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Part I day 1: Principles of gravitational lensing Introductory remarks

Books, Reviews and Lecture Notes

• Bartelmann & Schneider 2001, review Weak gravitational lensing,
Phys. Rep., 340, 297 arXiv:9912508

• Kochanek, Schneider & Wambsganss 2004, book (Saas Fee) Gravitational
lensing: Strong, weak & micro. Download Part I (Introduction) and Part
III (Weak lensing) from my homepage
http://www.cosmostat.org/people/kilbinger.

• Kilbinger 2015, review Cosmology from cosmic shear observations
Reports on Progress in Physics, 78, 086901, arXiv:1411.0155

• Bartelmann & Maturi 2017, review Weak gravitational lensing,
Scholarpedia 12(1):32440, arXiv:1612.06535

• Henk Hoekstra 2013, lecture notes (Varenna) arXiv:1312.5981

• Sarah Bridle 2014, lecture videos (Saas Fee) http:
//archiveweb.epfl.ch/saasfee2014.epfl.ch/page-110036-en.html

• Alan Heavens, 2015, lecture notes (Rio de Janeiro)
www.on.br/cce/2015/br/arq/Heavens_Lecture_4.pdf
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Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing

What has gravitational lensing ever done for us?
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Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing
Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Microlensing rules out objects between 10−7 and few 10 M�.

[Takahiro Sumi, Nagoya University]
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Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing
Outstanding results
Detection of Earth-like exoplanets with microlensing.
Masses and distances to host star similar to Earth.

9 

 

Figure 1 : The observed light curve of the OGLE-2005-BLG-390 microlensing 
event and best fit model plotted as a function of time. The data set consists of 
650 data points from PLANET Danish (ESO La Silla, red points), PLANET Perth 
(blue), PLANET Canopus (Hobart, cyan), RoboNet Faulkes North (Hawaii, 
green), OGLE (Las Campanas, black), MOA (Mt John Observatory, brown). 
This photometric monitoring was done in the I band (with the exception of 
Faulkes R band data and MOA custom red passband) and real-time data 
reduction was performed with the different OGLE, PLANET and MOA data 
reduction pipelines. Danish and Perth data were finally reduced by the image 
subtraction technique19 with the OGLE pipeline. The top left inset shows the 
OGLE light curve extending over the previous 4 years, whereas the top right 
one shows a zoom of the planetary deviation, covering a time interval of 1.5 
days. The solid curve is the best binary lens model described in the text with a 

planet-to-star mass ratio of q = 7.6 ± 0.7 × 10-5, and a projected separation d = 

1.610 ± 0.008 RE (where RE is the Einstein ring radius). The dashed grey curve 

is the best binary source model that is rejected by the data, while the dashed 
orange line is the best single lens model.  

(Beaulieu et al. 2006)

Martin Kilbinger (CEA) WL Part I/II 5 / 143



Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing
Outstanding results
Structure of QSO inner emission regions.
Microlensing by stars in lens galaxies.

[J. Wambsganss]

Martin Kilbinger (CEA) WL Part I/II 5 / 143



Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing
Outstanding results
Dark matter profiles in outskirts of galaxies.
Measuring halo mass to very large galactic scales.

Halo profile around stacked fg galaxies
8 CFHTLenS

Figure 5.Galaxy-galaxy lensing signal around lenses which have been split into luminosity bins according to Table 1, modelled using the halo model described
in Section 3.2. The dark purple (light green) dots represent the measured differential surface density, ∆Σ, of the red (blue) lenses, and the solid line is the
best-fit halo model. Triangles represent negative points that are included unaltered in the model fitting procedure, but that have here been moved up to positive
values as a reference. The dotted error bars are the unaltered error bars belonging to the negative points. The squares represent distance bins containing no
objects. For a detailed decomposition into the halo model components, we refer to Appendix D.

sure the galaxy-galaxy lensing signal for each sample, with errors
obtained via bootstrapping 104 times over the full CFHTLenS area,
where the number of bootstraps ensure convergence of the mean.
We then fit the signal between 50 h−1

70 kpc and 2 h−1
70 Mpc with

our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.
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6 CFHTLenS

⟨γcal(r)⟩ =
⟨γ(r)⟩

1 + K(r)
. (5)

The effect of this correction term on our galaxy-galaxy analysis is
to increase the average lensing signal amplitude by at most 6%.
Though there will be some uncertainty associated with this term,
Kilbinger et al. (2013) find that it has a negligible effect on their
shear covariance matrix. The calibration factorm enters linearly in
our Equation 5, while it is squared in the Kilbinger et al. (2013) cor-
relation function correction factor, thus amplifying its effect. The
conclusion we draw is therefore that the impact of the calibration
factor uncertainty will be insignificant in this work. We also apply
the additive c-term correction discussed in Heymans et al. (2012)
but find that it does not change our results either.

The circular averaging over lens-source pairs makes this type
of analysis robust against small-scale systematics introduced by for
example PSF residuals in the shape measurement catalogues. Be-
cause the galaxy-galaxy lensing signal is more resilient to system-
atics than cosmic shear, we choose to maximise our signal-to-noise
by using the full CFHTLenS area (except for masked areas) rather
than removing the fields that have not passed the cosmic shear sys-
tematics test described in Heymans et al. (2012). However, there
could be spurious large-scale signal present owing to areas being
masked, or from lenses close to an edge, such that the circular av-
erage does not cover all azimuthal angles. We correct for such spu-
rious signal using a catalogue of random lens positions situated out-
side any masked areas; the number of random lenses used is 50,000
per square-degree field, which amounts to more than ten times as
many as real lenses. The stacked lensing signal measured around
these random lenses is evidence of incomplete circular averages
and will be present in the observed stacked lensing signal as well.
Because of our high sampling of this random points signal, we can
correct the observed signal measured in each field by subtracting
the signal around the random lenses. This random points test is dis-
cussed in more detail in Mandelbaum et al. (2005a). The test shows
that for this data, individual fields do indeed display a signal around
random lenses which is to be expected, even in the absence of any
shape measurement error, due to cosmic shear and shot noise, and
due to the masking effect mentioned above. Averaged over the en-
tire CFHTLenS area the random lens signal is insignificant relative
to the signal around true lenses ranging from∼ 0.5% to∼ 5% over
the angular range used in this analysis. Additionally, to ascertain
whether including the fields that fail the cosmic shear systematics
test biases our results, we compare the tangential shear around all
galaxies with 19.0 < i′AB < 22.0 in the fields that respectively
pass and fail this test, and find no significant differences between
the signals.

3.2 The halo model

To accurately model the weak lensing signal observed around
galaxy-size haloes, we have to account for the fact that galaxies
generally reside in clustered environments. In this work we do this
by employing the halo model software first introduced in VU11.
For full details on the exact implementation we refer to VU11; here
we give a qualitative overview.

Our halo model builds on work presented in Guzik & Seljak
(2002) and Mandelbaum et al. (2005b), where the full lensing sig-
nal is modelled by accounting for the central galaxies and their
satellites separately. We assume that a fraction (1−α) of our galaxy
sample reside at the centre of a dark matter halo, and the remaining
objects are satellite galaxies surrounded by subhaloes which in turn

Figure 3. Illustration of the halo model used in this paper. Here we have
used a halo mass of M200 = 1012 h−1

70 M⊙, a stellar mass of M∗ =

5 × 1010 h−2
70 M⊙ and a satellite fraction of α = 0.2. The lens redshift is

zlens = 0.5. Dark purple lines represent quantities tied to galaxies which
are centrally located in their haloes while light green lines correspond to
satellite quantities. The dark purple dash-dotted line is the baryonic com-
ponent, the light green dash-dotted line is the stripped satellite halo, dashed
lines are the 1-halo components induced by the main dark matter halo and
dotted lines are the 2-halo components originating from nearby haloes.

reside inside a larger halo. In this context α is the satellite fraction
of a given sample.

The lensing signal induced by central galaxies consists of two
components: the signal arising from the main dark matter halo (the
1-halo term∆Σ1h) and the contribution from neighbouring haloes
(the 2-halo term ∆Σ2h). The two components simply add to give
the lensing signal due to central galaxies:

∆Σcent = ∆Σ1h
cent + ∆Σ2h

cent . (6)

In our model we assume that all main dark matter haloes are well
represented by an NFW density profile (Navarro, Frenk, & White
1996) with a mass-concentration relationship as given by
Duffy et al. (2008). The halo model parameters resulting from an
analysis such as ours (see, for example, Section 4) are not very
sensitive to the exact halo concentration, however, as discussed in
VU11 and in Appendix A. To compute the 2-halo term, we use
the non-linear power spectrum from Smith et al. (2003). We also
assume that the dependence of the galaxy bias on mass follows the
prescription from Sheth et al. (2001), incorporating the adjustments
described in Tinker et al. (2005). Note that this mass-bias relation
is empirically calibrated on large numerical simulations, and does
not discriminate between different galaxy types. Finally, we note
that the central term essentially assumes a delta function in halo
mass as a function of a given observable since we do not integrate
over the halo mass distribution. For a given luminosity bin, for ex-
ample, the particular mass distribution within that bin therefore has
to be accounted for. We do correct our measured halo mass for this
in the following sections, assuming a log-normal distribution, and
the correction method is described in Appendices B2 and B3 for
the luminosity and stellar mass analysis respectively.

We model satellite galaxies as residing in subhaloes whose
spatial distribution follows the dark matter distribution of the main
halo. The number density of satellites in a halo of a given mass is
described by the halo occupation distribution (HOD) which is com-
monly parameterised through a power law of the form ⟨N⟩ = M ϵ.
Following Mandelbaum et al. (2005b), we set ϵ = 1 for masses
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our halo model using a χ2 analysis. Only the halo mass M200 and
the satellite fraction α are left as free parameters while we keep
all other variables fixed. When fitting, we assume that the covari-
ance matrix of the lensing measurements is diagonal. Off-diagonal
elements are generally present due to cosmic variance and shape
noise, but Choi et al. (2012) find that for a lens sample at a redshift
range similar to that of our lenses the covariance matrix is diago-
nal up to ∼1 Mpc, which corresponds well to the largest scale we
include in our fits (this is also confirmed via visual inspection of
our matrices). Furthermore, Figure 7.2 from the PhD thesis of Jens
Rödiger3 shows that the off-diagonal elements are comparatively
small. Hence we do not expect that the off-diagonal elements in
the χ2 fit will have a significant impact on the best-fit parameters.
The results are shown in Figure 5 for all luminosity bins and for
each red and blue lens sample, with details of the fitted halo model
parameters quoted in Table 2. The halo masses in this table have
been corrected for various contamination effects as detailed in Sec-
tion 4.1 and Appendix B. Note that the number of blue lenses in the
two highest-luminosity bins, L7 and L8, is too low to adequately
constrain the halo mass. In the following sections, these two blue
bins have therefore been removed from the analysis of blue lenses.

As expected, the amplitude of the signal increases with lumi-

3 http://hss.ulb.uni-bonn.de/2009/1790/1790.htm

nosity for both red and blue samples indicating an increased halo
mass. In general, for identical luminosity selections blue galax-
ies have less massive haloes than red galaxies do. For the red
sample, lower luminosity bins display a slight bump at scales of
∼ 1 h−1

70 Mpc. This is due to the satellite 1-halo term becoming
important and indicates that a significant fraction of the galaxies in
those bins are in fact satellite galaxies inside a larger halo. On the
other hand, brighter red galaxies are more likely to be located cen-
trally in a halo. The blue galaxy halo models also display a bump
for the lower luminosity bins, but this feature is at larger scales
than the satellite 1-halo term. The signal breakdown shown in Fig-
ure D2 (Appendix D) reveals that this bump is due to the central 2-
halo term arising from the contribution of nearby haloes. We note,
however, that in these low-luminosity blue bins, the model overes-
timates the signal at projected separations greater than∼2h−1

70 Mpc.
This could be an indicator that our description of the galaxy bias,
while accurate for red lenses, results in too high a bias for blue
lenses. Alternatively, the discrepancy may suggest that the regime
where the 1-halo term transitions into the 2-halo term is not ac-
curately described due to inherent limitations of the halo model,
such as non-linear galaxy biasing, halo exclusion representation
and inaccuracies in the non-linear matter power spectrum (see Sec-
tion 3.2). To optimally model the regime in question, the handling
of these factors should perhaps be dependent on galaxy type, but
that is not done here. The reason is that we do not currently have
enough data available to investigate this regime in detail. In the fu-
ture, however, it should be explored further.

CFHTLenS

4 CFHTLenS

PHARE to estimate stellar masses. For a consistent analysis we also
compute rest-frame luminosities from the same spectral template
as used for the stellar mass estimates.

