818181 + 6182(92),‘4, _ 81’)/1 + 82’}/2
D2k 5(010102 + 020202)K —011 + 0172 )
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Part II day 1: E- and B-modes | E-/B-mode estimators

E- and B-mode potential, convergence, and shear I

Thus, from a shear field +, to linear order, the corresponding convergence is
derived from a gradient field u, and is curl-free, V x u = 0yus — Ou; = 0, as
can easily be seen.

This is the E-mode, in analogy to the electric field.

However, in reality, from an observed shear field, one might measure a
non-zero curl component.
This is called the B-mode, in analogy to the magnetic field.

Definition:

V2P =V -y

V2kB .=V x u,

and potentials
v?,l/)E,B _ 2/€E7B.

Note that ¥ and kB do not correspond to physical mass over-densities.
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Part II day 1: E- and B-modes | E-/B-mode estimators

E- and B-mode potential, convergence, and shear II
These can be written in complex notation,

v=9F+iP k= kE ik,
and the shear

. 1
71+172=§(31311/JE—32521/J )—0100YP+i 010297 + (31311/J — 92000")

Now, we can compute the E-, B-, and mixed EB-mode power spectrum.
(RE(Q)RE (L)) = (2m)%0n (€ — £)PE(0),
(RP(O)RP(€)) = (2m)*ép (£ — £')PE(0),
(RE(€)R°(£)) = (2m)%0n (€ — )PP (0),
and can derive (from §(£) = e%#%(¢),
v in Fourier space
(07 () = (2m)*ép (€ - £) [PF() + P2 (D)]
((0)3(€)) = (2m)?on (€ + £)e* [PF(€) — P2(£) + 2P (0)] .

x>

x>

see last years” TD) for the correlators of
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Part II day 1: E- and B-modes | E-/B-mode estimators

Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

(v(0)7"(0 + 9)) = (yy")(F) =F [(F(O)7"(€))] (9);
() (®) =F [(F(OA ()] (9);

But these correlators are very closely related to the shear two-point
correlation functions £ and £_, that we defined on day 1 (part I):

&+ (19) = <'Yt’Yt> (19) + <'Y>< ’Y><> (79)
= <'7t'Yt> (19) - <'7>< 7x> (19)

tfl\"r

—
53

~
|
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Part II day 1: E- and B-modes | E-/B-mode estimators

Recall: 2PCF

Correlation of the shear at two points yields four quantities

I
NN NS
() (rxn) . """ \ , """ .

Parity conservation — (v¢yx) = (yx1) =0

The two components of the shear two-point correlation function (2PCF) are
defined as

&+ (9) = (mw) (9) + (vxvx) (9)
§- (79) = <’Yt%> (19) - <’Yx’Yx> (19)

Due to statistical isotropy & homogeneity, these correlators only depend on .
19 / 153



Part II day 1: E- and B-modes | E-/B-mode estimators

Real-space correlation function (2PCF)

Fourier-transforming the last two expressions results in shear two-point
correators in real space,

(V(0)y* (8 +9)) = (v ) () = F [(F(£)F* (€))] (9);
() (®) =F [(5()5(£))] (9);

But these correlators are very closely related to the shear two-point
correlation functions £, and £_, that we defined on day 1 (part I):

E+(9) = (mye) (9) + (vxx) (9)
E-(9) = (m) (9) — (vx <) (V)

Choose ¥ = (1,0). Then, v = —y; and 7% = —72.

= (") = {mn) + (2re) = &4
() = (mm) — (y2y2) + 2i{n172) = & + 2.
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Part II day 1: E- and B-modes | E-/B-mode estimators

2PCF and E-/B-mode power spectra I

We generalize the relation between 2PCF and convergence power spectrum Py
from day 1,

&)= [ a0
£(0) = 5 /0 " 4001, (09)Pu(0),

to include E- and B-mode power spectra:

&) =5 [ deesn(e) [PEO + P2(0)]

E_(9) = 2i /O T ae 034(09) [PE(0) — PE(0)]

s

(and we don’t look any further at £, which vanished for a parity-symmetric
universe.)
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Part II day 1: E- and B-modes | E-/B-mode estimators

2PCF and E-/B-mode power spectra 11

We have thus two observables (£4,¢_) and two unknowns (PE, PB). Surely,
these two power spectra can be deduced from the observations?
The above equations can be inverted using the orthogonality of the Bessel
function:
op(l—10)

é )
(or, alternatively, go back to the 2D Fourier integrals and use the
orthogonality of the plane wave basis functions exp(i€d))
resulting in

/ 4993, (09)7,(09) =
0

PE@) = [ 400 |6 (0)30(e9) + € (0)34(60)]
PR =n [ a0 9[640)30(t0) ~ - 0)a(e0)].

So, in principle, the E-/ and B-mode power spectra can be computed
separately, but not in practice, since this requires information about the shear
correlation that is unobservable, towards 0 and oo separation.
— We have to further filter the field for a better separation.
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Part II day 1: E- and B-modes | E-/B-mode estimators

Aperture-mass

Yesterday we introduced the aperture-mass as convolution of the shear field
with a filter @,

Map(6,9) = / 029 Q(| — ') 1 (9)

and claimed that this was equivlaent of convolving the convergence with
another filter U,

Map(6,9) = [ 0 Uy((0 ~ 9') k() W
(Kaiser et al. 1994, Schneider 1996).

Exercise for next session (where you’ll need stuff from today’s TD): What is
the relation between U and Q7
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Part II day 1: E- and B-modes | E-/B-mode estimators

Convolution with shear

Parenthesis:

Eq. (3) involves the tangential shear v, with re- V2
spect to the aperture centre 1; it should be writ- o
ten v (9, 9).
This “field” 4 is thus defined locally, and can- 9 -9
not be represented globally.
How can this expression be written as convolu-
tion with v = 1 + iy2? 9
J1
Solution:
%(19, ,'9/) ——R (A/ef%w) - _R (“/67% arctan \192719’2\/\191719“)
N ]\Iap 9 19 —R / d2l9/ 721arctan[\ﬁ2 95|/ 191 —91]]

=R (Qp *7) (I

with Qig(ﬂ) =—Qy (0)6—21arctan[ﬂg/ﬁl].
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Part II day 1: E- and B-modes | E-/B-mode estimators

E-/B-mode separation with M, I

It is clear that M,, (M) is sensitive to the E-mode (B-mode) of the shear
field 1.

When chosing @ such that its support is finite, with Q(0) = 0 for 6 > Oyax,
the E-/B-mode separation is achieved on a finite interval.

To get this separation at the second-order level, let’s take the variance of the
aperture-mass: Square My, (0,1) and average over circle centres 9 (Schneider
et al. 1998).
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Part II day 1: E- and B-modes E-/B-mode estimators

E-/B-mode separation with M, II

Square M,,(0,9) and average over circle centres ¥
(M2)0) = [ &0 Un(9 ~ ]) [ 0 Uy — 0" )s(0)E(0")
:/d219, Ug(ﬂ’)/dzﬂ" U9(19,/)</€EHE>(|19/ _ ,0//|)
- / A2 Uy (9) / 429 Up()

d*¢ —iey a2 —igy’ 2 _ p'\pE
x/(%)ze /(%)Qe (2m)200 (£ — £)PE(0)

- / (;ifg < / d?ﬁeng(ﬁ)>2PE(€)

:%/dew?(%)PE(ﬁ).

Note: Typically, the filter function U depends on the scale ¥ normalized to the
radius 6, Up(¥) = U(¥/0). In Fourier space this then becomes U(6¢).
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Part II day 1: E- and B-modes

E-/B-mode estimators

E-/B-mode separation with M, 111

For popular choices of U, U? is a narrow pass-band filter function.

polynomial Gaussian
-2 (E-%) <o ) ;
62 62 3 02 _1 (1 _ » _ 92
UG(TS) { g ( ) ( ) else 3762 (1 292) exp ( 292>
6 0> 92
—z oz (1 — 57 9] < 0 92 92
Qo (V) { 592 02 ( 92> dlse TngT €XP (—W)
U(n) 241;12(77) % exp (77];)
: Ug(®) poly —
ol Qo(®) poly .
0,
2 067 Ug(®) Gauss i
5 .4 Qq(0) Gauss
0- B .
>
£ o2} |
g U= N T e
02 N/ T |
0.4 ‘ ‘ ‘ ‘ ‘
g 05 1 1.5 2 25 3

0/0
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Part II day 1: E- and B-modes | E-/B-mode estimators

E-/B-mode separation with M,, IV

Filter functions in Fourier space:

0.1

001
0.001
le04

le-05

le-06 —%
0.1
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Part II day 1: E- and B-modes | E-/B-mode estimators

E-/B-mode separation with M,, V

Thus, the aperture-mass dispersion filters out a small range of /-modes around
¢ ~ const 1.

For example, for the polynomial filter from (Schneider et al. 1998), the peak is
00 = 5.

Analogous equations for B- and mixed modes are

(a2)(6) =5 [ aeere0rie
(Map My )(0) = % / deeU?(90) PEB (¢).

In complex notation, the last three expressions can be written as

(M2)(6) % (M2)(6) + 5(MunM)(6) = - [ deeT?(66) [PE + PP + 25PP®] (o).
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Part II day 1: E- and B-modes E-/B-mode estimators

Aperture-mass dispersion and 2PCF 1
The above recipe to get the aperture-mass variance can be implemented in an
estimator as follows: For an aperture with center 9 and radius 6, average the
observed galaxy ellipticities weighted by the filter Q). Square, average over
many centers 9:

This is however not very efficient due to
masked regions and field boundaries.
Solutions:

e Inpainting of missing data (Starck

et al. 2000), using fast algorithms
for convolution (Leonard
et al. 2012).

o Compute 2PCF first, integrate to
get aperture-mass dispersion.