We derive our stellar mass estimates by fitting synthetic spec-
tral energy distribution (SED) templates while keeping the redshift
fixed at the BPZ maximum likelihood estimate. The SED templates
are based on the stellar population synthesis (SPS) package devel-
oped by Bruzual & Charlot (2003) assuming a Chabrier (2003) ini-
tial mass function (IMF). Following Ilbert et al. (2010), our initial
set of templates includes 18 models using two different metallici-
ties (Z1 = 0.008 Z⊙ and Z2 = 0.02 Z⊙) and nine exponentially
decreasing star formation rates ∝ e−t/τ , where t is time and τ
takes the values τ = 0.1, 0.3, 1, 2, 3, 5, 10, 15, 30 Gyr. The fi-
nal template set is then generated over 57 starburst ages ranging
from 0.01 to 13.5 Gyr, and seven extinction values ranging from
0.05 to 0.3 using a Calzetti et al. (2000) extinction law. Ilbert et al.
(2010) investigated the possible sources of uncertainty and bias by
comparing stellar mass estimates between methods. The expected
difference between our estimates and those based on a Salpeter
IMF (Arnouts et al. 2007), a “diet” Salpeter IMF (Bell 2008), or a
Kroupa IMF (Borch et al. 2006) is−0.24 dex, −0.09 dex, or 0 dex
respectively (see Ilbert et al. 2010). In their Section 4.2, Ilbert et al.
(2010) further argue that the choice of extinction law may lead to
a systematic difference of 0.14, and the choice of SPS model to
a median difference of 0.13–0.15 dex, with differences reaching
0.24 dex for massive galaxies with a high star formation rate.

We determine the errors on our stellar mass estimates via the
68% confidence limits of the SED fit, using the full probability dis-
tribution function. However, since we fix the redshift these errors
tell us only how good the model fit is, and do not account for un-
certainties in the photometric redshift estimates (see Section 5.2
of Hildebrandt et al. 2012). To assess the stellar mass uncertainty
due to photometric redshift errors we therefore compare our mass
estimates to those of the CFHT WIRCam Deep Survey (WIRDS;
Bielby et al. 2012). The WIRDS stellar masses were derived from
the CFHTLS Deep fields with additional broad-band near-infrared
data using the same method as described here. We are thus compar-
ing our CFHTLenS stellar mass estimates to other estimates which
are also based on photometric data, but which have deeper pho-
tometry leading to a more robust stellar mass estimate. The addi-
tional near-infrared data allows us to rely on these estimates up to
a redshift of 1.5 (Pozzetti et al. 2007). For our comparison we use
a total of 134,290 galaxies in the overlap between the CFHTLenS
and WIRDS data, splitting our sample into red and blue galaxies
using their photometric type TBPZ. TBPZ is a number in the range
of [1.0, 6.0] representing the best-fit SED and we define our red
and blue samples as galaxies with TBPZ < 1.5 and 2.0 < TBPZ <
4.0 respectively, where the latter captures most spiral galaxies. A
colour-colour comparison confirms that these samples are well de-
fined. In Figure 1 we show the comparison between our stellar mass
estimates and those from WIRDS as a function of magnitude (top,
with galaxies in the redshift range [0.2, 0.4]) and redshift (bottom,
with galaxies in the magnitude range [17.0, 23.5]).

For the range of lens redshifts used in this paper,
0.2 ! zlens ! 0.4, the total dispersion compared to WIRDS is then
∼ 0.2 dex for both red and blue galaxies. The lower panel in the
bottom plot of Figure 1 shows that for red galaxies our stellar
masses are in general slightly lower than the WIRDS estimates,
with the opposite being true for blue galaxies. For galaxies brighter
than i′AB ∼ 18, both the dispersion and the bias increase due to
biases in the redshift estimates (see Hildebrandt et al. 2012). The

Figure 2.Magnitude (left panel) and photometric redshift (right panel) dis-
tributions of galaxies in the CFHTLenS catalogue. For the left panel we
show all galaxies in the CFHTLenS, while for the right panel we limit our
sample to magnitudes brighter than i′AB = 24.7. The upper limit of lens
(source) magnitude used is shown with a dark purple dotted (light green
dashed) line in the left panel, while our lens (source) redshift selection is
marked with dark purple dotted (light green dashed) lines in the right panel.
Though the lens and source selections appear to overlap in redshift, sources
are always selected such that they are well separated from lenses in redshift
(see Section 2.2). Furthermore, close pairs are down-weighted as described
in Section 3.1.

bias and dispersion also increase rapidly at magnitudes fainter than
i′AB ∼ 23, again due to redshift errors.

We emphasise that this comparison with WIRDS quantifies
only the statistical stellar mass uncertainty due to errors in the pho-
tometric redshifts and due to our particular template choice. Since
the mass estimates from both datasets have been derived using iden-
tical method and template set, the systematic errors affecting stellar
mass estimates are not taken into account above. The uncertain-
ties arising from the choice of models and dust extinction law adds
0.15 dex and 0.14 dex respectively to the error budget, as mentioned
above, resulting in a total uncertainty of ∼ 0.3 dex.

2.2 Lens and source sample

The depth of the CFHTLS enables us to investigate lenses with a
large range of lens properties and redshifts, which in turn grants us
the opportunity to thoroughly study the evolution of galaxy-scale
dark matter haloes. As discussed by Hildebrandt et al. (2012), the
use of photometric redshifts inevitably entails some bias in red-
shift estimates, and also in derived quantities such as luminosity
and stellar mass. Our analysis is sensitive even to a small bias
since our lenses are selected to reside at relatively low redshifts
of 0.2 ! zlens ! 0.4, where z is understood to be the peak of the
photometric redshift probability density function, unless explicitly
stated otherwise (see Figure 2). Because our lensing signal is de-
tected with high precision, we empirically correct for this bias us-
ing the overlap with a spectroscopic sample as described in Ap-
pendix B1. Throughout this paper, we then use the corrected red-
shifts, luminosities and stellar masses for our lenses. For the full
survey area we achieve a lens count of Nlens = 1.1 × 106.

We then split our lens sample in luminosity or stellar mass
bins as described in Sections 4 and 5 to investigate the halo mass
trends as a function of lens properties. Since we have access to
multi-colour data, we are also able to further divide our lenses in
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Table 3
Binning Scheme for the g–g Lensing

Limits g–g bin1 g–g bin2 g–g bin3 g–g bin4 g–g bin5 g–g bin6 g–g bin7

z1 = [0.22, 0.48] min log10(M∗) 11.12 10.89 10.64 10.3 9.82 9.2 8.7
max log10(M∗) 12.0 11.12 10.89 10.64 10.3 9.8 9.2

z2 = [0.48, 0.74] min log10(M∗) 11.29 11.05 10.88 10.65 10.3 9.8 9.3
max log10(M∗) 12.0 11.29 11.05 10.88 10.65 10.3 9.8

z3 = [0.74, 1.0] min log10(M∗) 11.35 11.16 10.97 10.74 10.39 9.8 none
max log10(M∗) 12.0 11.35 11.16 10.97 10.74 10.39 none

In this manner, faint small galaxies which have large measure-
ment errors are downweighted with respect to sources that have
well-measured shapes.

For the types of lenses studied in this paper, the S/N per
lens is not high enough to measure ∆Σ on an object-by-object
basis so instead we stack the signal over many lenses. For a
given sample of lenses, the total excess projected surface mass
density is the weighted sum over all lens–source pairs:

∆Σ =
∑NLens

j=1

∑NSource
i=1 wij × γ̃t,ij × Σcrit,ij

∑NLens
j=1

∑NSource
i=1 wij

. (12)

3.5. Galaxy–Galaxy Lensing Measurements

We only give a brief outline of the overall methodology used
to compute the g–g lensing signals since this has already been
presented in detail in Leauthaud et al. (2010). Foreground lens
galaxies are divided into three redshift samples and then are
further binned by stellar mass (see Figure 2 and Table 3). For
each lens sample, ∆Σ is computed according to Equation (12)
from 25 kpc (physical distance) to 1.5 Mpc in logarithmically
spaced radial bins of 1.8 dex. In Leauthaud et al. (2010), we
used a theoretical estimate of the shape measurement error in
order to derive the inverse variance for each source galaxy.
Instead, in this paper, the dispersion of each shear component is
measured directly from the data in bins of S/N and magnitude.
The measured shear dispersion is equal to the quadratic sum of
the intrinsic shape noise and of the shape measurement error
(Equation (6)). Our empirical derivation of the shear dispersion
varies from σγ̃ ∼ 0.25 for bright galaxies with high S/N
to σγ̃ ∼ 0.4 for faint galaxies with low S/N. Overall, we
find that the theoretical and the empirical schemes yield very
similar results with the latter method resulting in slightly larger
error bars because the theoretical scheme tends to somewhat
underestimate the shape measurement error for faint galaxies.

Photometric redshifts are used to derive Σcrit for each lens–
source pair. The lower 68% confidence bound on each source
redshift is used to select background galaxies. For each
lens–source pair, we demand that zsource − zlens > σ68%(zsource)
so as to minimize foreground contamination. The g–g lensing
signal is most sensitive to redshift errors when zsource is only
slightly larger then zlens (see Figure 1). For this reason, in
addition to the previous cut, we also implement a fixed cut so
that zsource − zlens > 0.1. Furthermore, in order to minimize the
effects of signal dilution caused by catastrophic errors, we also
reject all source galaxies with a secondary peak in the redshift
probability distribution function (i.e., the parameter zp2 is non
zero in the Ilbert et al. 2009 catalog). This cut is aimed to reduce
the number of catastrophic errors in the source catalog. After all
cuts have been applied, the g–g lensing source catalog that we
use represents 35 galaxies per arcmin2.

Finally, we re-compute all our g–g lensing signals using the
Schrabback et al. (2010) COSMOS shear catalog which has been
independently derived from ours. We find identical g–g lensing
signals from both shear catalogs, indicating that any relative
shear calibration differences between the two shear catalogs has
no impact on these results. This test provides an independent
validation of our g–g lensing results.

4. THEORETICAL FRAMEWORK

Paper I presents the general theoretical foundations that form
the backbone of this paper. In this section, we only give a
brief, and thus necessarily incomplete, review of the theoretical
background and strongly encourage the reader to refer to Paper I
for further details. We adopt the same model and notation as in
Paper I.

Paper I describes an HOD-based model that can be used
to analytically predict the SMF, g–g lensing, and clustering
signals. The key component of this model is the SHMR which is
modeled as a log-normal probability distribution function with a
log-normal scatter21 denoted σlog M∗ , and with a mean–log
relation denoted as M∗ = fshmr(Mh).

For a given parameter set and cosmology, fshmr and σlog M∗
can be used to determine the central and satellite occupation
functions, ⟨Ncen⟩ and ⟨Nsat⟩. These are used in turn to predict
the SMF, g–g lensing, and clustering signals.

4.1. The Stellar-to-halo Mass Relation

Following Behroozi et al. (2010, hereafter B10), fshmr(Mh)
is mathematically defined via its inverse function:

log10

(
f −1

shmr(M∗)
)

= log10(Mh)

= log10(M1) + β log10

(
M∗

M∗,0

)

+

(
M∗
M∗,0

)δ

1 +
(

M∗
M∗,0

)−γ − 1
2
, (13)

where M1 is a characteristic halo mass, M∗,0 is a characteristic
stellar mass, β is the low-mass slope, and δ and γ control the
high-mass slope. We refer to B10 for a more detailed justification
of this functional form. Briefly, we expect that at least four
parameters are required to model the SHMR: a normalization,
break, a low-mass slope, and a bright end slope. In addition, B10
have found that the SHMR displays sub-exponential behavior
at large M∗. This is modeled by the δ parameter which leads to
a total of five parameters. Figure 3 illustrates the influence of

21 Scatter is quoted as the standard deviation in the logarithm base 10 of the
stellar mass at fixed halo mass.

7

(Velander et al. 2014)
(Velander et al. 2014)
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Bullet cluster and others: bulk of mass is collisionless.
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Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing
Outstanding results
Observation of very-high (z ≥ 7) galaxies.
Galaxy clusters as “natural telescopes”.

Fig. 3: (a) 3ÕÕ x 5ÕÕ HST and background-subtracted Spitzer/IRAC (CH1 and CH2)
postage stamps of MACS1423-z7p64. Black represents positive signal. The source is
detected in F125W, F140W and F160W and not detected in any optical bands. The
marginal detection in F105W is consistent with a rapid drop in flux around 1.05µm, just
blue-ward of Ly–. The source is detected in IRAC CH2 but not in CH1. (b) HST near-IR
false-color image of the galaxy cluster MACSJ1423.8+2404 (z = 0.545), showing the
location of MACS1423-z7p64 (cyan circle) relative to the critical line (white line) and the
MOSFIRE slit (yellow rectangle). (c) Close-up of region inside dotted cyan rectangle from
(b). The dispersion directions from the two GLASS P.A.s are shown by the red (P.A.=8¶)
and white (P.A.=88¶) arrows. (d) Observed broadband flux densities (squares) and 3‡
upper limits (downward arrows) from ≥ 0.4 ≠ 5 µm. Vertical error bars show the 1‡ flux
density errors and horizontal error bars show the e�ective width of each filter. We also
show the best-fit galaxy spectral energy distributions (SEDs) when redshifts are fixed at
the Ly– redshift z = 7.640 (red solid line) and at the hypothetical [O ii] redshift z = 1.818
(blue dashed line). The flux densities predicted by the best-fit z = 7.640 galaxy SED are
shown as purple diamonds. The photometric redshift probability density function obtained
by allowing the galaxy redshift to vary is shown in the inset in the lower-right corner. The
vertical dashed line in the inset marks the Ly– redshift, z = 7.640.