From [P. Simon, PhD thesis, 2005].
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Part II day 1: E- and B-modes | E-/B-mode estimators

Aperture-mass dispersion and 2PCF 11

Aperture-mass dispersion from 2PCF
M,, depends on ~;, thus we expect that (Magp) depends on () ~ 2PCF.
Simple calculation: Use

(M2)(0) = % / deeU?(00)PE ()
and insert -
PE@) = [ a9 (€, (0)3o(e0) + E-(2)Ia(e0).
Result:

(MZ,)(0) = /'26 499 [T+ (z) £.(0) + T (2) 5_@9)] .

0
with -
Ti(z) = / dtt Jo 4 (xt)U(t).
0
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Part II day 1: E- and B-modes | E-/B-mode estimators

Aperture-mass dispersion and 2PCF III

The functions Ty (z) have support [0;2], thus the above integral extends to 26.
Therefore, the maximum distance to compute the shear correlation &4 is

Pmax = 26.

Remember the diagram from Part I?

filter with

~ map 0 M, | maps
sum over pajrs o?
(auto-correlatjon)
filter with
2 2
é.:I: 7 <Map>’ <MJ_>

Maybe this makes a bit more sense now. . .
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CFHTLS 2007 versus CFHTlenS 2013.
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Part II day 1: E- and B-modes
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From (Fu et al. 2008).
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Aperture-mass dispersion
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Part II day 1: E- and B-modes | E-/B-mode estimators

Ring statistic I
The problem of the unaccessible zero lag shear correlation for an E- and
B-mode decomposition remains. How can we construct a E-/B-mode
second-order correlation with a minimum galaxy separation ¥y, > 07

Solution: Correlate shear on two con-
centric rings (Schneider & Kilbinger
2007).

What are the minimum and maximum
distances in this configuration?

Figure from (Eifler et al. 2010).
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Part II day 1: E- and B-modes | E-/B-mode estimators

Ring statistic II

Filter functions (in the original paper called Zy instead of T.) depend on
geometry of circles, and free-to-choose weight functions over the rings.

RR)n = [ 55 640 Tuon) £ 6 (@) T_(a, )]

where 17 = Ymin/Pmax < 1 is ratio of minimum to maximum separation of the
configuration.

General E-/B-mode decomposition on a finite interval (in log9).
(Schneider & Kilbinger 2007) worked out the conditions on T+ to have finite
support, with 0 < Ypin < Pmax < 00:

9 max P max
/ d1919T+(19):0:/ A9 T, (9) ;
9

min Omin

9 9
mx mx

min min
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Part II day 1: E- and B-modes | E-/B-mode estimators

Ring statistic measurements

CFHTLS 2007 versus CFHTLenS 2013.

6
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@ —4— <RRg> o 5 Clone
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¢ 3 1 E%HE 3 5 .
v £ 50107 f g 1
At }'}' boccecameadhoaccaadlareeyl = R L i\i*
) 0 ﬁ%@@mmmmmmmmmmg
~ 1L
; e
7 S0 S 100
* 1‘~l[’)oiarcminl 0 0 8 [arcmin]
From (Eifler et al. 2010). From (Kilbinger et al. 2013), optimised ring

statisc following (Fu & Kilbinger 2010).
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Part II day 1: E- and B-modes E-/B-mode estimators

COSEBIs I

'l9max 19{1)3)(
/ d1919T+(z9):0:/ d9 93 T, (V) ;
9

min Y min

12 9
max d,l9 max d/l.9
—T_(¥)=0= —T_(v) .

min min

Under these conditions the functions T can be freely choosen. Idea of

(Schneider et al. 2010): Define modes E,,, B,, using polynomials of order n + 1.
Define family of orthogonal polynomials that provide all information about

E-/B-modes on finite interval:

Complete Orthogonal Set of E-/B-mode Integrals.

The COSEBIs contain nearly all information that is in £, and £_, except the
very large scales. These are outside the survey, and cannot be decomposed
into E-/B-modes, but form an ambigous mode. This mode is contained in

&+(0), for which the filter Jo(6¢) — const for arbitrarily large £ — 0.
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Part II day 1: E- and B-modes | E-/B-mode estimators

COSEBIs II

Polynomials can be linear in 6 (Lin-COSEBISs), or linear in z = log §
(Log-COSEBISs).

16-03

W
and

5e-04

Wa ()

—16-08  -56-04  0e+00

Toe (9)

D= 400"
10 20

1 Drnax = 400"

50 100 200 500 1000 2000

o 100 200 300 400 !
 (arcmin] 8
1 — n=t :
o b E
- =8
2 el
Voo i b
| %
2l & e
P —" 200 500 1000 zo‘oo 5000 10000 20000
o 100 200 300 400 N
o faromin COSEBI linear filter functions W,, (= U?)
COSEBI linear filter functions Tk, in real in Fourier space. From (Schneider et al.
space. 2010).
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Part II day 1: E- and B-modes

COSEBIs IIT

E-/B-mode estimators
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8 10

- — n=1 o
--- n=2
n=14po
o
fo
= e
2 -
g i
i o
5]
§ v
fo
v
o )
1 Y
100 200
9 [aremin]
- — n=1
---n=2 o
n=14
Gl 5
1 Dmax = 400’ [
i
100 200 300 400
o arcmin]

COSEBI logarithmic filter functions T+, in real space.

in Kilbinger (CEA)
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Part II day 1: E- and B-modes | E-/B-mode estimators

COSEBIs IV

0.05 Lin-COSEBIs  +
N Log-COSEBIs  x
0.04 | 2PCFs 1

4 angular range [1°,400’]
0.03  , 7parameters LS 1
= +2 redshift bins
0.02 | i 1
X ++++

.
| X et |
0.01 X)C,: » :++++++‘+‘+‘+‘+~*~*~FH_LLLAAAAAAAAAAAA

vvvvvvvvvvv

5 10 15 20 25 30 35 40 45 50
nmax

Inverse Fisher-matrix (allowed parameter) volume as function of COSEBIs maximum mode.
From (Asgari et al. 2012).

Log-COSEBIs show faster convergence of available information with n.
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Part II day 1: E- and B-modes | E-/B-mode estimators

Band-power spectrum I

The power spectrum P, can be estimated from shear data using methods from
the CBM,

(Pseudo-CY, Bayesian, ...)

from pixellised maps.

A much faster but biased method is a band-power estimate from the 2PCF.

Recall the expressions
PE6) = [ T a09[€4 (9)o(09) + £ (9)Ta(9)],
PE(W) =r [ 09 (64 (0)30(t9) — - (9)3a(69)].

To estimate these improper integrals as direct sums over observed £1 between
Ymin and Ypax would introduce large biases.
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Part II day 1: E- and B-modes | E-/B-mode estimators

Band-power spectrum II

i rP, (1) (K=0)
————— 12 P(l) (K. =1)
102 ¢ 12 P (1) v :
z 10 | ya
105 |
a \ | |
10! 10? 103 104
1
A Gmax
B(e) = 2 / 16 6 (K€, (6)To((0) + (1 — K4 )6 (6)14(£6)
emin

From (Schneider et al. 2002).
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Part II day 1: E- and B-modes | E-/B-mode estimators

Band-power spectrum III

However, we can add another integration in bands of ¢, between f,;, and £ ax,

1R 2 [fmex df
731::—/ Al LP) ="~ —
Ai Juy, Ai Jou
where A; = In({;,/¢;) is the logarithmic width of the band, and
8
0@ =ehie) 9@ = (1)@ -

7 { K600 [0+ (6u0) — 94 (6a8)] + (1 = K2)6-(0) [9-(6iab) — 9-(€a0)] }

This strongly reduces
the bias.

12 P(1)

You will use the
program pallas.py in
the TD this afternoon

that implements this

estimator. 1
106 °n nonnnoal °n nonnnoal anl
101 102 109 104 10°
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Part II day 1: E- and B-modes | Galaxy-galaxy lensing: motivation

Galaxy-galaxy lensing: Overview

Correlation between high-z galaxy shapes and low-z galaxy positions.
E.g. average tangential shear around massive galaxies.
Provides mass associated with galaxy sample.

e Galaxy halo profiles from kpc to Mpc
e Mass-to-light ratio

In combination with other tracers of matter (galaxy clustering, cosmic shear,
velocity correlations, X-ray emission, .. .):

e Galaxy bias. Properties such as linearity, scale-dependence, stochasticity
e Test of General Relativity

Can be done quasi model-independent since two or more observables trace
same matter field, but with different biases.
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Tangential shear and projected overdensity

Tangential shear at distance 6 is related to total overdensity within this radius:

(1) (0) = R(< 0) — (x) ().

No assumption about mass distribution is made here!

End of day 1.
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Part II day 2: Shear estimation Outline

Reminder: Overview

Part 1T day 1: E- and B-modes
Very brief reminders from day I
E-/B-mode decomposition recap
E-/B-mode estimators
Galaxy-galaxy lensing: motivation

Part II day 2: Shear estimation
Galaxy-galaxy lensing in detail
Back to the aperture mass: Filter function relation
Spherical-sky lensing projections
Shear calibration

Part II day 3: Cosmological parameter estimation
Numerical simulations
Covariance estimation
Likelihood and parameter estimation
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Part II day 2: Shear estimation & Galaxy-galaxy lensing in detail

Tangential shear and surface mass I

In an exercise you have derived the relation between tangential shear and
encompassed projected surface mass,

(1) (0) = R(< 0) — (x) (6).
We will re-write equation defining the surface mass excess AX.