8

(Hoag et al. 2017)
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Science with gravitational lensing
Outstanding results
Hints of inconsistency of our cosmological model at low and high z?
Planck and WL in tension? Also WL cluster masses for Planck SZ clusters;
H0 from cepheids + SL.18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the

present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.

The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see

MNRAS 000, 1–48 (2016)

(Hildebrandt et al. 2017)
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Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1σ error bars (s.d.) including the statistical error on the measurement19 of β 

(filled circles). The grey shaded region indicates the 1σ  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+ΛCDM model, EG = Ωm,0 / f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+ΛCDM 

(EG = 0.408 ± 0.029(1σ ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27B0 = 0.001− 0.1 

(EG = 0.328 − 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (EG = 0.22 , shown with a nominal error bar of 10 per cent for clarity).  

Friedmann-Lemaître-Robertson-Walker metric with perturbations:

(Reyes et al. 2010)

Parameterisation

Gravitational potential as experienced by galaxies:

Gravitational potential as experienced by photons:

 ds
2 = −(1+ 2ϕ )dt 2 + (1− 2φ)a2drx 2

∇2ϕ = 4πGa2ρδ

∇2 (ϕ + φ) = 8πGa2ρδ 1+ Σ[ ]

1+ µ[ ] µ(a)∝ΩΛ (a)

Σ(a)∝ΩΛ (a)

time dilation spatial curvature

(Reyes et al. 2010)
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Part I day 1: Principles of gravitational lensing Introductory remarks

Science with gravitational lensing

Outstanding results
Dark matter is not in form of massive compact objects (MACHOs).
Detection of Earth-mass exoplanets.
Structure of QSO inner emission regions.
Dark matter profiles in outskirts of galaxies.
Galaxy clusters are dominated by dark matter.
Observation of very-high (z ≥ 7) galaxies.
Hints of inconsistency of our cosmological model at low and high z?
General relativity holds on cosmological scales.

Most important properties of gravitational lensing
Lensing probes total matter, baryonic + dark.
Independent of dynamical state of matter.
Independent of nature of matter.
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Part I day 1: Principles of gravitational lensing Brief history of gravitational lensing

Brief history of gravitational lensing

• Before Einstein: Masses
deflect photons, treated as
point masses.

• 1915 Einstein’s GR
predicted deflection of
stars by sun, deflection
larger by 2 compared to
classical value. Confirmed
1919 by Eddington and
others during solar eclipse.

Photograph taken by Eddington of solar corona, and

stars marked with bars.
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Part I day 1: Principles of gravitational lensing Brief history of gravitational lensing

Lensing on cosmological scales

• 1920 Eddington: Multiple light
rays connecting source and
observer possible

• Chwolson (1924), Einstein (1936):
Ring structure as image possible

• Einstein (1936): Little chance of
observing lensing phenomena
caused by stellar-mass lenses

• 1937 Zwicky posits galaxy clusters
as lenses.

• 1979 Walsh et al. detect first
double image of a lenses quasar.

Fritz Zwicky; Abell 2151 (Hercules galaxy

cluster) c©Tony Hallas/APoD.

(Walsh et al. 1979)
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Part I day 1: Principles of gravitational lensing Brief history of gravitational lensing

• 1987 Soucail et al.
strongly distorted
“arcs” of
background
galaxies behind
galaxy cluster,
using CCDs.
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Part I day 1: Principles of gravitational lensing Brief history of gravitational lensing

• Tyson et al. (1990), tangential alignment around clusters.19
90
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Abell 1689

Cluster outskirts: Weak gravitational lensing.

Martin Kilbinger (CEA) WL Part I/II 10 / 143



Part I day 1: Principles of gravitational lensing Brief history of gravitational lensing

• 2000 cosmic shear: weak lensing in blind fields, by 4 groups (Edinburgh,
Hawai’i, Paris, Bell Labs/US).
Some 10, 000 galaxies on few square degree on the sky area.
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40 L. Van Waerbeke et al.: First detection of cosmic shear

Fig. 8a–c. Possible contribution of the systematics studied in Sect. 3.2
to the signal. On each of the plots, the thick solid line shows the signal
as displayed in Fig. 1, and the dashed lines show the ±1σ fluctuation
obtained from 1000 random realizations. From top to bottom: a The
two thin solid lines are ⟨γ2⟩1/2 measured on the galaxies sorted ac-
cording to the star ellipticity strength (see Fig. 4). For the different
smoothing scales, the mean number and the variance of the number
of galaxies in the chosen bins fit the one observed in the signal (thick
solid) curve. b the thin solid line is ⟨γ2

t ⟩1/2 measured on the galaxies
sorted according to the distance from the optical center, and on c the
two thin solid lines correspond to the galaxies sorted according to their
X or Y location on the CCDs.

cosmological models, compared to our signal. It is remarkable
that models (1) and (3) can be marginally rejected (We did not
plot the error bars due to the intrinsic ellipticity for clarity: they
can be obtained from Fig. 8).

Our measurements are in agreement with the cluster nor-
malized model (2). Also plotted is the theoretical prediction
of a ΛCDM model, with Ω = 0.3, Λ = 0.7, Γ = 0.5 and

Fig. 9. From top to bottom, measurement of the correlation functions
⟨et(0)et(θ)⟩, ⟨er(0)er(θ)⟩ and ⟨er(0)et(θ)⟩. The error bars are com-
puted from50 random realizations of our data setwhere the orientations
of the galaxies were randomized.

a redshift of the sources zs = 1. It shows that the low-Ω
model is also in good agreement with the data, which means
that weak gravitational lensing provides cosmological con-
straints similar to the cluster abundance results (Eke et al. 1996,
Blanchard et al. 1999): the second moment of the shear mea-
sures a combination of σ8 and Ω0 (see Eq. 8). A measure of the
third moment of the convergence would break the Ω-σ8 degen-
eracy, but this requires more data (see Bernardeau et al. 1997,
Van Waerbeke et al. 1999, Jain et al. 1999). It should also be
noted that for the simulations, we have considered cold dark
matter models with shape parameter Γ = 0.21; higher values
of Γ increase the theoretical predictions on scales of interest,
e.g. the Ω0 = 1, σ8 = 1 model would be ruled out even more
strongly. We conclude that our analysis is consistent with the

Shear (ellipticity)

correlation of galaxies as

fct. of angular separation

(Van Waerbeke

et al. 2000, Kilbinger

et al. 2013).

• By 2016: Many dedicated surveys: DLS, CFHTLenS, DES, KiDS, HSC.
Competitive constraints on cosmology.
Factor 100 increase: Millions of galaxies over 100s of degree area. Many
other improvements: Multi-band observations, photometric redshifts,
image and N -body simulations, . . ..
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Part I day 1: Principles of gravitational lensing Brief history of gravitational lensing

• By 2025: LSST, WFIRST-AFTA,
Euclid data will be available.
Another factor of 100 increase:
Hundred millions of galaxies, tens
of thousands of degree area (most
of the extragalactic sky).

Martin Kilbinger, SAp/AIMEuclid: Ground Segment & Dark Universe 2

• Next M-class (500 M€) ESA 
mission 

• 6-year mission, launch in 2020 

• 1100 members in 130 labs from 14 
European countries + US/NASA 

• Merged from DUnE (SAp lead) and 
Space (Italy) 

• Two instruments: VIS (imaging in 
visible light), NISP (imaging & 
spectroscopy in near-IR) 

• Science: Weak gravitational lensing 
and galaxy clustering.
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Figure 6-14: Observed area after year 6 (Ecliptic Coordinates) with the calibration fields. 
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Figure 6-15: Observed area after year 6 (Mollweide Projection). 

 
The duration of the survey is illustrated in figure 6-16, where the total area of the Wide survey is given by 
the blue line. The green line shows the part of the total survey which is performed over the high-density 
area. The implemented strategy clearly observes primarily the best available square degrees during the 
first 4 years before extending the survey excursion toward the medium-density area as to improve 
efficiency. 

 
Figure 6-16: Survey area coverage as a function of survey time elapsed since beginning of nominal science operations. The green line is 

the area covered over the high-density area, the blue line shows the total area survey, (core +medium-density area). 

 

The result shows a very high efficiency of the survey, and after 5.5 years (corresponding to 5.3 year on 
the plotted line + 2.5 months for orbital maneuvers) the total wide survey covered area is 15 500 deg², 
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6.1.1.1. Second Year 
 

Second Year Period / Southern Cap 
Sequence Type of Sequence Duration  
SLEW Slew to Southern Ecliptic Pole Deep Field start 

point   
DEEP Cover as much as possible of the Deep Field with 

SAA within accepted limits. Start with largest SAA 
depointing, and end with the SAA corresponding to 
observation of the next Wide Field. 

2 days Loop 6 times 
this 
Sequence 

SLEW Slew to Wide targeted area for first year (see First 
year recommended targeted area)  

WIDE Cover as much as possible of the Wide field with 
SAA within accepted limits. 

28 days 
SLEW Slew to Southern Ecliptic Pole Deep Field start 

point  
  Total 

Duration  
  180 days  

First Year Period specific calibrations
Sequence Type of Sequence Duration Cadence
SLEW0_0 Slew to a galactic star field  

Every monthCALIB0_1 Take exposures with different times [V-CAL-F-005] 1 day
SLEW0_1 Slew back on WS
SLEW0_4 Slew to a Planetary Nebula Twice (one after 

3mos, the other 
after 6mos)

CALIB2_1 Take exposures with different times and orientations [NS-CAL-F-003] 1 day
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SLEW0_9 Slew back on WS

Total Duration
17 days

For Reference Survey will be assumed in the Galactic Plane

For Reference Survey will be assumed in the Galactic Plane

For Reference Survey will be assumed in the NEP

For Reference Survey will be assumed in the Galactic Plane

ECSURV group (J. Amiaux)+ESSWG

1.2 m diameter mirror, 0.5 deg2 field-of-view

Observing 15000 deg2 = 1/3 of the sky
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Figure 6-15: Observed area after year 6 (Mollweide Projection). 

 
The duration of the survey is illustrated in figure 6-16, where the total area of the Wide survey is given by 
the blue line. The green line shows the part of the total survey which is performed over the high-density 
area. The implemented strategy clearly observes primarily the best available square degrees during the 
first 4 years before extending the survey excursion toward the medium-density area as to improve 
efficiency. 

 
Figure 6-16: Survey area coverage as a function of survey time elapsed since beginning of nominal science operations. The green line is 

the area covered over the high-density area, the blue line shows the total area survey, (core +medium-density area). 
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Part I day 1: Principles of gravitational lensing Types of lensing

Types of lensing

source lens observation name science

star star (≠sun) time-varying 
magnification micro-lensing

exoplanets, 
MACHOs, 

limb darkening

galaxy galaxy, 
cluster

multiple images, 
arcs, 
Δt

strong lensing
galaxy M/L, properties 
inner cluster structure, 
dark-matter properties, 

H0, QSO structure

galaxies
galaxies, 
cluster 

LSS

distortions, 
magnification, 

σ(number density)
weak lensing

galaxy M/L, halos, 
cluster M, outer structure, 

cosmo parameters

CMB LSS distortions in T CMB (weak) 
lensing cosmo parameters
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Part I day 1: Principles of gravitational lensing Cosmic shear illustration

Cosmic shear, or weak cosmological lensing

Light of distant galaxies is deflected while travelling through inhomogeneous
Universe. Information about mass distribution is imprinted on observed
galaxy images.

• Continuous deflection: sensitive to
projected 2D mass distribution.

• Differential deflection:
magnification, distortions of
images.

• Small distortions, few percent
change of images: need statistical
measurement.

• Coherent distortions: measure
correlations, scales few Mpc to few
100 Mpc.

scales
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Part I day 1: Principles of gravitational lensing WL measurement challenges

Measuring cosmic shear“shape measurement” 

•  Average Shear Distortion equivalent to difference in 
Ellipticity between Earth and Moon 

 

Typical shear of a few percent equivalent to difference in ellipticity between
Uranus and the Moon.
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Part I day 1: Principles of gravitational lensing WL measurement challenges

Example: Euclid VIS
This will be easy with Euclid. Right?