Surface mass excess

Assume a single lens at (angular diameter) distance D). Approximate for this
case the expression of the convergence

K(0, x) = Q (Iio) /0 dx’Wﬁx’&x’%

and write Dy for the distance of the source, and Djs for the distance between
lens and source. Write all distances as proper, not comoving distances, express
the density contrast in terms of the density, § = Ap/p, and use the critical
density perit-
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Tangential shear and surface mass II
Assume that the lens mass distribution p extends over the inverval
[D,— AD/2; D+ AD/2].

Di+AD/2
47TG DlDls '
" DI—AD/2

Define the critical surface mass density

_ A7 G D1D1
1 ,_ s
52 0) =75
to write convergence as
3(6)
0) = 2
w(0) = (2)

[Why is X, called critical surface mass?]
With that, we define the surface mass excess

AZ(L0) = (n) (0) Zer = (0) — () (6).
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Part II day 2: Shear estimation & Galaxy-galaxy lensing in detail

Statistical galaxy-galaxy lensing (GGL) I

The convergence or tangential shear defined in the last slides depend linearly
on the mass distribution p, or 3. So it seems to be a first-order statistic.

However, when measured statistically using a population of foreground
galaxies, it can be written as two-point correlation function. The convergence
is then the correlation of background lensing convergence and foreground
galaxy position.

If we write the latter as galaxy over-density d,, we get
(£) (0) = (K(D)dg(F+8)),
= 2315 / dD (§(D8, D)éy (D18, Dy))

— =2 [ AD s, (VDO + (D - D)

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 49 / 153



Part II day 2: Shear estimation & Galaxy-galaxy lensing in detail

Statistical galaxy-galaxy lensing (GGL) II

Properties of statistical GGL

o Circular averages of tangential shear: robust against (some) systematic,
e.g. large-scale modes of PSF residuals cancel out.
CFHTLenS: 25% fields had to be discarded for cosmic shear, none for
GGL.

e Simple null tests:
(v ) around foreground objects (parity mode, should vanish).
(74) around random points, or special points that should not be correlated
with foreground sample such as chip corners, field centres, stars.

e Higher SNR compared to cosmic shear:
correlation with tracers of dense matter regions;
one shape instead of two;

e Can use spectroscopic galaxies for foreground sample.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Parenthesis: galaxy bias I
Simple bias

GGL measures the cross-correlation between galaxies and dark (more
precisely: total) matter, (60). This correlation is non-zero since galaxies trace
the underlying matter.

Simplest model: linear, constant, deterministic bias:

dg = bd.
From that it follws that
(0505)(0) = b*(66)(0);  (650)(6) = b(86)(6),
or in Fourier space

ng(k) = b2Pmm(k)? Pgm(k) = mem(k)'

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 51 / 153



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Parenthesis: galaxy bias II

Properties

e The bias depends on the galaxy properties (type, color, luminosity, . . .,
and can be measured for different populations (e.g. early/late-type).

¢ Bias is redshift-dependent. Difficult to measure since degenerate with
z-dependent selection effects. Volume-limited samples: Bias tends to
increase with z: galaxies are more rare objects at higher z, situated in
more extreme environments (halo centres).
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Sample selection for galaxy bias measurement

CFHTLS Wide — all galoxies (i < 22.5)
—-24 i

|
N
N
T

M,y—5log(h)
O
o
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|
o]
T

_16_
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z
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10° ngy

Sample selection in absolute magnitude and redshfit, from (Coupon et al. 2012).
Samples in horizontal boxes have same absolute magnitudes and are
volume-limited.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias extended I

More complex bias models

e Scale-dependence, b(f), or 13(1%) In particular on small scales, bias is not
constant.

e Non-linear bias

Sy = b10 + ba6% + b36% + ...

e Stochastic bias

Relation between d, is not determinstic (6 = bd) but stochastic. In a
statistical picture, the two fields J; and § can be interpreted a realizations
of random fields with joint pdf p(dg, d). The study of stochastic biasing is
trying to quantify this joint pdf.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias extended II

At second-order level, one can measure the variances of both fields, and
their cross-correlation. If the fields are correlated, one can write down the
following two relations:

\/7 1/ 525 525

introducing a correlation coffecient r = —1...1 between both fields.

In the above ratio cosmology dependence (dm correlation function or
power spectrum) mainly drops out!

Allows for model-independent measurement.
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r=+1

r=-0.5, b=1

Ilustration of correlated fields, from [P. Simon, PhD thesis, 2005].



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias II

Question: How would the correlation between J; and § look like for negative
bias b < 0? For example b= —1,r = 1.

Non-linear and stochastic bias

A non-linear bias can mimic stochasticity.

Consider the (made-up) example of deterministic bias with §; = 3.
Exercise:

Calculate 7 in the case where both fields follow Gaussian pdf’s.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 57 / 153



Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Galaxy bias II

Question: How would the correlation between J; and § look like for negative
bias b < 0? For example b= —1,r = 1.

Non-linear and stochastic bias

A non-linear bias can mimic stochasticity.

Consider the (made-up) example of deterministic bias with §; = 3.
Exercise:

Calculate 7 in the case where both fields follow Gaussian pdf’s.

_ (0g0) ey 80t 3 5
o V/(3505)(00) a V/(66)(82) " V150%02 V3.5 \/;N 0.77 <1

Final note: The density field cannot be a Gaussian, since § < —1.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: model-independent measurement of b/r

Idea:

Combine weak lensing and galaxy clustering to determine b and r.
e Galaxy clustering (67)
¢ Galaxy-galaxy lensing (0g0)
e Cosmic shear (§2)

Cosmic shear is the most difficult to measure, so first measurements only used
GC and GGL.

Form ratio:

(6,0)(0)  br b

(0505)(6) v

Any cosmology-dependence, e.g. of clustering, drops out in the ratio.
These density correlations are projected to weak-lensing observables, and b
and r (if constant) can directly be measured.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: Aperture measures I

How can we trace the galaxy and dark-matter over-densities with weak
lensing?
Use aperture measures

(NZ)(8), (N Map) (), {M,)(6)

to trace
(63), (958), (6%).
Difficulty: Structure along all redshifts contribute to cosmic shear <Ma2p>, not
only mass associated with foreground galaxy sample d;.
Solutions:

e Choose background sample such that maximum lensing efficiency
coincides with foreground redshift.

e Add correction functions with minor dependency on cosmology
(geometry).
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Redshift calibration factors

Aperture measure ratios

(e
0= Vorye
o (NMp)O)

VIV O)(M2,)(0)
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Redshift calibration factors

Aperture measure ratios

(N2)(0)
b(0) =f1(0) (MZ,)(6)
,],.(0) :f2 (0) <NMaP>(0)

V(N2 (O)(M2,)(6)

Calibration factors f1, fo to account for different redshifts/lensing efficiency
(Hoekstra et al. 2001). Calculate those using theoretical model for fiducial
cosmology (fixing power spectrum, geometry), setting b = r = 1:

_ [02)0)
hO=\ e
fid,b=1
o VIO)6)
G TMI0)

fid,b=r=1
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

Redshift calibration factors
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Scale-and cosmology-dependence of calibration factors. From (Simon et al. 2007), GaBoDS
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Part II day 2: Shear estimation

Galaxy-galaxy lensing in detail

GGL results: model-independent measurement of b/r
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Observed ratio R (a), and B-mode (b); b/r (right) from (Ilockstra et al.

Main result: no scale-dependence found (on observed scales).
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Part II day 2: Shear estimation | Galaxy-galaxy lensing in detail

GGL results: model-indep. measurement of b and r I
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Redshift distributions for GaBoDS samples, estimated from COMBO-17. From (Simon
et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Part II day 2: Shear estimation | Galaxy-galaxy lensing in detail

GGL results: model-indep. measurement of b and r II

F= " " TUNBIASED GALAXIES ~ = ]

— :% - ]
ACE 3
NZ o " - E
v oF 278 ~ 05— —
\8 ? LN S o g~~-¥~.¥ %
]

‘\é "POWER LAW FITS' E

A O R e ]
qw O F s H T WTige—o E
S b ~¢‘;§\a§\¢¢';«-q:;z;
(. ) (I S il S |
SF RS

E. il il il A

0 5) 10 15 20

aperture radius [arcmin]
Filled boxes, open stars, open crosses = FORE-I, FORE-II, FORE-III.
Galaxy clustering: Bias on small scales is not constant, but scale-dependent.
Stronger galaxy clustering than from constant bias. (Simon et al. 2007),

GaBoDS (Garching-Bonn Deep Survey).
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Part II day 2: Shear estimation

Galaxy-galaxy lensing in detail

GGL results: model-indep. measurement of b and r III
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Part II day 2: Shear estimation & Galaxy-galaxy lensing in detail

GGL results: model-indep. measurement of b and r IV
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Bias and correlation coefficient. (Simon et al. 2007), GaBoDS (Garching-Bonn Deep Survey).
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: HOD model measurements

increasing luminosity —
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: HOD model measurements

increasing luminosity —
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

e Red galaxies have larger associated mass than blue galaxies.
e Exceess mass increases with luminosity. Light traces mass.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: HOD model measurements

increasing luminosity —
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Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

e Red galaxies have larger associated mass than blue galaxies.

e Exceess mass increases with luminosity. Light traces mass.

e Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.

Red satellite galaxies.
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Part II day 2: Shear estimation Galaxy-galaxy lensing in detail

GGL: HOD model measurements

increasing luminosity —
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g o«
s] o Q E
x - 3
= =" 3
2 R $ P
o S T it ; ; LAl [andon] [aa] DY
< = bttt il
&9 10 100 1000 10* 10 100 1000 10* 10 100 1000 10*
Projected distance
[h7o-I kpc]

Purple=red early-type galaxies; Green=blue late-type galaxies. From (Velander et al. 2014).

e Red galaxies have larger associated mass than blue galaxies.

e Exceess mass increases with luminosity. Light traces mass.

e Bump at 1 Mpc for low-luminosity red galaxies, disappears at higher L.
Red satellite galaxies.

e Bump at slightly larger scale for blue galaxies. 2-halo term, from
clustered nearby galaxies.
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Part II day 2: Shear estimation & Galaxy-galaxy lensing in detail

GGL: HOD model

T LI R | LI R | LI R R | T

—21.5 <M < -21.0

100 200 500,
Distance [hy,™

in Kilbinger (CEA)

2000 8000 10t

)
kpe] - T
HOD model, (Velander et al. 2014).
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Part II day 2: Shear estimation

Lgq

L /BL
Maoo = Mo, (—)

early-type

late-type

B

1

w107 o=

10
1M, -2 -1
Mago (L, = 107" hyo"Lg) [hyg ' Mg]

0.5

Galaxy-galaxy lensing in detail

GGL: M/L parameters
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1000
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E +@— Velander et al. (2013) (this work)
—— Van Uitert et al. (2011)
| ~—=— Mandelboum et al. (2008)
Leauthaud et al. (2012)

L ' .E&%*T'

:

L
t

E +@— Velander et al. (2013) (this work)
—— Van Uitert et al. (2011)

| ~—=— Mandelbaum et al. (2006)
Leauthaud et al. (2012)

(Velander et al. 2014).
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Part II day 2: Shear estimation & Galaxy-galaxy lensing: Testing GR

Modified gravity

General, perturbed Friedmann-Lemaitre Robertson Walker (FLRW) metric:

20 20
ds? = (1 + 3 ) Adt* — a*(t) (1 — C) di?,

Valid for weak fields, (Bardeen) potentials ¥, ® < ¢

e In GR, and absence of anisotropic stress: ¥ = ®.

e In most modified gravity models: ¥ # ®! Very generic signature for MoG.

Some characteristics
e U is Newtonian potential. Time-like. Quantifies time dilation.
e U is gravitational action on non-relativistic objects (e.g. galaxies).
e ® is space-like. Describes spatial curvature.

e U + & is gravitational action on relativistic objects (e.g. photons;
lensing!). [Photons travel equal parts of space and time. This is the origin
for the factor two in GR equations compared to Newtonian mechanics!]
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

Testing GR 1

Idea of a null test
Measure difference in potentials to test GR: Galaxy clustering for ¥, weak
lensing for ¥ + &.

Modified Poisson equation
Potentials are related to density contrast § via Poisson equation. Generalise to
account for MoG, and write in Fourier space:

k2U(k,a) = 4nGa®[1+ u(k,a)]p
k2 \if(k,a)—i—(f(k,a)] = 87Ga? [l + X(k,a)] pd(k, a).

~—

With free parameters/functions p, X. GR: =X = 0.
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

Testing GR 11

Probes of Bardeen potentials
Assuming linear, deterministic bias (b =const, r = 1).
o Galaxy clustering measures ¥ and b;  (67) o< b*Py.
e GGL measures ¥ + ® and b; (050) o< bPy 1.
— form ratio to get rid of cosmology dependence!
However, bias still remains, need another observable.

e RSD anisotropy parameter; 8= %dl%n*a@.

Can be measured from redshift space galaxy clustering along
(1 = cos@ = 1) and perpendicular (1 = 0) to line of sight. Linear power
spectrum:

P(k, ) = P(k) (1 + Bp?)

FEq¢ parameter
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Part II day 2: Shear estimation & Galaxy-galaxy lensing: Testing GR

Parenthesis: Anisotropic clustering

10"
B
s 1107
"“ W,
£
<
10°
5 4
0 10
7, (h™Mpc)
BOSS, from
in Kilbinger (CEA) Weak Gravitational Lensing Part
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

gravitational action on
relativistic particles

light deflection

weak gravitational lensing from
hotometric survey (e.g. Euclid)

observer — T

galaxy

4

dark—malter halo eeuliar velocities

. gravitational action on
non—relativistic objeets
redshift

/~  galaxy clustering from
ipectroscopic survey (e.g. DESI)

in Kilbinger (CEA)
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Testing GR: results I

SDSS (Reyes et al. 2010)
a - - e - - b
0 bgshear-fg | i
clustering
E <OgOm> g
A o fg clustering
<Ogdg>
¢
T i s s W R T R R
R (h-! Mpc) R (h-! Mpc)

from SDSS galaxy clustering
B=0.309 +0.035 (redshift-space distortions)
Tegmark et al. (2006)
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Part II day 2: Shear estimation Galaxy-galaxy lensing: Testing GR

Testing GR: results II

Introducing new observable to exclude small scales:

Ty (R) = ALy (R) — (@

7 )2 AYign (Ro)

2 (B Ro\?
= ﬁ dR/ R/ E|’r‘mgm(R/) - Egm(Rl) + <E) Egm(RO),
Ry
(Baldauf et al. 2010).
Define in analogy .

Then modified Eg probe of gravity:
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Testing GR: results III

0.6 [~

£04 T T —] HGR+ACDM
J l } l } [rr)

0zl | freves
RO S TR,
R (h-! Mpc)
From (Reyes et al. 2010).
- ] 0.15<240.43 - 0.43<240.70
® Our daota ® Our data
I 4 Reyes et al. (2010) 1
%g -ITIT{II'{iTITT- ;g?g -[T{1IT L 1.1
° 2 5 1‘0 20 °© 2 5 1‘0 20
R [h™" Mpc] R [h™" Mpc]

From (Blake et al. 2016).
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Recall: Aperture-mass definition

Yesterday we introduced the aperture-mass as convolution of the shear field
with a filter @,

Map(6,9) = / 029 Q(1 — ') 1 (9)

and claimed that this was equivlaent of convolving the convergence with
another filter U,

Map(6,9) = [ &0 Uy((0 ~ 9') 5 () 3)

(Kaiser et al. 1994, Schneider 1996).
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and @) I

First, place aperture at center, ¢ = 0. Assume that the filter function Uy (1)
has support [0; 6], (note that 6 can be cc.)
Introduce angle-averaged convergence,

1 27

{r) (D) :

S= 2_ dgpﬁ(ﬂvg[)%
T Jo

and write aperture-mass

6
M,,(0) = / d¥ ¥ Uy (9) (k) (V).
0
Integrate in parts, defining

dXp(9)

YUy (V) =: a0

9
Xo(9) = /0 4’ 9’ U(¥)

to get
6
Map(®) = o))V~ [ av (o) L)
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and (@) 11

To get rid of the boundary term, we demand that U be a compensated filter
function, i.e.

Xo(6) = /09 490 Up(9) = 0.

This means, that M,, is not sensitive to a constant convergence k.
Why?
This makes it independent of the mass-sheat degeneracy.

We insert the expression for the derivative of the circularly averaged
convergence from the TD,
AW@) _ dR(€0) d5(<0) 2 ) 0 d0)0)
v v dv 0" dv

to get

Mun(0) = [ 490a9) [ 350 () () - 220
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and () III

The second term is again integrated by parts. The boundary term vanishes as
before and we are left with

Mup(0) = [ a0 [0 x000) - B (p00)

This can be transformed back to the form
Mup(®) = [ 29Qu(9) (1) 0)

and we get the relation between U and Q:

2

Qo(V) = )

/ " S Up () — Uy (9).
0
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Part II day 2: Shear estimation Back to the aperture mass: Filter function relation

Relation between U and @) IV

Some properties

e If U has finite support, so has Q. [This follows from U being
compensated]. That means that aperture-mass can be obtained from
shear on finite region.

[This is not true when computing & from v without filters. Formally, this
relation requires all of R2.]
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Part II day 2: Shear estimation Spherical-sky lensing projections

Reminders: lensing potential and convergence I

On day I we defined thee lensing potential ¢ at sky 2D coordinate @ for a
source galaxy at comoving distance y, in a flat universe

2 (X x—X
wo0 =5 [ Xt a(00.x).
0.0=75 | X Coe.x)
The lensing convergence « is given by a 2D Poisson equation,
1
= =A.
K 5 P

We pulled the 2D Laplacian through the integral, and add the 3-component
Ay to yield the 3D Laplacian.

We then used the 3D Poisson equation to transform the 3D potential ¢ to the
density contrast ¢,

B 3HE O,
T 2

AP d,
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Part II day 2: Shear estimation Spherical-sky lensing projections

Reminders: lensing potential and convergence II

and obtained
3 Ho\® ¥, ,(x=x)X
K(6,%) = ~Om (—) / A XXX 5019 1.
(6:) 2 c 0 xa(x') ( )

Finally, we introduced a source galaxy distribution p(x)dy = p(z)dz to get the
convergence for a population of galaxies

k(@)= [ dxp(x)k(0,x) = [ dxG(x)x3(x8,x)
/ /

with the lensing efficiency

3 H0)2 Om /X““‘ b X —X
Gly)==- (=) =2 d )
(x) 2 ( c a(x) . X' p(x') Y

We then introduced the variance of the convergence,

(K(9 + 8)K(9)) = (rr)(0),
WEES



Part II day 2: Shear estimation Spherical-sky lensing projections

Reminders: lensing potential and convergence III
and wrote it in Fourier space to define the convergence power spectrum

(R(E)F™(€')) = (2m)*dp (€ — £) P (0).