Simulation: OU-VIS team, Henry McCracken (IAP).
Martin Kilbinger (CEA) WL Part I/II 16 / 143
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Deflection angle

source S

observer O

∇⊥φ

α̂

Perturbed Minkowski metric, weak-field (φ� c2)

ds2 =
(
1 + 2φ/c2

)
c2dt2 −

(
1− 2φ/c2

)
d`2

One way to derive deflection angle: Fermat’s principle:

Light travel time t =
1

c

∫

path

(
1− 2φ/c2

)
d`

is stationary, δt = 0. (Analogous to geometrical optics,
potential as medium with refract. index n = 1− 2φ/c2.)
Integrate Euler-Lagrange equations along the light path to
get

deflection angle α̂ = − 2

c2

∫ O

S

∇⊥φ d`
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Special case: point mass

Deflection angle for a point mass M is

α̂ =
4GM

c2ξ

ξ

ξ
=

2RS

ξ

ξ

ξ

(RS is the Schwarzschild radius.)

This is twice the value one would get
in a classical, Newtonian calculation. SDSS J1627-0053!

zs = 0.5, zl = 0.2, α = 2.8” (5 kpc)

HE 1104-1825!

zs = 2.3, zl = 1.7, α = 1.6” (14 kpc)

Mass deflects light from a point source

ᾱ

α

ξ

Point source:  
deflection angle

�̂ =
4GM

c2�
impact parameter

Deflection angle depends on  
integral over the  
projected mass distribution

(Einstein 1915)

SDSS J1627-0053!
zs = 0.5, zl = 0.2, α = 2.8” (5 kpc)

HE 1104-1825!

zs = 2.3, zl = 1.7, α = 1.6” (14 kpc)

Mass deflects light from a point source

ᾱ

α

ξ
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deflection angle

�̂ =
4GM

c2�
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projected mass distribution

(Einstein 1915)
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Exercise: Derive the deflection angle for a point mass. I

We can approximate the potential as

φ = −GM
R

= −c
2

2

RS

R
,

where G is Newton’s constant, M the mass of the object, R the distance, and
RS the Schwarzschild radius. The distance R can be written as
R2 = x2 + y2 + z2.
(Weak-field condition φ� c2 implies R� RS.
(Here z is not redshift, but radial (comoving) distance.)
We use the so-called Born approximation (from quantum mechanic scattering
theory) to integrate along the unperturbed light ray, which is a straight line
parallel to the z-axis with a constant x2 + y2 = ξ2. The impact parameter ξ is
the distance of the light ray to the point mass.
The deflection angle is then

α̂ = − 2

c2

∫ ∞

−∞
∇⊥φdz.
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Exercise: Derive the deflection angle for a point mass. II

The perpendicular gradient of the potential is

∇⊥φ =
c2RS

2|R|3
(
x
y

)
=
c2RS

2

ξ

(ξ2 + z2)3/2

(
cosϕ
sinϕ

)
.

The primitive for (ξ2 + z2)−3/2 is zξ−2(ξ2 + z2)−1/2]. We use the symmetry of
the integrand to integrate between 0 and ∞, and get for the absolute value of
the deflection angle

α̂ = 2RS

[
z

ξ(ξ2 + z2)1/2

]∞

0

=
2RS

ξ
=

4GM

c2ξ
.
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Generalisation I: mass distribution
Distribution of point masses Mi(ξi, z): total deflection angle is linear vectorial
sum over individual deflections

α̂(ξ) =
∑

i

α̂(ξ − ξi) =
4G

c2

∑

i

Mi(ξi, z)
ξ − ξi
|ξ − ξi|

With transition to continuous density

Mi(ξi, z)→
∫

d2ξ′
∫

dz′ ρ(ξ′, z′)

and introduction of the 2D

surface mass density Σ(ξ′) =

∫
dz′ ρ(ξ′, z′)

we get

α̂(ξ) =

∫
d2ξ′ Σ(ξ′)

ξ − ξ′
|ξ − ξ′|

Thin-lens approximation

Martin Kilbinger (CEA) WL Part I/II 21 / 143



Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Generalisation II: Extended source I

Extended source: different light rays impact lens at different positions ξ, their
deflection angle α(ξ) will be different: differential deflection → distortion,
magnification of source image!
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Propagation of light bundles I

Calculate deflection angle difference between different light bundles:

observer

source
dx(χ

)

β

χ

χ′

χ − χ′

θ

∇⊥φ(χ
′ )

x(χ)
dα̂

In homogeneous flat Universe, transverse distance x0 between two light rays
as fct. of comoving distance χ

x0(χ) = χθ.

This is modified by inhomogeneous matter = deflectors as follows.
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Propagation of light bundles II

From deflector at comoving distance χ′, infinitesimal deflection angle

dα̂ = − 2

c2
∇⊥φ(x(χ′), χ′)dχ′

This results in a change of transverse distance dx from vantage point of
deflector (at χ′)

dx = (χ− χ′)dα̂
Total deflection: integrate over all deflectors along χ′. This would yield the
difference between a perturbed and an unperturbed light ray. To account for
perturbation of second light ray, subtract gradient of potential φ(0) along
second light ray.

x(χ) = χθ − 2

c2

∫ χ

0

dχ′(χ− χ′)
[
∇⊥φ(x(χ′), χ′)−∇⊥φ(0)(χ′)

]
.

Transform distances into angles seen from the observer: divide by χ. x/χ is
the angle β under which the unlensed source is seen. The integral/χ is the
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Part I day 1: Principles of gravitational lensing Light deflection in an inhomogeneous Universe

Propagation of light bundles III

geometric difference between unlensed (β) and apparent, lensed (θ) is the
deflection angle

α =
2

c2

∫ χ

0

dχ′
χ− χ′
χ

[
∇⊥φ(x(χ′), χ′)−∇⊥φ(0)(χ′)

]
.

This results in the lens equation

β = θ −α.

This is a mapping from lens coordinates θ to source coordinates β.
(Q: why not the other way round?)
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Part I day 1: Principles of gravitational lensing Convergence, shear, and ellipticity

Linearized lensing quantities I
To 0th order: approximate light path x, on which potential gradient is
evaluated in integral with unperturbed line χθ (Born approximation):

β(θ) = θ − 2

c2

∫ χ

0

dχ′
χ− χ′
χ

[
∇⊥φ(χ′θ, χ′), χ′)−∇⊥φ(0)(χ′)

]
.

This neglects coupling between structures at different distances (lens-lens
coupling): Distortion at some distance adds to undistorted image, neglecting
distortion effect on already distorted image by all matter up to that distance.

Numerical simulations show that Born is accurate to sub-percent on most
scales. This is pretty cool. Differences between perturbed and unberturbed
light ray can be a few Mpc!

Next, drop the second term (does not depend on distance x = χθ, so gradient
vanishes).
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Part I day 1: Principles of gravitational lensing Convergence, shear, and ellipticity

Linearized lensing quantities II

Now, we can move the gradient out of integral. That means, deflection angle
is a gradient of a potential, the 2D lensing potential ψ. Writing derivatives
with respect to angle θ, we get

β(θ, χ) = θ −∇θψ(θ, χ)

with

ψ(θ, χ) =
2

c2

∫ χ

0

dχ′
χ− χ′
χχ′

φ(χ′θ, χ′).

[Note: Above equations are valid for flat Universe. For general (curved)
models, some comoving distances are replaced by comoving angular distances.]
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Part I day 1: Principles of gravitational lensing Convergence, shear, and ellipticity

Linearized lensing quantities III

Linearizing lens equation
We talked about differential deflection before. To first order, this involves the
derivative of the deflection angle.

Or the lens mapping:

∂βi
∂θj
≡ Aij = δij − ∂i∂jψ.

Jacobi (symmetric) matrix

A =

(
1− κ− γ1 −γ2
−γ2 1− κ+ γ1

)
.

• convergence κ: isotropic magnification

• shear γ: anisotropic stretching
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γ

source

image

Convergence and shear are second derivatives of the 2D lensing potential.
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Part I day 1: Principles of gravitational lensing Convergence, shear, and ellipticity

Convergence and shear I
The effect of κ and γ follows from Liouville’s theorem: Surface brightness is
conserved (no photon gets lost; https://what-if.xkcd.com/145/).

Therefore the surface brightness I at the lensed position θ is equal to the
unlensed, source surface brightness Is at the source position β.

I(θ) = Is(β(θ)) ≈ Is(β(θ0) +A(θ − θ0))

Example: circular isophotes
Effect can easily be seen for circular source isophotes,
e.g. θ1 = R cos t, θ2 = R sin t (thus θ21 + θ22 = R2).

Convergence
Applying the Jacobi matrix with zero shear (and setting β(θ0) = 0), we find
β2
1 + β2

2 = R2(1− κ)2. The radius R of these isophotes gets transformed at
source position to R(1− κ).
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Convergence and shear II
Shear
To see an example for the shear stretching, set γ2 = 0. We find
(β1, β2) = R([1− κ− γ1] cos t, [1− κ+ γ1] sin t) and thus
(β1/[1− κ− γ1])2 + (β2/[1− κ+ γ1])2 = R2, which is an ellipse with half axes
R/[1− κ− γ1] and R/[1− κ+ γ1].

So we see that shear transforms a circular image
into an elliptical one.

Define complex shear

γ = γ1 + iγ2 = |γ|e2iϕ;

The relation between convergence, shear, and the
axis ratio of elliptical isophotes is then

|γ| = |1− κ|1− b/a
1 + b/a

ϕ

x

y

a

b
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Convergence and shear III

Further consequence of lensing: magnification.
Liouville (surface brightness is conserved) + area changes (dβ2 6= dθ2 in
general) → flux changes.

magnification µ = detA−1 = [(1− κ)2 − γ2]−1.

Summary: Convergence and shear linearly encompass information about
projected mass distribution (lensing potential ψ). They quantify how lensed
images are magnified, enlarged, and stretched. These are the main observables
in (weak) lensing.
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Effects of lensing, ∂iψ/∂xi

i symbol name spin effect

0 Δt time delay 0

1 α deflection 1

2 ! convergence 0

2 " shear 2

3 F flextion 1

3 G flexion 3
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Figure 2.3: First and second order distortions on the image of a circular source. The
unlensed source is shown in the top left panel. The convergence simply changes the
size (bottom left panel). While the shear deforms the image such that it becomes
elliptical (third column of panels from the left), the first and the second flexion intro-
duce curvature and other distortions (second and fourth columns). Courtesy of Peter
Melchior.
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This means that the first flexion can be used to obtain the convergence field.

2.6 Occurrence of images

The deflection of light rays causes a delay in the time between the emission of radia-
tion by the source and the signal reception by the observer. This time delay has two
components:

t = tgeom + tgrav (2.63)

The first one has a geometrical reason and is due to the di↵erent path length of the
deflected light rays compared to the unperturbed ones. This time delay is proportional
to the squared angular separation between the intrisic position of the source and the
location of its image. The second one comes from the slowing down of photons traveling
through the gravitational field of the lens and is therefore related to the lensing potential.
Considering a lens at redshift zL, the total time delay introduced by gravitational lensing
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Figure 2.5: Profiles of the time delay surfaces displayed in Fig. (2.4) along the line
x1 = x2.

surfaces. When the source and the lens are perfectly aligned, the minima of the time
delay surface are located on a ring and the maximum is at the lens center. The source
therefore is mapped to a ring image of type I (the so called Einstein Ring) and to a
central type III image. This last one is generally demagnified, since the curvature of the
time delay surface here is large for density profiles peaked at the lens center.

As the source is moved far away from the optical axis, the time delay surface deforms. In
particular, the ring breaks, leading to the formation of a minimum and of a saddle point.
Three images therefore arise. In the case displayed in the middle panel of Fig. (2.4), the
type I image at the minimum and the type II image at the saddle point are stretched
in the tangential direction, since the local curvature of the time delay surface is small
in that direction. This explains the formation of tangential arcs in galaxy clusters.
However, as the source is moved to even larger angular distances from the optical axis,
the saddle point and the maximum move much closer to each other, while the minimum
follows the source. The local curvature of the time delay surface in the radial direction
becomes smaller between the saddle point and the maximum as they get closer. The
images arising at this two points therefore are stretched towards each other. Then a
radial image forms. When the saddle point and the maximum point touch, two images
disappear and only the image arising at the minimum of the time delay surface remains
(see right panels of Fig. (2.4) and Fig. (2.5)).