End reminder.

Spherical transformations

The Fourier transformation is only defined on a flat space. To perform Fourier
transforms on fields define on the spherical sky is fine on small scales, but
breaks down on very large angles. The Fourier transform should be replaced
by a spherical harmonic transformation.

However, we have to go back one step further: Convergence and shear are
defined as second derivatives of the lensing potential,

1 1 1
K=3 (0101 + 020) ¢ = §V21/13 m=3 (0101 — D202) b5 v2 = D102).
These derivatives are defined in flat space and should als be replaced on the
sphere.

So, we have to start again with the lensing potential.
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Part II day 2: Shear estimation Spherical-sky lensing projections

Lensing potential on the sphere I

The lensing potential ¢ from a population of source galaxies with redshift
distribution p;(2) is given, in analogy to k(@ defined above, as

v(6) = 5 [ Kol 8 atn)

where the lensing efficiency ¢; is given as

Xlim
I —
q(x) = /dx’p(x’)XX,X~

X

[Note: On day I we defined the lensing efficienty G for the convergence, which
is different from ¢ by just the “Poisson” prefactor,

o =3 () o [ a0 X =3 () By
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Part II day 2: Shear estimation Spherical-sky lensing projections

Lensing potential on the sphere II
Let us now derive the angular harmonics spectrum of ¢ (spherical analogue of
power spectrum)
Decompose potential into spherical harmonics,

VO =3 3 benYen(®)  Vem = [ ALUE)Vin(6).

Completely analogous to CMB temperature — both ¢ and T are scalar fields.

The harmonics expansion coefficient is, after insertion of the expression for 1,
and Fourier-transforming the 3D potential (note: in R?, not on the sphere),

> d B3k . ;
Von = [ 405 0.0) [ a0 [ Gzblhge .

o X

Insert spherical harmonics expansion of the plane wave basis function,

[eS) 4
eik-'r’ =d4m Z Z le‘]g(kX)ng (07 @)Yzm (9167 90/6)3
=0 m=—4¢
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Part II day 2: Shear estimation Spherical-sky lensing projections

Lensing potential on the sphere III

and make use of orthogonality relation of the spherical harmonics

/dQYﬁm(97 @)Yz/m’ (03 QO) = (5@@/6mm’a

to yield

4

i >~ d 2 .
Yem = — 2/ lq(X)/dBk(I)(k§X)JE(kX)Ylm(9kaS0k)~
CoTr 0 X

Angular harmonics (cross-)spectrum (between redshift bins ¢ and j) of the
lensing potential is defined as

(Do i Gl ) = Ot S C(£).

Using once more the orthogonality of the Yy,,’s, we get finally

> d < dy’ 7 . . 7 /
che) = > / a0 / Ca) / kR Jo(ka)je(kx’) Pe (k; X0 XC)
0 0

8 (3, (] [Tdxa) [Td ek [k o
T [29“‘( c )] /0 X a(x)/o 0 od) /k2 Je(kx)ie(kx) Pra (5 0, X7);
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Part II day 2: Shear estimation Spherical-sky lensing projections

Shear on the sphere I

Preparation
Define complex derivative operator

0 := 01 + 105.

From that we get
00 = 0101 — 0209 + 210105.

Thus, we can rewrite the shear

1
m=; (0101 — 0202) ;2 = 0102%).

in complex form

1 R P
7=§83¢, 7= 268 Y.

The corresponding derivative on the sphere is called edth derivative 9 (Castro
et al. 2005).
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Part II day 2: Shear estimation Spherical-sky lensing projections

Shear on the sphere 11

We write . 1
7(0) = 500¢(6); ~7(6) = 50707%(6).

Inserting the spherical harmonics expansion of ¢ — 2" edth derivatives of
Yim.-

This defines a new object, the spin-weighted spherical harmonics oY pp,.
[Note: Spin s = 2 because second-derivatives; each derivative 0 (0 *) raises
(lowers) spin by one.]

Therefore,

(M £i72)(0) =D +2¥em +5Yem (0);

m

s2

—2%em =/ dQ~*(0) —2Y7,,(6).
S2
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Part II day 2: Shear estimation Spherical-sky lensing projections

Shear on the sphere III

These objects +2Yy,, are eigen functions of 0:

HE,2) Yem(0) = 37Yem(0);  HE2) oY em(6) = (3°)° Yem (0).

with the spin pre-factor (Bernardeau et al. 2012)

H6,2) = ) g - 3: — V- DI+ ) +2),

And we get the relation between shear and potential coefficients,

1
+2Vem = §£(€7 2)¢€m
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Part II day 2: Shear estimation Spherical-sky lensing projections

Shear on the sphere IV

Now it is easy to write down the shear angular harmonics spectrum, again for

bins ¢ and j to be general:
2 2 [e’e) oo ! /
3 (@) / d_XQi(X)/ dx’ ¢;(X')
27"\ e o x al) Jo X alx)

© Jk . .
x/ ﬁpm(k,x,x’)u(kxm(kx’)
0

2 2
(0 == £(6,2)
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Part II day 2: Shear estimation Spherical-sky lensing projections

Flat-sky approximation

Going back to flat sky from the full spherical expression, we replace again the
edth by the ordinary flat-space derivatives.
(FHu 2000) calculates the derivatives of the spherical harmonics as

62 :N:QYﬁm (67 90) ~ e:F2i¢g (81 + i82)2 Yém (97 90)

and we get a slightly different expression for the shear power spectrum, with
the replacement
B6,2) = (-1l +1)(L+2) — £~

[Note: this is a slightly strange approach, since we first expand the field into
spherical harmonics, and then perform the flat-sky approximation of the
derivatives. More consistent would be to start with the Fourier transform. But
I don’t know how to derive the ¢* factor in this case without making
additional assumptions, see later.]
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Part II day 2: Shear estimation Spherical-sky lensing projections

Limber approximation I

In short:
We use the identity of the Bessel functions

. ™
Je(z) = %Je+1/2($)

and replace Bessel function Jg1/2(kx) by a Dirac delta ép (£ + 1/2 — k)
(maximum of Bessel function).
Thus:

e Ounly modes ¢+ 1/2 = kx contribute.

e Only modes at y = x’ contribute.

Martin Kilbinger (CEA) Weak Gravitational Lensing Part II 94 / 153



Part II day 2: Shear estimation Spherical-sky lensing projections

Limber approximation II

Note: From linear perturbation theory, which holds on large scales:

d(k,x) = D4 (x)do(k) = Ps(k,x,X') = D4+ (x)D+(x) Ps0(k),

modes at arbitrary distances y # x’ are correlated.
The shear harmonic spectrum then simplifies to:

2
3 H, 2 > dk

Y _ 72 = —_
CL(0) = £2(¢,2) [2s2m< ) ] o

Cc

* dx a(x) B / A ¢ (X)) o \
X/O 372 a(x) dp(£+1/2 = kx) o 7 alx) op(€+1/2 = kx') Pm(k, x

The comoving integrals are solved trivially with the Dirac delta, yielding a
further k=2 due to a variable transformation dy = d(ky)/k.
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Part II day 2: Shear estimation Spherical-sky lensing projections

Limber approximation III

We then substitute (¢ + 1/2)3 = (kx)?, and perform another variable
transformation
dkk=2 =d[(0+1/2)x k=2 = (0 +1/2)dxx 2k~ 2 =dx({ +1/2)7L, and get

vy P62 |3 Ho\*]" 2(x)g;(x) (+1/2
Cw‘“)—m[é“m(f” fortatyten (555)
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Part II day 2: Shear estimation Spherical-sky lensing projections

Approximations accuracy I

Most pre-2014 used the flat-sky approximation (£2(¢,2) ~ ¢*) and further
£+ 1/2 = {. Then the prefactor cancels.

This standard Limber approximation is accurate to 1% (10%) for ¢ < 60(4).

The next logical approximation is extended Limber, with £+ 1/2 kept in
prefactor and power-spectrum argument. This is actually a worse
approximation than standard Limber, since the approximated prefactor
converges only with O(¢1).

Better is hybrid, with ¢ in prefactor denominator, but £ + 1/2 in integral.

Even better is second-order Limber.
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Part II day 2: Shear estimation Spherical-sky lensing projections

Approximations accuracy II

1
N .
01 F N o E
\‘ R
107t 1
y < 001}
& §
$ A =)
= . t)’
//.' L1F ——- |2 0001 }
' EXtLLFI - - - -
) ExtL1FIHyb — - |L1F:;Fu::5pﬂ-1| ——
. EXtL1FI/FullSph-1| - - - -
. ExtL1Sph 0.0001 Eﬁliﬁgyﬁjgg::ggﬂ-%l -
. ExtL2FIHyb I TéxthpFVFﬂnsgh:ll
ExtL2Sph —— |EXtL2FIHyb/FullSph-1] \
FuIISph |ExtL2Sph/FullSph-1] —— I
10'8 L L le-05 .
10 100 10 100

From (Kilbinger et al. 2017).
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Part II day 2: Shear estimation Spherical-sky lensing projections

Spherical correlation function I

For the correlation function on the sphere, the Bessel functions Jg 4 are
replaced by the reduced Wigner D-matrices,

1 & 1 &

— D20+ 1)C7(0)d35(6); == 2+ 1)C7(0)d5_5(0).