Here follows a number of other important properties of the time-delay surface:

• the height di↵erence at di↵erent images of the surface t(~x) gives the di↵erence in
arrival time between these images. This time delay can be measured if the source
is variable, and provides one way of potentially measuring the Hubble constant;

• in absence of the lens, the time-delay surface is a parabola which has a single
extremum (a minimum); additional extrema have to come in pairs, thus the total
number of images must be odd (as we showed earlier by continously deforming
the time-delay surface);

• when two additional images are formed, they must be a maximum and a saddle
point; in between them, the curvature changes from negative to positive, thus
it is zero between them; remember that det A = 0 is the condition for having
a critical point, where the magnification is (formally) infinite. The critical lines
thus separate multiple-image pairs; these pairs merge and desappear (as discussed
above) at the critical lines. In other words, the critical lines separate regions of
di↵erent image multiplicities.

t(x
)

x - xc
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Basic equation of weak lensing

Weak lensing regime
κ� 1, |γ| � 1.
The observed ellipticity of a galaxy is the sum of the intrinsic ellipticity and
the shear:

εobs ≈ εs + γ

Random intrinsic orientation of galaxies

〈εs〉 = 0 −→ 〈ε〉 = γ

The observed ellipticity is an unbiased estimator of the shear. Very noisy
though! σε = 〈|εs|2〉1/2 ≈ 0.4� γ ∼ 0.03. Increase S/N and beat down noise
by averaging over large number of galaxies.

Question: Why is the equivalent estimation of the convergence and/or
magnification more difficult?
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Ellipticity and local shear

[from Y. Mellier]
Galaxy ellipticities are an estimator of the local shear.
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Some weak-lensing galaxy surveys

Survey Date Area [deg2] ngal [arcmin−2]

CFHTLenS 2003-2007 170 14
DLS 2001-2006 25 20
COSMOS 2005 1.6 80
SDSS 2000-2012 11,000 2
KiDS 2011- 1,500 7-8
HSC 2015- 1,500 22
DES 2012-2018 5,000 5-6
CFIS/UNIONS 2017-2020 5,000 6-7
LSST 2021- 15,000 ∼ 30
Euclid 2021-2026 15,000 ∼ 30
WFIRST-AFTA 2024- 2,500 ?
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Part I day 1: Principles of gravitational lensing Projected power spectrum

Convergence and cosmic density contrast

Back to the lensing potential

• Since κ = 1
2∆ψ:

κ(θ, χ) =
1

c2

∫ χ

0

dχ′
(χ− χ′)χ′

χ
∆θφ(χ′θ, χ′)

• Terms ∆χ′χ′φ average out when integrating along line of sight, can be
added to yield 3D Laplacian (error O(φ) ∼ 10−5).

• Poisson equation

∆φ =
3H2

0Ωm

2a
δ

(
δ =

ρ− ρ̄
ρ

)

→ κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .
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Amplitude of the cosmic shear signal
Order-of magnitude estimate

κ(θ, χ) =
3

2
Ωm

(
H0

c

)2 ∫ χ

0

dχ′
(χ− χ′)χ′
χa(χ′)

δ (χ′θ, χ′) .

for simple case: single lens at at redshift zL = 0.4 with comoving size R/a(zL),
source at zS = 0.8.

κ ≈ 3

2
Ωm

(
H0

c

)2
DLSDL

DS

R

a2(zL)

δρ

ρ

Add signal from N ≈ DS/[R/a(zL)] crossings, calculate rms:

〈κ2〉1/2 ≈3

2
Ωm

DLSDL

R2
H

√
R

DS
a−1.5(zL)

〈(
δρ

ρ

)2
〉1/2

≈3

2
0.3× 0.1 × 0.1 × 2 × 1 ≈ 0.01

We are indeed in the weak-lensing regime.
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Convergence with source redshift distribution

So far, we looked at the convergence for one single source redshift (distance
χ). Now, we calculate κ for a realistic survey with a redshift distribution of
source galaxies. We integrate over the pdf p(χ)dχ = p(z)dz, to get

κ(θ) =

χlim∫

0

dχp(χ)κ(θ, χ) =

χlim∫

0

dχG(χ)χ δ (χθ, χ)

with lens efficiency

G(χ) =
3

2

(
H0

c

)2
Ωm

a(χ)

∫ χlim

χ

dχ′ p(χ′)
χ′ − χ
χ′

.

The convergence is a projection of the matter-density contrast, weighted by
the source galaxy distribution and angular distances.
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Parametrization of redshift distribution, e.g.

p(z) ∝
(
z

z0

)α
exp

[
−
(
z

z0

)β]
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(dashed line: all sources at redshift 1)

Max. lensing signal from halfway distance between us and lensing galaxies.
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More on the relation between κ and γ
Convergence and shear are second derivatives of lensing potential → they are
related.
One can derive κ from γ (except constant mass sheet κ0).
E.g. get projected mass reconstruction of clusters from ellipticity observations.

Projected mass and distortionCONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011

overdensity
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More on the relation between κ and γ
Convergence and shear are second derivatives of lensing potential → they are
related.
Fluctuations (variance σ2) in κ and γ are the same!
E.g. get variance/power spectrum of projected δ from ellipticity correlations.

Projected mass and distortionCONVERGENCE & SHEAR
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The convergence power spectrum

• Variance of convergence 〈κ(ϑ+ θ)κ(ϑ)〉 = 〈κκ〉(θ) depends on variance of
the density contrast 〈δδ〉

• In Fourier space:

〈
κ̂(`)κ̂∗(`′)

〉
= (2π)2δD(`− `′)Pκ(`)

〈
δ̂(k)δ̂∗(k′)

〉
= (2π)3δD(k − k′)Pδ(k)

• Limber’s equation

Pκ(`) =

∫
dχG2(χ)Pδ

(
k =

`

χ

)

using small-angle approximation, Pδ(k) ≈ Pδ(k⊥), contribution only from
Fourier modes ⊥ to line of sight. Also assumes that power spectrum
varies slowly.
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Dependence on cosmology

Day 1: Principles of weak lensing Projected power spectrum

Dependence on cosmology

P(`) =

Z
d�G2(�)P�

✓
k =

`

�

◆

G(�) =
3

2

✓
H0

c

◆2
⌦m

a(�)

Z �lim

�

d�0 p(�0)
�0 � �

�0
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initial conditions, 
growth of structure

geometryredshift distribution"
of source galaxies

matter density
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Part I day 1: Principles of gravitational lensing Projected power spectrum

Example
A simple toy model: single lens plane at redshift z0, Pδ(k) ∝ σ2

8k
n, CDM, no

Λ, linear growth:

〈κ2(θ)〉1/2 = 〈γ2(θ)〉1/2 ≈ 0.01σ8 Ω0.8
m

(
θ

1deg

)−(n+2)/2

z0.750

This simple example illustrates three important facts about measuring
cosmology from weak lensing:

1. The signal is very small (∼ percent)

2. Parameters are degenerate

3. The signal depends on source galaxy redshift
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Lensing ‘tomography’ (2 1/2 D lensing)

• Bin galaxies in redshift.

• Lensing efficiency different for different
bins (even though the probed redshift
range is overlapping): measure
z-depending expansion and growth
history.

• Necessary to measure dark energy,
modified gravity.

Pκ(`) =

χlim∫
0

dχG2(χ)Pδ

(
k =

`

χ

)
→

P ijκ (`) =

χlim∫
0

dχGi(χ)Gj(χ)Pδ

(
k =

`

χ
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Lensing ‘tomography’ (2 1/2 D lensing)

• Bin galaxies in redshift.

• Lensing efficiency different for different
bins (even though the probed redshift
range is overlapping): measure
z-depending expansion and growth
history.

• Necessary to measure dark energy,
modified gravity.
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Part I day 1: Principles of gravitational lensing

Projected power spectrum

Lensing ‘tomography’ (2 1/2 D lensing)

Question: Why does Pκ increase with z?



Part I day 1: Principles of gravitational lensing Projected power spectrum

Convergence power spectrum for two different redshift bins
(0 = [0.5; 0.7], 1 = [0.9; 1.1]).

Unlike CMB C`’s, features in matter power spectrum are washed out by
projection and non-linear evolution.
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

Correlations of two shears I
We have established lensing power spectrum Pκ = Pγ (power spectrum of
projected δ) as interesting quantity for cosmology.

Projected mass and distortionCONVERGENCE & SHEAR

Projected matter density
convergence ⇥

−0.041 0.095 0.23

Distortion field
shear �

Source galaxies at z = 1, ray-tracing simulations by T. Hamana

Allows reconstruction of projected mass distribution

tangential distortions around mass peaks

Wednesday, November 9, 2011

θ
κ

κ γ

θ
γ

Provides theory model prediction correlation of κ or γ in Fourier space.
However we measure shear (ellipticity) in real space.
Two options to make connection:

1. Fourier-transform data. Square to get power spectrum.

2. Calculate correlations in real space. Inverse-Fourier transorm theory Pκ.
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

Correlations of two shears II
Correlation of the shear at two points yields four quantities

γtγt < 0

> 0 < 0

〈
γtγ×

〉
,
〈
γ×γt

〉

〈
γ×γ×

〉

〈γtγt〉

Parity conservation −→ 〈γtγ×〉 = 〈γ×γt〉 = 0

The two components of the shear two-point correlation function (2PCF) are
defined as

ξ+(ϑ) = 〈γtγt〉 (ϑ) + 〈γ×γ×〉 (ϑ)

ξ−(ϑ) = 〈γtγt〉 (ϑ)− 〈γ×γ×〉 (ϑ)

Due to statistical isotropy & homogeneity, these correlators only depend on ϑ.
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

Correlations of two shears III
The 2PCF is the 2D Fourier transform of the lensing power spectrum.

Isotropy → 1D integrals, Hankel transform.

ξ+(ϑ) =
1

2π

∫ ∞

0

d` `J0(`ϑ)Pκ(`)

ξ−(ϑ) =
1

2π

∫ ∞

0

d` `J4(`ϑ)Pκ(`),
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

E- and B-modes I

Shear patterns
We have seen tangential pattern in the shear field due to mass over-densities.
Under-dense regions cause a similar pattern, but with opposite sign for γ.
That results in radial pattern.

Under idealistic conditions, these are the only possible patterns for a shear
field, the E-mode. A so-called B-mode is not generated.

E mode

B mode

mass
trough

mass
peak

E mode

B mode

mass
trough

mass
peak
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

E- and B-modes II

Origins of a B-mode
Measuring a non-zero B-mode in observations is usually seen as indicator of
residual systematics in the data processing (e.g. PSF correction, astrometry).

Other origins of a B-mode are small, of %-level:

• Higher-order terms beyond Born appproximation (propagation along
perturbed light ray, non-linear lens-lens coupling), and other (e.g. some
ellipticity estimators)

• Lens galaxy selection biases (size, magnitude biases), and galaxy
clustering

• Intrinsic alignment (although magnitude not well-known!)

• Varying seeing and other observational effects

• Non-standard cosmologies (non-isotropic, TeVeS, . . .)
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

E- and B-modes III

Measuring E- and B-modes
Separating data into E- and B-mode is not trivial.

To directly obtain κE and κB from γ, there is leakage between modes due to
the finite observed field (border and mask artefacts).

One can quantify the shear pattern, e.g. with respect to reference centre
points, but the tangential shear γt is not defined at the center.

Solution: filter the shear map. (= convolve with a filter function Q). This also
has the advantage that the spin-2 quantity shear is transformed into a scalar.

This is equivalent to filtering κ with a function U that is related to Q.
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Part I day 1: Principles of gravitational lensing Real-space shear correlations

E- and B-modes IV

εt

ε×

θ

The resulting quantity is called aperture mass Map(θ), which is a function of
the filter size, or smoothing scale, θ. It is only sensitive to the E-mode.

If one uses the cross-component shear γ× instead, the filtered quantity, M×
captures the B-mode contribution only.

End of day 1.
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Outline

Part I day 2. Reminder: Overview

Part I day 1: Principles of gravitational lensing
Brief history of gravitational lensing
Light deflection in an inhomogeneous Universe
Convergence, shear, and ellipticity
Projected power spectrum
Real-space shear correlations

Part I day 2: Measurement of weak lensing
Galaxy shape measurement
PSF correction
Photometric redshifts
Estimating shear statistics

Part I day 3: Surveys and cosmology
Cosmological modelling
Results from past and ongoing surveys (CFHTLenS, KiDS, DES)
Euclid

Part I day 3+: Extra stuff
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

The shape measurement challenge

• Cosmological shear γ � ε intrinsic ellipticity

• Galaxy images corrupted by PSF

• Measured shapes are biased
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

The shape measurement challenge
How do we measure “ellipticity” for irregular, faint, noisy objects?

The DES Science Verification Weak Lensing Shear Catalogues 13

The files are quite large, so loading the whole file into memory is
not generally feasible, but it is also not necessary.

The postage stamps from the original single-epoch images
were sky-subtracted and then scaled to be on a common photomet-
ric system, which simplified the model fitting using these images.
We also stored the local affine approximation of the WCS function,
evaluated at the object centre, so that models could be made in sky
coordinates and constrained using the different image coordinates
for each postage stamp.

See Appendix A for details about how we build and store the
MEDS files.

5.1 Exposure Selection

We did not use all single-epoch images for measuring shapes. We
excluded a small fraction of the CCD images that had known prob-
lems in the original data or in some step of the data reduction and
processing. We created simple “blacklist” files, in which we stored
information for CCD images we wished to exclude, and that infor-
mation was incorporated into the MEDS files as a set of bitmask
flags. Postage stamps from blacklisted images were then easily ex-
cluded from the analysis when measuring shears. Here we list some
of the reasons that images were blacklisted.

Some of the astrometry solutions (cf. §2.3) provided a poor
map from CCD coordinates to sky coordinates. This happened pri-
marily near the edges of the SPT-E region where there are not
enough overlapping exposures to constrain the fit.

Some of the PSF solutions (cf. §4) provided a poor model of
the PSF across the CCD. In some cases there were too few stars
detected to constrain the model; occasionally there was some error
when running either the star finding code or PSFEX.

A small fraction of the SV images were contaminated by
bright scattered-light artefacts. Scattered-light artefacts fall into
two broad categories: internal reflections between the CCDs and
other elements of the optics, known as “ghosts”; and grazing in-
cidence reflections off of the walls and edges of the shutter and
filter changer mechanism. Ghosts primarily occur when a bright
star is within the field of view, while grazing incidence scatters oc-
cur predominantly for stars just outside the field-of-view. Using the
positions of bright stars from the Yale Bright Star Catalogue (Hof-
fleit & Jaschek 1991) and knowledge of the telescope optics, it is
possible to predict locations on the focal plane that will be most af-
fected by scattered light. We identified and removed a total of 862
CCD images (out of 135,481) from the single-exposure SV data set
in this manner. In April 2013, filter baffles were installed to block
some of this scattered light, and non-reflective paint was applied to
the filter changer and shutter in March 2014 (Flaugher et al. 2015).
These modifications have greatly reduced the occurrence of grazing
incidence reflections in subsequent DES seasons.

It is common for human-made objects to cross the large DE-
Cam field of view during an exposure. The brightest and most im-
pactful of these are low-flying airplanes (two Chilean flight paths
pass through the sky viewable by the Blanco telescope). Airplane
trails are both bright and broad, and cause significant issues in esti-
mating the sky background in CCDs that they cross. We identified
these airplane trails by eye and removed a total of 56 individual
CCD images due to airplane contamination (corresponding to 4 dis-
tinct exposures). This rate of airplane contamination is expected to
continue throughout the DES survey.

In addition to airplanes, earth-orbiting satellites are a common
occurrence in DES images. During the 90 second exposure time of
a DES survey image, a satellite in low-earth-orbit can traverse the

Figure 11. Example galaxy image demonstrating two masking strategies.
The top row shows the original postage stamps in the MEDS file. The
second row shows the result when only the SEXTRACTOR segmentation
map was used to mask neighbors. The third row shows the result when the
überseg algorithm was used to mask neighbors, as described in the text.

entire focal plane, while geosynchronous satellites travel approxi-
mately 1.25 CCD lengths. The impact of these satellite streaks is
significantly less than that of airplanes; however, because they only
occur in a single filter, they can introduce a strong bias in the colour
of objects that they cross. For SV, the “crazy colours” cut men-
tioned in §2.1 removes most of the contaminated objects. At the
end of Year 1, an automated tool was developed by DESDM for
detecting and masking satellite streaks using the Hough transform
(Hough 1959; Duda & Hart 1972). This should greatly reduce the
impact of satellite streaks in upcoming seasons of DES observing
and will be retroactively applied to reprocessing of earlier data.

5.2 Masks

The user can construct a “mask” for each postage stamp in the
MEDS files in a variety of ways. For this analysis, we used what
we call an “überseg” mask, constructed from the weight maps, seg-
mentation maps and locations of nearby objects.

To create the überseg mask, we started with the SEXTRACTOR

segmentation map from the coadd image, mapping it on to the cor-
responding pixels of the single-epoch images. We prefer this map to
the segmentation map derived for each single-epoch image because
the coadd image is less noisy, and thus has more object detections
and more information for determining the extent of each object.

We then set pixels in the weight map to zero if they were ei-
ther associated with other objects in the segmentation map or were
closer to any other object than to the object of interest. The result
was a superset of the information found in the weight maps and
segmentation maps alone, hence the name überseg.

An example set of images and überseg maps are shown in Fig-
ure 11. In tests on a simulation with realistically blended galaxies
(cf. §6.2), we found a large reduction in the shear biases when using
the überseg masking as compared to the ordinary SEXTRACTOR

segmentation maps. In particular, when using ordinary segmenta-
tion maps we found a significant bias of the galaxy shape in the
direction toward neighbors. With the überseg masking, such a bias
was undetectable.

MNRAS 000, 1–37 (2015)

[Y. Mellier/CFHT(?)] — (Jarvis et al. 2016)8 L. Miller et al.

fitted, allowing for astrometric offsets and camera distortion as de-
scribed in Sections 4& 6 below. Inevitably, some galaxies had sizes
too large to be fitted in this size of postage stamp; such galaxies
were excluded from the analysis.

In some cases, two or more neighbouring galaxies appeared
within the same postage stamp. The algorithm can only fit one
galaxy at a time, so the solution adopted was to first see whether
it was possible to mask out one galaxy (set its pixel values equal
to the background) without disturbing the isophotes of the galaxy
being fitted. To this end, a co-added image postage stamp was cre-
ated, averaging all the exposures available for that galaxy, shifted
so the relative positions agreed to the nearest pixel, which was
then smoothed by a gaussian of FWHM equal to that of the lo-
cal PSF. Isophotes were created for each smoothed galaxy: if a
separate galaxy or other object was identified with non-touching
isophotes, at a level of twice the smoothed pixel noise, that other
galaxy was masked out and the fitting would proceed. Such close
pairs of galaxies are thus included in the output catalogues from
CFHTLenS. We note, however, that low-level light leaking below
the two-sigma isophote could still contaminate the measurement,
and thus we expect the ellipticity measurements of galaxies in close
pairs, whose isophotes may be contaminated by their neighbour, to
be artificially correlated.

Within each postage stamp, it may be that some pixels should
be masked because of image defects. The THELI pipeline provided
images of pixel masks to be applied. If such masked pixels occurred
within the two-sigma isophote of a galaxy on one individual expo-
sure, that exposure was not used in the joint analysis. If such pixels
occurred outside the two-sigma isophote, the pixel values were set
equal to the background and that masked exposure was used in the
joint fitting.

Other galaxies may be sufficiently close that their smoothed
isophotes overlapped, and there may also be individual galaxies
with complex morphology, not well described by a simple bulge-
plus-disk model. These galaxies were identified using a deblend-
ing algorithm, testing for the presence of significant independent
maxima in the smoothed surface brightness distribution6. Any such
complex or blended galaxies that were found were excluded from
the analysis. A further criterion was imposed, that the intensity-
weighted centroid of a galaxy, measured from the pixels within the
smoothed 2σ isophote, should lie within 4 pixels of the nominal
target position: this criterion guarded against any blended galaxies
that had been identified as blends in the original input catalogue
but that had not been identified by the other tests described in this
section. Some examples of images of galaxies excluded by these
criteria are shown in Fig. 3, which shows examples of the stacked,
smoothed images used for testing for object complexity. Visual in-
spection indicated that the great majority of galaxies excluded in
this way had isophotes that overlapped with neighbouring galaxies.

The fraction of galaxies that were excluded in this way varied
somewhat between fields, as the criteria were affected by the size
of the PSF. Typically, 20% of galaxies were excluded. Although

6 The algorithm was similar to that of Beard et al. (1990). Maxima in the
smoothed surface brightness distribution associated with the target galaxy
were identified, and regions ‘grown’ around those maxima by successively
lowering a threshold isophote level from that maximum level. Pixels above
the threshold were either identified with the corresponding maximum of any
identified pixels that they touched, or otherwise were defined to be a new,
secondary, maximum. Regions with fewer than 8 pixels were amalgamated
into any touching neighbours. If multiple regions remained after this pro-
cess, within the limiting 2σ isophote, the galaxy was flagged as ‘complex’.

Figure 3. Examples of four galaxies excluded from measurement by the
criteria described in Section 3.7, in field W1m0m1. Each panel shows a
coadded image 48 pixels (approximately 9′′) square, centred on each target
galaxy, and the inverted grey scale is linear up to some maximum value
which varies between images.

this fraction seems high, such a loss of galaxy numbers does not
significantly degrade the signal-to-noise of the final cosmological
analysis, but it does help ensure that galaxies whose measurements
would be poor because of their size, or because they would be
poorly modelled, have been excluded. These exclusion criteria are
likely to introduce small-scale selection effects into the galaxy dis-
tribution (e.g. neighbouring galaxies would have been classed as
being blended with greater or lesser probability depending on how
they were aligned with respect to the PSF) and so lensing signals
on arcsec scales, ! 5′′, should be excluded from analyses of this
survey, even though nominal measurements are reported in the out-
put catalogues. We note that the exclusion of some fraction of close
pairs of galaxies may introduce a bias at a level of a few percent into
cosmological parameters (Hartlap et al. 2011): we do not currently
have any way to estimate the size of this bias in an actual survey
such as CFHTLenS, without a detailed model of the true distribu-
tion of galaxy pairs and of the effect of the measurement process
on those pairs.

4 OPTIMAL COMBINATION OF MULTIPLE IMAGES

The algorithm presented in Papers I & II, and also the simulations
of the GREAT08 (Bridle et al. 2010) and GREAT10 (Kitching et al.
2012) challenges, assume that each galaxy is measured on a single
image. However, actual galaxy surveys use combinations of multi-
ple exposures in the same waveband, or even across different filters.
The reasons for having multiple exposures in the same filter are: (i)
to increase the dynamic range of the observations; (ii) to prevent
an excessive build-up of cosmic ray artifacts on any one image;
(iii) to allow dithering of observations, filling in gaps where CCD
boundaries or CCD artifacts prevent useful data being obtained and
mitigating the effects of the finite pixel sampling. Thus any shear
measurement method should make optimal use of such multiple
images. In CFHTLenS typically seven dithered exposures were ob-
tained in each field (Section 2).

c⃝ 2011 RAS, MNRAS 000, 1–24

[CFHTLenS/KiDS image — CFHTLenS postage stamps]
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shape measurement methods

• Parametric: model fitting.
(Kuijken 1999), lensfit (Miller et al. 2007)), gfit (Gentile et al. 2012),
im3shape (Zuntz et al. 2013) and many more.

• Non-parametric: direct estimation.

• Perturbative: weighted moments.
KSB — (Kaiser et al. 1995) + many improvements
DEIMOS — (Melchior et al. 2011) (PSF correction in moment space)
HOLICs — (Okura & Futamase 2009) — Higher-order moments

• Non-perturbative: Decomposition into basis functions.
shapelets — (Refregier 2003) + many improvements
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Model fitting methods

Forward model-fitting (example lensfit)

• Convolution of model with PSF instead of devonvolution of image
• Combine multiple exposures (in Bayesian way, multiply posterior

density), avoiding co-adding of (dithered) images
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Dithering

Left: Co-add of two r-band exposures of CFHTLenS.
Right: Weight map.

Martin Kilbinger (CEA) WL Part I/II 59 / 143



Part I day 2: Measurement of weak lensing Galaxy shape measurement

Moment-based methods I
Moments and ellipticity
How are moments connected to ellipticity?
Q: Simple case: qualitatively, what are the 0th, 1st, 2nd moments of a 1D
distribution? Of a 2D distribution?
Quadrupole moment of weighted light distribution I(θ):

Qij =

∫
d2θ q[I(θ)] (θi − θ̄i)(θj − θ̄j)∫

d2 θ q[I(θ)]
, i, j = 1, 2

q : weight function

θ̄ =

∫
d2θ qI [I(θ)]θ∫
d2θ qI [I(θ)]

: barycenter (first moment!)

Ellipticity

ε =
Q11 −Q22 + 2iQ12

Q11 +Q22 + 2(Q11Q22 −Q2
12)1/2

Circular object Q11 = Q22, Q12 = Q21 = 0
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Part I day 2: Measurement of weak lensing

Galaxy shape measurement

Moment-based methods

Transforms under lensing equation, yields relations between observed and

intrinsic ellipticity, and reduced shear.



Part I day 2: Measurement of weak lensing Galaxy shape measurement

Moment-based methods II

KSB PSF correction
Perturbative ansatz for PSF effects

εobs = εs + P smε∗ + P shγ

[c.f. εobs = εs + γ from before]

P sm smear polarisability, (linear) response of to ellipticity to PSF
anisotropy

e∗ PSF anisotropy
P sh shear polarisability, isotropic seeing correction
γ shear

P sm, P sh are functions (2× 2 tensors) of galaxy brightness distribution.

Problematic: Strongly anisotropic PSF, error estimation, combining multiple
exposures.
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Non-perturbative methods
Shapelets
(Refregier 2003, Massey & Refregier 2005, Kuijken 2006)

• Decompose galaxies and stars into basis functions.