T Arx 47
=2 =2

These are defined as follows:

47
28—!—1

= eXp_ls « dﬁs,(ﬁ) exp'®?

Lo, B, =) = Yim(0,90) Y56, ¢")

Angles:

B = angle between (0, ¢) and (0', ¢').

aly]: angle to rotate ég about (0, ¢) [(#',¢’)] perpendicular to connecting line
between (0, ¢) and (6, ¢’).

(Chon et al. 2004).
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Part II day 2: Shear estimation Spherical-sky lensing projections

Spherical correlation function II

0.1 . .
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7

From (Kilbinger et al. 2017).
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Part II day 2: Shear estimation Shear calibration

Shear bias

For basieally all shape measurement methods: observed shear # true shear.

This is called shear bias.
Reminder: Write as multiplicative and additive bias:
(€2®) = g2 = 1+ ma)ga™ +ca; a=1,2.

There is also ellipticity bias, which is different:

€0 = (1 +m))e™e +cf; i=1,2.

79

Typical values:

year  program m c o(c)
2006 STEP I 0.1 1073
2012 CFHTLenS 0.06 0.002

2013 great3 0.01 1073

2014 DES 0.03-0.04 1073

2016 KiDS 0.01-0.02 8-107*

2021 Euclid required 2-1073 5-10~%
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Part II day 2: Shear estimation Shear calibration

Shear bias and simulations 1

From the STEP I shear measurement challenge (Heymans et al. 20006)

T II T T 3
5 L ~C2 | 5
St : ]
-—*—QEH
i - N —
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o : | ¥
o r '
- PMH  ~MBuHH y
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mn
RN <
\ MJ

<m>
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Part II day 2: Shear estimation Shear calibration

Shear bias and simulations II
From the great3 shear measurement challenge (Mandelbaum et al. 2015).
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Part II day 2: Shear estimation Shear calibration

Shear bias and simulations 111
Interprete with caution!

e Small biases because simulations are not realistic enough? E.g. constant
PSF, analytical galaxy light distributions, simplistic noise, (constant
shear)

e Simulation (challenges) only address part of the problem. Usually no
blended galaxy images, star-galaxy separation, color effects, ...

e Calibrated or un-calibrated?

Amplitude of m, ¢ not that important, since they can be calibrated emirically.
What counts are Am, Ac after calibration!

More on this in a few slides.
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Part II day 2: Shear estimation Shear calibration

Shear bias and simulations IV

A very general statement (see Part I day 2):

Most ellipticity estimators are non-linear pixel light distribution. Noise then
creates biases in the estimator. This is called noise bias.

Thus, observed shear needs to be de-biased (calibrated) using simulations.

There are a few unbiased estimators:
e Not normalised to total flux: maybe unbiased, but very large variance

e Bayesian estimators, sample posterior distribution, unbiased if correct
model, likelihood and prior.
Prior needs to be estimated from simulations or deep survey!
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Part II day 2: Shear estimation Shear calibration

Sources of bias

Reminder:

e Noise bias
e Model bias

e Model-fitting method: incorrect model, complex galaxy morphology

e Direct estimation: inappropriate filter function for weighted moments;
truncated eigenfunction decomposition

o Ellipticity gradients

e Color gradients

e PSF residuals
e CTT (charge transfer inefficiency)

e Selection effects (population biases). Detection probability depends on
ellipticity, orientation with PSF, pixel scale
e New: Environmental effects
e Unresolved faint galaxies
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Part II day 2: Shear estimation | Shear calibration

Shear calibration

The bias should be robust for method to be calibratable.
Define sensitivity as dependence of bias with respect to parameters, or

|0m/0p;|, for p = set of parameters.

A method is calibratable, see (Hoekstra et al. 2017), if
e the sensitivity is small (otherwise simulation sampling in p too costly)
e does not depend on too many parameters

e those parameters can be measured accurately (e.g. intrinsic ellipticity
dispersion o, from Euclid Deep Survey — requirement on accuracy of
measured o, sets area of calibration fields)

e those parameters can be reasonably simulated to estimate sensitivity

e difficult if parameter is correlted with shear signal (e.g. local galaxy
density with large-scale structure, correlated with shear signal,
magnification)
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Part II day 2: Shear estimation Shear calibration

Shear calibration: Unresolved faint galaxies I

—0.043 =
—-0.044 — } —
Overall values on y-axis (ampli-
i ] tude of m) not really important,
3 —0.045 |- } . will be corrected for.
] Need simulation up to very high
— { { ] depth, until plateau in m is
somer 7 ,10%reached (Om/Omim = 0).
L I 1 - / ( / lim )
! I Error bars need to decrease to
ooar b match hashed region.
26 27 28 29

My

Multiplicative bias m (here p) for galaxies 20 < m <
24.5 as function of limiting magnitude of simulated

galaxies. From (Hoekstra et al. 2017).
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Part II day 2: Shear estimation

Shear calibration

Shear calibration: Unresolved faint galaxies II

i T —
o i\\\ The bias depends on the local density of
galaxies: it will increase towards high density
regions. It also depends on the sizes.

—0.045

This needs to be accounted for, which is
N *+| possible using machine-learning tools.

—0.05 |- N B

05 1 15 2

-0.043

—0.044 [

< -0045 -

—0046 [

T 1
The bias depends on the number density of
faint galaxies: magnification will affect the
bias which is thus coupled to the lensing
signal!

-0.047

L
025

L
03 035
Xy
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Part II day 2: Shear estimation | Shear calibration

Shear calibration using image simulations: tricks of the
trade I

Again: multiplicative and additive bias,

<80bs> _ ggbs _ (1 +ma) true +Cou = 172.

for sample of galaxies with vanishing intrinsic ellipticity (1) = 0.
How can we determine the multiplicative bias?

Simple method

From linear fit of many simulated pairs (£9%, gtue).

S 0.10— [ , : ,
: 0.05
£ 0 ‘.Léh?ﬁéah- B % 000
-0.05
~+Y_-0.04—0.02 0.00 0.02 0.04 _0'10—0.04—0‘.02 O.bO 0“02 O.b4
0 91
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade II

Error on best-fit m,, given by width in €°P® (including measurement errors),

g™, and stochasticity of galaxy images (from pixel noise),

12 T T T
0 Ry
10r Ror
3‘ 8 Ry )=1.0
5
3 6 ox1=0.04
8- 4 Ry)=1.01
= ox2=0.04
2
0.0 .0 -05 0.0 0.5 1.0 0'8.0 0.5 1.0 1.5 2.0 8.0 0{5 1.0 1?5 2.0
el Ry, Ruy, 2
Ell distribution. Stochasticity for low SNR. Stochasticity for high SNR.
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the

trade 111

Noise suppression

Simulate pairs of galaxies with same shear and orthogonal intrinsic ellipticity
(rotated by 90 degrees),

Ef4 + EIB =0.
This however does not mean that the observed ellipticity vanishes, due to:

e Measurement stochasticicy

e Ellipticity bias, if depends on galaxy orientation wrt PSF, shear,
(pixelization)

e Selection effects, one pair member might drop out of sample
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade IV

More advanced noise suppression: ring test. Simulate n galaxies with

equidistant intrinsic ellipticity on ring around 0.

Derivative method

Write shear bias for individual galaxies, and as matrix equation (?):
Egbs _ Rgtrue Ty

The shear response tensor R generalizes m: 1+ m, = Raq-

To get population bias, average over measured shear responses (R), and

correct measured ellipticities by (R)~1!.

Measure individual R as numerical derivatives

860bs
Rog= o
7 "0
by simulating the same galaxy several times with small added shear
+Ag, ~ 0.02. With same noise realisation this measurement is extremely
precise!
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade V

T T
0.04F — Ry =0e{™/0g
eoe g=(0,-0.02
0.02} eee g=1[0.0]
oo g=1[0,0.02]

I
1

—e

0.00

obs
1

—0.02
—-0.04

I I I I I
—0.04-0.02 0.00 0.02 0.04
91

This measurement is independent of ellipticity (observed and intrinsic) and
thus removes the main uncertainty of error!

Note: For a different noise realisation, the obtained R can be quite different.
But the use of many simulated galaxy images assures the sampling of the
distribution of R, no additional error is introduced on the population bias.
Error on bias estimate:

Q

R,«

Om,a —

=
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Part II day 2: Shear estimation Shear calibration

Shear calibration using image simulations: tricks of the
trade VI

This method requires a factor of several hundred fewer image simulations.

10° | |
=== Our method
= = Equation (7)
10'1 === Linear fit
Equation (18)
€102 1
107 ]
=== Shape noise suppression
= = Equation (25)
10-4 2 : 3 : 4 : 5 : 6 7
10 10 10 10 10 10

N, sim
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Shear calibration using image simulations: tricks of the
trade VII

From (7).
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Why do we need N-body simulations for WL I

e WL probes LSS on small, non-linear scales.
Cosmic shear: down to sub-Mpc. Surveys sensitive to k ~ 50h/Mpc.
Need theoretical prediction of non-linear power spectrum.
(Semi-)analytical approaches go to k ~ 0.5h/Mpc.

e Shear field follows non-Gaussian distribution.
Follows from the fact that J in non-linear regime is non-Gaussian.
Complex survey geometry modify distribution.
At the least, need non-Gaussian covariance for likelihood.
Difficult from (semi-)analytical models (see previous point).

e Baryonic physics modifies dark-matter halo properties (profile,
concentration, ...).
Model with hydro-dynamical simulations.

e Systematic effects that correlate to astrophysics or the LSS.
Can use forward modelling for complex physical processes in N-body
simulation.
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Why do we need N-body simulations for WL II

Examples

e Blended galaxy images lead to deselection of galaxies in crowded fields,
which are correlated to high-density regions, that are then
under-represented. This leads to biases in inferred n(z), cosmological
parameters.

o &iys = correlation between stars and PSF-corrected galaxies = measure of
PSF residuals in galaxy shapes. But: Need to account for chance
alignment between PSF and LSS.

e Test mathematical useful approximations: Born, neglecting lens-lens
coupling, reduced shear g = v/(1 — k) versus shear v. Most of these
effects introduce higher-order correlations, again difficult to solve unless
Gaussian limits.
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Part II day 3: Cosmological parameter estimation Numerical simulations
Ray-tracing I

Principle of Ray-tracing
e Numerical evaluation of projection integral from particle distribution in
N-body simulation.

e Most algorithms first project particles on multiple lens planes (Blandford
& Narayan 1986), with Az/z of order 0.03 - 0.05.
Corresponds to a finite-sum discretization of the projection integral.

2 [X —x
a= Vo= [ XV 86) ).
0

On each lens plane, compute Jacobi matrix A;; = 8&/8]» = 0;5 — 0;0;9.
Algorithm (Hilbert et al. 2009):

) Py gk aaf.")(ﬂ(k>)
A5§)<0>=5u-2 ~5 Vi, Uiy = w(k) (ﬂu«) = ©
1 BB, 9B,

n=1 K
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-shooting versus ray-tracing
Two methods are common to propagate photons for the projection:

1. Ray shooting:
Compute cumulative lensing potential ¢ on a grid. Light rays travel on
(unperturbed) straight lines, corresponds to Born approximation.

2. Ray tracing:
Additionally compute deflection angle a, change direction of light ray
accordingly.
Light rays travel on straight lines between lens planes, where they change
direction.
Start at observer and shoot backwards. Why?
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray-shooting versus ray-tracing
Two methods are common to propagate photons for the projection:

1. Ray shooting:
Compute cumulative lensing potential ¢ on a grid. Light rays travel on
(unperturbed) straight lines, corresponds to Born approximation.

2. Ray tracing:
Additionally compute deflection angle a, change direction of light ray
accordingly.
Light rays travel on straight lines between lens planes, where they change
direction.
Start at observer and shoot backwards. Why?

el e
/—’——’—/
W w=(1-0.5)L SIS

From Hartlap, PhD thesis 2005
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Part II day 3: Cosmological parameter estimation Numerical simulations

Ray shooting

For cosmic shear ray-shooting is a very good (percent-level) approximation.

However, for galaxy-galaxy lensing this is not the case.

8x10™
_ 6x107*
2
& ax107
2x107
0 L L L
0.1 1 10
¢ [arcmin]
From (Hilbert et al. 2009).

This is because relative distance between light rays from two bg galaxies for
cosmic shear not much affected by coherent deflection.

But distance between light ray from bg galaxy and fg galaxy position (impact
parameter) is affected.
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Ray-tracing approximations

e Ray-tracing through N-body output snapshot

(@) z=24:

(b) z=z4412

boxes: Fixed cosmic time, neglecting LSS
evolution during photon travel time through
box. Limit box size to L < 300 Mpc.

matter 3
evolution Seaz
o (W

Larger boxes can be split and projected to
more than one lens plane, but:

From (Hilbert et al. 2009).

(my,my)

e Avoid cutting through halos
e Leads to loss of power on large scales

Use snapshots at different output times to
account for time evolution.

If box size is small, boxes have to be
concatenated. To avoid photons to encounter

repeated structures at different epochs: ©O

e Rotate and translate randomly. From Hartlap, PhD thesis 2005

e Shoot light rays under an skewed angle.
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Ray-tracing approximations

 Get shear and convergence by FFT, or finite -
differences in real space: -
Smoothing is necessary to reduce Poisson noise 5
of N-body discrete particle distribution. .
) n adaplive i i ks
However, other limitation is N-body 10° 1 10°
respitiien, From (Hilbert et al. 2009).
e From Cartesian flat-sky simulations, lens planes are by construction
parallel:

e Neglects sky curvature.
e Gradient of potential not orthogonal to light ray

This limits simulated field of view to a few degreees.
With convergence maps created on say grids of 10242 pixels — resolution
of around 0.2 arcmin.

e Newtonian physics, neglects GR effects. Also, MoG simulations not
possible under Newtonian approximation.
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Further methods

e Compute lensing Jacobian on the fly while running N-body simulation
(White & Hu 2000).
Circumvents lens plane projections, allows for slightly higher time
resolution.

Easy for ray-shooting where photon tractories are known before hand,
more difficult for ray tracing (Li et al. 2011).

e Store density field at different time steps on surface moving towards box
center (= observer) with speed of light, use those after run ends for
lensing projections (Teyssier et al. 2009).

e Full-sky simulations, for large upcoming surveys, CMB lensing.

Create spherical concentric shells around observer on the fly, project onto
lens spheres. (Fosalba et al. 2008, Das & Bode 2008, Teyssier
et al. 2009, Becker 2013).

e General-relativity simulations.

e Modified gravity simulations.
Take ~ 5 times compared to Newtonian ones.
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Hydro-dynamical simulations I

Important processes to simulate:

e Gas pressure, R ~ 1 - 0.1 Mpc, suppression of structure formation, gas
distribution is more diffuse than dark matter

e Baryonic cooling, R < 0.1 Mpc (k > 10/Mpc), gas condenses into stars
and galaxies, more strongly clustered than dark matter

e AGN and SN feedback
Simulation methods
Dark matter usually simulated as (very massive) particles.
Hydrodynamic physics often simulated in cells on a grid (adaptive).

Non-resolved physical processes, effective treatment within cell (“sub-grid
physics”).

Hydrodynamical simulation can often not reproduce observational results,
e.g. on AGN feedback. Need to calibrate simulations with observations.
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Part II day 3: Cosmological parameter estimation | Numerical simulations

Hydro-dynamical simulations 11
Influence on WL

e Need to know total (dark 4+ baryonic) power spectrum to 1-2% at k up to
10h/Mpe.

e Baryons (15% of total matter) behave differently than dark matter, but
dark matter is influenced by this, e.g. slightly follows distribution of
baryons

e P, strongly influenced for ¢ > 1000 to 3000 (depending on statistical
errors).

Mitigation of baryonic effects

e Removing small scales from survey analysis.

e Model baryonic effects e.g. with halo model. Fit to simulations,
marginalise over nuisance parameters or different models.

e Self-calibration using combination of observations. E.g. additional
observations of halo structure (Zentner et al. 2008), power spectrum and
bi-spectrum (Semboloni et al. 2013).
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Part II day 3: Cosmological parameter estimation Covariance estimation

WL covariance
General definition

Covariance of data vector d = {d;},i=1...m:

Cij = (AdiAdy) = (dsd;) — (ds){d;),
Examples of d:

di = Po(€:);  di = &4 (04); di = (Map(6;).

Case of data vector = £,
Recall the estimator for £4:
iy wiw; (Eeige,; T Exifx 5)

i

Very roughly:
C ~ (Ex&s) ~ (eece).
With weak-lensing relation € = €% + :

Cr (e +(EN)+ () =D+ M+V
TS AES



Part II day 3: Cosmological parameter estimation Covariance estimation

WL covariance components

e D = o2: Poisson noise from intrinsic ellipticities, shape noise
e M: mixed term

e V: shear covariance, cosmic variance, if shear field approximated having
Gaussian distribution (which it does not):
V ~3(y%).

Otherwise, need to account for connected 4-pt (tri-spectrum) term.

Gaussian covariance of power spectrum Py

1 03 2
((APH)2>(£) = m <% + PK(E)) .
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Part II day 3: Cosmological parameter estimation Covariance estimation

Non-Gaussian covariance
Mode coupling

e Couples different -modes, leads to saturation of information content on
small scales

e Tri-spectrum coupling on small scales

e Coupling of small with large scales: halo sample variance (HSV), beat
couping, super-survey covariance (SSC) (Takada & Hu 2013).
SSC descreses faster with f, than other terms — sub-dominant for large
surveys.

Modelling
e Tri-spectrum from halo model (+ PT)
e N-body simulations, but: difficult to include SSC
e From data, by spatial averaging over sub-fields, or Jackknife.

Spatial averaging: number of independent lines of sight n

For non-singular covariance of data vector with length m, need n > m.
For precision covariance (error bars on cosmo parameters of < 5%, need
n > 10m (Taylor et al. 2013).
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Part II day 3: Cosmological parameter estimation Likelihood and parameter estimation

Likelihood function

Gaussian likelihood
L(d|p, M) = (2m)~™/?|C(p, M)| '/
1 _
X exp _5 (d - y(p7 M))t C 1(]37 M) (d - y(pa M))

with d = data vector, C' = covariance matrix, y = model, p = (cosmo)
parameter vector, M = cosmological model.

But: True likelihood is non-Gaussian.
Model non-Gaussianity of observables:
e N-body simulations (very time-consuming)

e Transform data to be more Gaussian

e Approximate Bayesian Computation (ABC) sampling
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Part II day 3: Cosmological parameter estimation Likelihood and parameter estimation

Bayesian parameter inference

5 Likelihood:
Bayes theorem probability of data given
parameters and model Prior
T arameters
L(z|m, m)P(w|m) o0
p(1r|a;’ m) = x: data
E (x|m) m: model
Posterior:
probability of parameters Evidence
given data and model
Parameter constraints = integrals over the posterior / d"m h(m)p(m|z, m)
. | h(mw) =m: mean
or example: . .
P h(m) = 1ggy :  68% credible region

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation,
frequentist evaluation, ABC, ...
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Part II day 3: Cosmological parameter estimation = Higher order statistics: peak counts

WL peak counts: Why do we want to study peaks?