4 A. Refregier

Figure 2. First few 2-dimensional Cartesian basis functions
φn1,n2 . The dark and light regions correspond to positive and
negative values, respectively.

f(x) =

∞∑

n1,n2=0

fnBn(x;β), (22)

where the shapelet coefficients are given by

fn =

∫
d2xf(x)Bn(x; β) (23)

Figure 3 show how an image observed with HST can be de-
composed and reconstructed using shapelets. The resulting
distribution of the coefficients is shown on Figure 4. More
examples can be found on Figure 5. These examples and
associated applications will be discussed in detail in §6.

Of practical interest, is the choice of an appropriate
shapelet scale β and maximum order nmax for the faithful
and efficient decomposition of a given image. Using argu-
ments similar to those of §2.4, it is easy to show that a
decomposition in 2-dimensions which include shapelets of
scale β with order ranging from n1 + n2 = 0 to nmax can
only describe features with scales between the two limits

θmin ≈ β (nmax + 1)−
1
2 , θmax ≈ β (nmax + 1)

1
2 . (24)

Thus, if the function has features with scales ranging from
θmax (eg. the size of the object or that of the image) and
θmin (eg. the pixel size, or the size of a smoothing kernel), a
good choice of β and nmax will be

β ≈ (θminθmax)
1
2 , nmax ≈ θmax

θmin
− 1. (25)

In practice, this provides a good first guess, which can be
refined using a few iterations (see §3.2).

Figure 3. Decomposition of a galaxy image found in the HDF.
The original 60 × 60 pixel HST image (upper left-hand panel)
can be compared with the reconstructed images with different
maximum order n = n1 + n2. The shapelet scale is chosen to be
β = 4 pixels. The lower right-hand panel (n ≤ 20) is virtually
indistinguishable from the initial image.

3.2 Photometry and Astrometry

The most basic quantities to measure for an object image
are its total flux (photometry), centroid position (astrom-
etry) and size. Let us first decompose the intensity f(x)
of the object into shapelet coefficients fn = 〈n; β|f〉 as in
Equation (22).

Using the integral property of Equation (17), it is then
easy to show that the total flux F ≡

∫
d2xf(x) of the object

is

F = π
1
2 β

even∑

n1,n2

2
1
2
(2−n1−n2)

(
n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 ,(26)

where the sum is over even values of n1 and n2.
Using Equations (17) and (13), one can also show that

the centroid of the object xf
i ≡

∫
d2xxif(x)/F is given by

xf
1 = π

1
2 β2F−1

odd∑

n1

even∑

n2

(n1 + 1)
1
2 2

1
2
(2−n1−n2)

×
(

n1 + 1
(n1 + 1)/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (27)

and similarly for xf
2 .

Similarly, the rms radius rf defined by r2
f ≡

c© 2001 RAS, MNRAS 000, 1–13

Shapelets: I. A Method for Image Analysis 5

Figure 4. Shapelet coefficients for the image decomposition of
the previous figure. Since the coefficient array is sparse, the images
can be reconstructed from the few first largest coefficients.

∫
d2xx2f(x)/F is given by

r2
f = π

1
2 β3F−1

even∑

n1,n2

2
1
2
(4−n1−n2) (1 + n1 + n2)

×
(

n1

n1/2

) 1
2
(

n2

n2/2

) 1
2

fn1n2 , (28)

These expressions can be used, by iteration, to find the op-
timal centre and scale of the basis functions.

3.3 Coordinate Transformations

Let us consider a general coordinate transformation of the
form x → x′ = (1 + Ψ)x + ε, where Ψ is a 2 × 2 matrix,
ε = (ε1, ε2) is a small displacement. Such a transformation
can arise for instance from a translation, rotation or from the
action of gravitational lensing. We assume that the trans-
formation matrix Ψ and the displacement ε are small and
constant across the object. We parametrise the matrix Ψ

following the gravitational lensing conventions as

Ψ =

(
κ + γ1 γ2 − ρ
γ2 + ρ κ − γ1

)
, (29)

where ρ describes rotations and the convergence κ describes
overall dilatations and contractions. The shear γ1 (γ2) de-
scribes stretches and compressions along (at 45◦ from) the
x-axis. The displacements ε1 and ε2 correspond to transla-
tions along the x and y-axis, respectively.

Under this transformation, the intensity f(x) of an ob-
ject becomes

Figure 5. Reconstruction and compression of three HST galaxy
images using shapelets. The left-hand column shows the orginal
images extracted from the HDF and list Npix their size in pix-
els. The right-hand column shows their reconstructed image from
the Ncof largest coefficients (in absolute value) of their shapelet
decomposition. Because the coefficient matrix is typically sparse,
a large compression factor Npix/Ncof is achieved. The shapelet
scale was chosen to be β = 4 pixels in all 3 cases.

f ′(x′) = f(x(x′)) $ f(x′ − Ψx
′ − ε). (30)

Since we are now considering infinitesimal transformations,
we can Taylor expand this expression and only keep the
terms which are first order in Ψ. After using Equations (11)
and (13), we find

f ′ $ (1 + ρR̂ + κK̂ + γjŜj + εiT̂i)f, (31)

where R̂, K̂, Ŝi and T̂i are the operators generating rota-
tion, convergence, shears and translations, respectively, and
where we have used the Einstein summation convention. The
generators are given by
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†
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j − âj), j = 1, 2. (32)

The rotation generator R̂ is thus simply equal to the angular
momentum operator in 2-dimensions

L̂ = x̂1p̂2 − x̂2p̂1 = i
(
â1â

†
2 − â†

1â2

)
, (33)
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• PSF correction, convergence and shear acts on shapelet coefficients,
deconvolution feasible

• Problems: series truncation, basis functions not representative, need to
set size parameter
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Further methods and techniques

• Machine-Learning, e.g. LUT by supervised learning, (Tewes et al. 2012)

• Further Bayesian methods

• Hierarchical Multi-level Bayesian Inference (MBI), (Schneider et al. 2014).
Joint posterior of shear, galaxy properties, PSF, nuisance parameters given
pixel data.

• (Bernstein & Armstrong 2014). Does not measure ellipticity of individual
galaxies, direct posterior estimation of shear for population. Needs prior
from deep images.
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases I

Origins

• Noise bias
In general, ellipticity is non-linear in pixel data (e.g. normalization by
flux). Pixel noise → biased estimators.

• Model bias
Assumption about galaxy light distribution is in general wrong.

• Model-fitting method: wrong model
• Perturbative methods (KSB, DEIMOS, HOLICS): weight function not

appropriate
• Non-perturbative methods (shapelets): truncated expansion, bad

eigenfunction representation
• Color gradients
• Non-elliptical isophotes

• Other

• Imperfect PSF correction
• Detector effects (CTI — charge transfer inefficiency)
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measurement.(ii): Bayesian posterior can provide unbiased estimator. Still

requires large simulations or deep data to determine prior.rgpp/rp =

FWHM of PSF-convolved galaxy to PSF



Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases II
• Selection effects (probab. of detection/sucessful ε measurement depends on

ε and PSF)

Characterisation
Bias can be multiplicative (m) and additive (c):

γobsi = (1 +mi)γ
true
i + ci; i = 1, 2.

Biases m, c are typically complicated functions of galaxy properties (e.g. size,
magnitude, ellipticity), redshift, PSF, . . .. They can be scale-dependent.

Current methods: |m| = 1%− 10%, |c| = 10−3 − 10−2.

Challenges such as STEP1, STEP2, great08, great10, great3 quantified these
biases with blind simulationes.

Calibration
Usually biases are calibrated using simulated or emulated data, or
self-calibration.
Current surveys produce their own image simulations with properties of
galaxy sample and PSF matching to data.
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases III

Functional dependence of m on
observables must not be too
complicated (e.g. not smooth,
many variables, large parameter
space), or else measurement is not
calibratable!

18 M. Jarvis, E. Sheldon, J. Zuntz, T. Kacprzak, S. Bridle, et al.

Figure 13. Shear bias for IM3SHAPE measurements on the GREAT-DES simulation: multiplicative bias (left) and PSF leakage (right), as functions of the
measured (S/N)w and Rgp/Rp. The fits, which are used to calibrate the shear estimates on the data, are smooth functions in both of these variables. Solid
lines show the fits vs (S/N)w at particular choices of Rgp/Rp.

function of pixel intensities affected by Gaussian noise, resulting in
noise bias in the estimated shear values. The IM3SHAPE algorithm,
being a maximum likelihood estimator, is known to suffer from this
effect.

In addition, we found a small selection bias, which is intro-
duced by using recommended IM3SHAPE flags (cf. §7.3.3) and the
selection based on galaxy size and S/N (cf. §9.1). We also expect
a small amount of model bias due to realistic galaxies not always
being well fit by our bulge-or-disc model. This model bias is ex-
pected to be small compared to the requirements (Kacprzak et al.
2014).

To account for all of these sources of error in our shape
measurements, we calculated bias corrections of the form shown
in equation 3.4. Specifically, we fit for m and ↵ as functions of
(S/N)w (defined in equation 7.3) and Rgp/Rp (the FWHM of the
PSF-convolved galaxy divided by the FWHM of the PSF) on sim-
ulated data from the GREAT-DES simulation (cf. §6.1). We ran
IM3SHAPE on the simulated data in the same way as we do on the
DES data, including the same choices of input parameters.

In principle, the two multiplicative terms, m1 and m2 should
be treated as independent biases. In practice, however, when av-
eraged over many galaxies we find virtually no difference be-
tween the two. As such, we correct both e1 and e2 by the average
m = (m1 + m2)/2.

We fit both m and ↵ as two-dimensional surfaces in the S/N
and size parameters. Due to the complicated structure of this sur-
face, we fit m with 15 terms of the form (S/N)�x

w (Rgp/Rp)�y ,
where x and y are various powers ranging from 1.5 to 4. To control
overfitting, we used a regularization term in the least-square fit and
optimized it such that the fitted surface has a reduced �2 = 1. A
similar procedure was applied to ↵, where we used 18 parameters
in the fit. In Figure 13 we show these fits as curves in (S/N)w in
bins of Rgp/Rp. However, the actual functions are smooth in both
parameters.

We checked if our calibration is robust to the details of this
model by (1) varying the number of terms in the basis expansion
and (2) splitting the training data into halves. For both tests the
changes in the mean multiplicative and additive corrections applied
to the SV data did not vary by more than 1%.

In §7.2, we mentioned that (S/N)w is a biased measure of

S/N with respect to shear, so if it is used to select a population of
galaxies, it will induce a selection bias on the mean shear. Rgp/Rp

similarly induces such a bias. Thus, when we bin the shears by
these quantities to construct the calibration functions, there is a se-
lection bias induced in every bin. The scale of selection bias reaches
m ' �0.05 for the most populous bins. This is not a problem for
the correction scheme so long as the overall selection is also made
using these same quantities. In that case, the shear calibration au-
tomatically accounts for the selection bias in addition to the noise
bias.

We tried using (S/N)r in the calibration model rather than
(S/N)w to help reduce the level of the selection bias in each bin,
but we found that it does not perform as well as using the standard
(S/N)w. Perhaps not surprisingly, the noise bias seems to be more
related to the S/N of the actual galaxy than it is to the counterfac-
tual round version of the galaxy used for (S/N)r . In future work, it
would be interesting to seek an effective shear calibration scheme
that disentangles noise and selection biases, but we have not found
one yet.

We used these fits to estimate the multiplicative and addi-
tive corrections to use for every galaxy in the IM3SHAPE cata-
logue. However, it should be stressed that this bias estimate is it-
self a noisy quantity, being based on noisy estimates of the size
and S/N . Therefore one should not directly apply the correction to
each galaxy individually. Rather, the mean shear of an ensemble of
galaxies should be corrected by the mean shear bias correction of
that same ensemble (cf. §9.2).

Note that a selection bias can appear whenever a subset of
galaxies is selected from a larger sample. In the cosmological anal-
ysis, we apply recommended IM3SHAPE flags, cut on Rgp/Rp and
(S/N)w, and then typically split the galaxies into redshift bins.
The redshift selection in particular is not used in the shear calibra-
tion process, so it is possible for there to be uncorrected selection
biases in the different redshift bins. In §8.5, we test that the shear
calibration nevertheless performs well in this scenario by applying
the same selection procedure to the GREAT-DES simulation. There
we demonstrate that all biases are removed to the required tolerance
level in all redshift bins.