« WL peaks probe high-density regions < non-Gaussian tail of LSS
First-order in observed shear: less sensitive to systematics, circular average!
« High-density regions « halo mass function, but indirect probe:

* Intrinsic ellipticity shape noise, creating false positives, up-scatter in S/N
* Projections along line of sight

Halo mass function
x map and peaks

modelling

— 0,=076 \\\\
-- 0,=082 8

- 0,=088 .

5 130 135 140 145 150 155 160

Halo mass [log(M/M k")

interpretation ?

% 3 O s 0 7
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

WL peak counts. What are peaks good for?

What do we gain from peak counting?

¢ Additional and complementary
information and constraints
compared to 2" order shear

e Non-Gaussian information

0.8 - b

ag

Figure from Dietrich & Hartlap 2010 06 |- R
red/orange: cosmic shear
green: shear & peak 05 b i
0 ! . !
01 0z 03 04
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Part II day 3: Cosmological parameter estimation | Higher order statistics: peak counts

WL peaks: A fast stochastic model

Replace N-body simulations by Poisson distribution of halos

Sample halos
from a mass function

PDF

Assign density profiles,
randomize their positions

Simulating
1-halo term

Sarhpled mass

Lin. MK & Pires 2016
TSEWATES



Part II day 3: Cosmological parameter estimation

Hypotheses:
1. Clustering of halos not important for counting peaks
(along los: Marian et al. 2013)

2. Unbound LSS does not contribute to WL peaks

Peak

Test:

At f Mg

Martin Kilbinger (CEA)

Peak number density n,,.,, [dez > A ']

10%

10

1.0

06
04
02
00

-04

Field of view = 54 deg?; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, z; = 1.0

Higher order statistics: peak counts

WL peaks: histograms

—  Full N-body runs
& & N-body: halos NFW

@ @ N-body: halos NFW -+ random position

4 ¢ Ourmodel

~ - Noise-only

2

SNR»

Weak Gravitational Lensing Part II

136 / 153



Part II day 3: Cosmological parameter estimation

k]
2
o

©
8

2
E
S
2
x
B
o
a

Higher order statistics: peak counts

WL peaks: cosmological parameters

Peak abundance histogram

10° Runs, (€. o Runs, (.04 )
—  Nebody, (0.23,0.83) N-body, (0.23, 0.83)
& & Ourmodel, (0.20, 0.83) & & Ourmodel, (0.23, 0.78)
10k @ # Ourmodel, (0.23, 0.83) ||| @ 8 Ourmodel, (0.23, 0.83)
H ¢ ¢ Ourmodel, (0.26, 0.83) ¢ & Ourmodel, (0.23, 0.85)
10° - 3 d ;
o : S
4 s
] $
10 L L S | O LIS
: 0, variation, i | o, variation: L
T : : : : : : : : :
10? Runs, (€,,.0%) H Runs, (,,.0%)
—  N-body, (0.23,0.83) N-body, (0.23, 0.83)
@ & Ourmodel, (0.20, 0.75) @ & Ourmodel, (0.26, 0.75)
10k @ @ Ourmodel, (0.23,0.83) ||| @ @ Ourmodel, (0.23, 0.83)
& & Ourmodel, (0.26, 0.88) & & Ourmodel, (0.20, 0.88)
® B
10° F o2 - 3
¢
[ g o)
Py ] ® &
. 2
101 . L
: Diagonal variation i L Anti-diagonal variation ?
2 3 4 5 6 7 2 3 5 6 7

in Kilbinger (CEA)

Lin & Kilbinger (2015a)
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

WL peaks: data vector choices

Data vector x = x(t). Different cases:

- Abundance of peaks n;as fct. of SNR v (PDF; binned histogram) or
- SNR values v; at some percentile values of peak CDF)
- with or without lower cut Vmin.

Lin & MK 2015a

Peak abundance histogram Dietrich & Hartlap (2010)
e
. —  Full N-body runs. B e e P e T
10° & @ ~body:halosoNPw Lo

& & N-body: halos +NFW + random position - f CDF |
: 4 4 ourmogel N ’ ' :
2 =] = i i i

3 =
3 . or g AR :
] Lo 3 . [ I I
s ! X § 20 o ;
8 : : e i |
g P R S sl /1 !
c 2 H N > [ | | |
S E ' e [ I |
| i S S Lol :
noe oot D02 Lo ! !
b : [ | |
x ' LLB o | |
' F; o : :
) L. H R :

3 3 . : 3.5 4.0 4.5 5.0 5.5 6.0
SNR SNR
... for given SNR t; xi = SNR values ...
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

WL peaks: Gaussian likelihood

Q

‘m

-0y constraints

abd5, cg, confidence
— 1-0,68.3% |
== 2-0,95.4%

abd5, svg, confidence |
=3 1-0,68.3%
3 2-0,954%

Leg = A" (m) c! () Ax(r),

Lay = AxT () €\ () Ax(r), and
Lyg = In[det Cm)| + Ax” (m) €' () Ax(a).

Cosmology-dependent covariance [(s)vg] reduces
error area by 20%.
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

ABC: Approximate Bayesian Computation I

Likelihood:
probability of data given
parameters and model

N

T arameters
p(’rr‘a: m) = L(m‘ﬂ-7m)P(ﬂ-|m) x: Sata
’ E($|m) m: model

Likelihood: how likely is it that model prediction med(n) reproduces data €?

1.8
Classical answer: evaluate function L at @. 8 :
14 /\
Alternative: compute fraction of models 12 / \
that are equal to the data . 510 / \
E 08

‘40 45 5.0 55 6.0 65 7.0
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts
ABC: Approximate Bayesian Computation II

models for given parameter =
18

Probability = p/N in frequentist sense. T T T T T
1.6

Magic: Don't need to sample N models. ™[ /\

One per parameter T is sufficient 2r / \

with accept-reject algorithm.

ol [
ol / \
0.2 / zl

ABC can be performed if: 40 45 50 55 60 65 70

Observable =

pdf(z)

* itis possible and easy to sample from L

ABC is useful when:
« functional form of L is unknown

* evaluation of L is expensive
* model is intrinsically stochastic
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Part II day 3: Cosmological parameter estimation | Higher order statistics: peak counts

ABC: Approximate Bayesian Computation III

Example: let's make soup.

Goal: Determine ingredients from final result.
Model physical processes? Complicated.
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Part II day 3: Cosmological parameter estimation = Higher order statistics: peak counts

ABC: Approximate Bayesian Computation IV

Example: let's make soup.

Goal: Determine ingredients from final result.
Model physical processes? Complicated.
Easier: Make lots of soups with different ingredients, compare.

Kilbinger (CEA) Weak Gravitational Lensing Part II
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Part II day 3: Cosmological parameter estimation = Higher order statistics: peak counts

ABC: Approximate Bayesian Computation V

Example: let's make soup.

Questions:

* What aspect of data and simulations do we compare? (summary statistic)
* How do we compare? (metric, distance)

* When do we accept? (tolerance)
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

ABC: Approximate Bayesian Computation VI

Parameter constraints: ABC

Q,-0, constraints

¢ Summary statistic

abds, ABC, credible
A — 10,683%

s = x (data vector for 2 cases) /.‘\— : -~ 20,954%

* Metric D: two cases

2
_ obs
(=)

Dy (x,x™) = Z C .
Dy (x, x°h5) = /(x = xop) €71 (o — xobs), ’ /\/ ’

Dy in Lin & MK 2015b

D + D2 in Lin, MK & Pires 2016 ‘

« ABC algorithm: iterative importance |
sampling (PMC) with decreasing ozf v \

tolerance B

00 02 04 06 08 10
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Part II day 3: Cosmological parameter estimation Higher order statistics: peak counts

ABC: Approximate Bayesian Computation VII

P space

ABC'’s accept-reject process is actually a
sampling under P, (green curve):

Am)

Pe(ﬂ\mc’bs) = A(m)P(n),

where P(r) stands for the prior (blue curve) and

A () = /dx P(z]m) 1| govs < (), o
040 i Ob‘serval‘alesp‘ace i
is the accept probability under = (red area). One 0ssl
can see that 030l -

. ™ <e
lim AE(TFQ)/EIP(.ZObS‘TF()) I,C(ﬂ'o), & 0201 -
e—0 E?,’ 015
s0 P, is proportional to the true posterior when 010
0.05
e — 0.
0.00
I«.\hk
-0.05 i
-6 -4 -2 0 2 4 6
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ABC: Approximate Bayesian Computation VIII

PMC ABC posterior evolution

t=

00 02 04 06 08 00 02 04 06 08 00 02 04 06 08 00 02 04 06 08 10

Q,

Lin & Kilbinger (2015b)
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Part II day 3: Cosmological parameter estimation _
ABC: Approximate Bayesian Computation IX

. Q05 i " PMC ABC particle weight
abds, ABC, credible
0 — 1-7,68.3% N
h —- 2:0,954% !
09 abds, cg, credible 09
= 1-0,68.3%
3 2-0,954%
08 08
& &
07 07
0.6 0.
0.5 0.5,
04 0.4
0.1 0.2 03 0.4 05 0.6 0.7 0.8 0.1 0.2 0.3 0.4 05 0.6 0.7 08
Q. Q.

ABC wider but less elongated and less bent contours than Gaussian with const cov.
KDE smoothing effect?
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