MNRAS 000, 1–37 (2015)

(Jarvis et al. 2016)
Requirements
Normalisation σ8 ∝ m!
Necessary knowledge of residual biases ∆|m|,∆|c| (after calibration):
Current surveys 1%.
Future large missions (Euclid, LSST, . . .) 10−4 = 0.1%!
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Part I day 2: Measurement of weak lensing Galaxy shape measurement

Shear measurement biases IV

Complex bias dependencies
Need to account for bias as function of more than one galaxy property.
E.g. size and SNR. Also need to know bulge and disc fraction of observed
population. DES Year 1 Results: Weak Lensing Shape Catalogues 19

Figure 13. Top: Multiplicative bias estimates for Y1 IM3SHAPE, using the HOOPOE image simulations for objects fitted using bulge profiles (right) and disc
profiles (left) . The colored circles represent the grid of directly evaluated m described in the text. The underlying colour map is generated using radial basis
functions to interpolate between nodes, and is for illustrative purposes only. Bottom: Bulge fraction as a function of galaxy signal-to-noise and size. The bulge
fraction is calculated on a 16 ⇥ 16 grid and interpolated to generate the smooth map shown. The circles represent the grid cell positions, and are drawn at a
size proportional to the total IM3SHAPE lensing weight of galaxies contained.
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Figure 14. Multiplicative bias for IM3SHAPE measured from the full Y1 simulations, as a function of galaxy signal-to-noise and size. The blue circles in both
panels are the measured biases prior to calibration. The other points, labelled grid, RBF and polynomial are the result of correction using the three methods
described in the text. The shaded band marks the ±1� Gaussian width of the recommended m prior for the Y1 IM3SHAPE catalogue.
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(Zuntz et al. 2017)
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Part I day 2: Measurement of weak lensing PSF correction

PSF correction
The DES Science Verification Weak Lensing Shear Catalogues 9

Figure 5. An example size-magnitude diagram for a single CCD image,
used to identify stars. The size T = 2�2 is based on the scale size of the
best-fitting elliptical Gaussian. The pink and green points are the objects
initially identified as stars. The green points are the ones that pass our se-
lection criteria outlined in §4.2, most notably the magnitude cut to avoid
objects contaminated by the brighter-fatter effect. These objects are then
used to constrain the PSF model. The blue circles show an an alternate
star classification, called the Modest Classification within DES, which was
found not to work as well for our specific purpose.

We found that, for some CCD images, the sets of objects iden-
tified as stars by the Modest Classification scheme10 included a
relatively high number of galaxies, and in other cases too few stars
were identified. The cause of these failures is dependent on many
factors, but may be partly related to the use of coadd data for the
classification. The coadd PSF can change abruptly at the locations
of chip edges in the original single-epoch images, which may have
affected the stellar classification near these discontinuities.

Ultimately, the problems with the modest classifier were com-
mon enough that we decided to develop a new algorithm tailored
specifically to the identification of a pure set of PSF stars. Our algo-
rithm works on each CCD image separately, using a size-magnitude
diagram of all the objects detected on the image. For the magni-
tude, we use the SEXTRACTOR measurement MAG_AUTO. For the
size, we use the scale size, �, of the best-fitting elliptical Gaus-
sian profile using an adaptive moments algorithm. We found that
these measures produce a flatter and tighter stellar locus than the
FLUX_RADIUS value output by SEXTRACTOR, and is thus better
suited for selection of stars. As a further improvement, we initialize
the algorithm with some stars identified by SEXTRACTOR to have
CLASS_STAR between 0.9 and 1.0. This was found to give a decent
estimate of the size of the PSF, providing a good starting guess for
the location of the stellar locus.

The stars are easily identified at bright magnitudes as a locus
of points with constant size nearly independent of magnitude. The
galaxies have a range of sizes, all larger than the PSF size. Thus,
the algorithm starts with a tight locus at small size for the stars
and a broad locus of larger sizes for the galaxies for objects in the
brightest 5 magnitudes (excluding saturated objects). Then the al-
gorithm proceeds to fainter magnitudes, building up both loci, until

10 Stars were identified as (bright_test OR locus_test) in terms
of the pseudo-code presented in §2.2

the stellar locus and the galaxy locus start to merge. The precise
magnitude at which this happens is a function of the seeing as well
as the density of stars and galaxies in the particular part of the sky
being observed. As such the faint-end magnitude of the resulting
stellar sample varies among the different exposures.

Figure 5 shows such a size-magnitude diagram for a repre-
sentative CCD image. The stellar locus is easily identified by eye,
and the stellar sample identified by our algorithm is marked in pink
and green. The pink points are stars that are removed by subse-
quent steps in the process outlined below, while the green points are
the stars that survive these cuts. The blue circles show the objects
identified as stars according to the Modest Classification, which in-
cludes more outliers and misses some of the objects clearly within
the stellar locus.

While the algorithm we currently use is found to work well
enough for the SV data, we plan to investigate whether the neural
net star-galaxy separator recently developed by Soumagnac et al.
(2015) is more robust or could let us include additional stars.

4.2 Selection of PSF Stars

Some of the stars in this sample are not appropriate to use for
PSF modeling, even ignoring the inevitable few galaxies that get
misidentified as stars. The CCDs on the Dark Energy Camera each
have six spots where 100 micron thick spacers were placed behind
the CCDs when they were glued to their carriers (cf. Flaugher et al.
2015), which affects the electric field lines near each 2mm ⇥ 2mm
spacer. These features, which we call tape bumps, distort the shapes
in those parts of the CCDs, so the stellar images there are not ac-
curate samples of the PSF. We exclude any star whose position is
within 2 PSF FWHM separation of the outline of a tape bump. The
tape bumps are relatively small, so this procedure excludes less than
0.1% of the total area of the CCD, but removes a noticeable bias in
the PSF model near the bumps.

Another problem we addressed with regards to star selection
is the so-called “brighter-fatter effect” (Antilogus et al. 2014; Guy-
onnet et al. 2015). As charge builds up in each pixel during the
exposure, the resulting lateral electric fields and increased lateral
diffusion push newly incoming charges slightly away from the ex-
isting charge. This makes bright objects appear a bit larger than
fainter objects. In addition, an asymmetry in the magnitude of the
effect between rows and columns can make bright stars more ellip-
tical. The galaxies we used for weak lensing are generally faint, so
the brightest stars do not accurately sample the PSF that we need to
measure. Furthermore, the brighter-fatter effect does not manifest
as a convolution of the signal, so the bright stars do not even pro-
vide an estimate of the correct PSF to be used for bright galaxies.

The appropriate solution is to move the shifted charge back to
where it would have fallen in the absence of this effect. This will be
implemented in future DES data releases (Gruen et al. 2015). For
the current round of catalogues, we instead partially avoided the
problem by removing the brightest stars from our sample. Specif-
ically, we removed all stars within 3 magnitudes of the saturation
limit for the exposure. That is, in our final selection of PSF stars
we required that the brightest pixel in the stellar image be less than
6% of the pixel full well. Since the brighter-fatter effect scales ap-
proximately linearly with flux, this reduces the magnitude of the
effect by a factor of 16. We were left with stars of lower S/N , so it
is not the ideal solution, but it is an acceptable interim measure (as
we demonstrate below) until the more sophisticated solution can be
implemented.

In Figure 6 we show the mean difference between the mea-
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(Gentile et al. 2013)

• Select clean sample of stars
• Measure star shapes
• Create PSF model and interpolate (pixel values, ellipticity, PCA

coefficients, . . .) to galaxy positions. Space-based observations: global
PSF model from many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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Figure 5. An example size-magnitude diagram for a single CCD image,
used to identify stars. The size T = 2�2 is based on the scale size of the
best-fitting elliptical Gaussian. The pink and green points are the objects
initially identified as stars. The green points are the ones that pass our se-
lection criteria outlined in §4.2, most notably the magnitude cut to avoid
objects contaminated by the brighter-fatter effect. These objects are then
used to constrain the PSF model. The blue circles show an an alternate
star classification, called the Modest Classification within DES, which was
found not to work as well for our specific purpose.

We found that, for some CCD images, the sets of objects iden-
tified as stars by the Modest Classification scheme10 included a
relatively high number of galaxies, and in other cases too few stars
were identified. The cause of these failures is dependent on many
factors, but may be partly related to the use of coadd data for the
classification. The coadd PSF can change abruptly at the locations
of chip edges in the original single-epoch images, which may have
affected the stellar classification near these discontinuities.

Ultimately, the problems with the modest classifier were com-
mon enough that we decided to develop a new algorithm tailored
specifically to the identification of a pure set of PSF stars. Our algo-
rithm works on each CCD image separately, using a size-magnitude
diagram of all the objects detected on the image. For the magni-
tude, we use the SEXTRACTOR measurement MAG_AUTO. For the
size, we use the scale size, �, of the best-fitting elliptical Gaus-
sian profile using an adaptive moments algorithm. We found that
these measures produce a flatter and tighter stellar locus than the
FLUX_RADIUS value output by SEXTRACTOR, and is thus better
suited for selection of stars. As a further improvement, we initialize
the algorithm with some stars identified by SEXTRACTOR to have
CLASS_STAR between 0.9 and 1.0. This was found to give a decent
estimate of the size of the PSF, providing a good starting guess for
the location of the stellar locus.

The stars are easily identified at bright magnitudes as a locus
of points with constant size nearly independent of magnitude. The
galaxies have a range of sizes, all larger than the PSF size. Thus,
the algorithm starts with a tight locus at small size for the stars
and a broad locus of larger sizes for the galaxies for objects in the
brightest 5 magnitudes (excluding saturated objects). Then the al-
gorithm proceeds to fainter magnitudes, building up both loci, until

10 Stars were identified as (bright_test OR locus_test) in terms
of the pseudo-code presented in §2.2

the stellar locus and the galaxy locus start to merge. The precise
magnitude at which this happens is a function of the seeing as well
as the density of stars and galaxies in the particular part of the sky
being observed. As such the faint-end magnitude of the resulting
stellar sample varies among the different exposures.

Figure 5 shows such a size-magnitude diagram for a repre-
sentative CCD image. The stellar locus is easily identified by eye,
and the stellar sample identified by our algorithm is marked in pink
and green. The pink points are stars that are removed by subse-
quent steps in the process outlined below, while the green points are
the stars that survive these cuts. The blue circles show the objects
identified as stars according to the Modest Classification, which in-
cludes more outliers and misses some of the objects clearly within
the stellar locus.

While the algorithm we currently use is found to work well
enough for the SV data, we plan to investigate whether the neural
net star-galaxy separator recently developed by Soumagnac et al.
(2015) is more robust or could let us include additional stars.

4.2 Selection of PSF Stars

Some of the stars in this sample are not appropriate to use for
PSF modeling, even ignoring the inevitable few galaxies that get
misidentified as stars. The CCDs on the Dark Energy Camera each
have six spots where 100 micron thick spacers were placed behind
the CCDs when they were glued to their carriers (cf. Flaugher et al.
2015), which affects the electric field lines near each 2mm ⇥ 2mm
spacer. These features, which we call tape bumps, distort the shapes
in those parts of the CCDs, so the stellar images there are not ac-
curate samples of the PSF. We exclude any star whose position is
within 2 PSF FWHM separation of the outline of a tape bump. The
tape bumps are relatively small, so this procedure excludes less than
0.1% of the total area of the CCD, but removes a noticeable bias in
the PSF model near the bumps.

Another problem we addressed with regards to star selection
is the so-called “brighter-fatter effect” (Antilogus et al. 2014; Guy-
onnet et al. 2015). As charge builds up in each pixel during the
exposure, the resulting lateral electric fields and increased lateral
diffusion push newly incoming charges slightly away from the ex-
isting charge. This makes bright objects appear a bit larger than
fainter objects. In addition, an asymmetry in the magnitude of the
effect between rows and columns can make bright stars more ellip-
tical. The galaxies we used for weak lensing are generally faint, so
the brightest stars do not accurately sample the PSF that we need to
measure. Furthermore, the brighter-fatter effect does not manifest
as a convolution of the signal, so the bright stars do not even pro-
vide an estimate of the correct PSF to be used for bright galaxies.

The appropriate solution is to move the shifted charge back to
where it would have fallen in the absence of this effect. This will be
implemented in future DES data releases (Gruen et al. 2015). For
the current round of catalogues, we instead partially avoided the
problem by removing the brightest stars from our sample. Specif-
ically, we removed all stars within 3 magnitudes of the saturation
limit for the exposure. That is, in our final selection of PSF stars
we required that the brightest pixel in the stellar image be less than
6% of the pixel full well. Since the brighter-fatter effect scales ap-
proximately linearly with flux, this reduces the magnitude of the
effect by a factor of 16. We were left with stars of lower S/N , so it
is not the ideal solution, but it is an acceptable interim measure (as
we demonstrate below) until the more sophisticated solution can be
implemented.

In Figure 6 we show the mean difference between the mea-
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• Select clean sample of stars
• Measure star shapes
• Create PSF model and interpolate (pixel values, ellipticity, PCA

coefficients, . . .) to galaxy positions. Space-based observations: global
PSF model from many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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Figure 9. Whisker plots of the mean PSF pattern (left) and of the mean residual after subtracting off the model PSF (right) as a function of position in the
focal plane. The length of each whisker is proportional to the measured ellipticity, and the orientation is aligned with the direction of the ellipticity. There is
still some apparent structure in the plot of the residuals, but the level is below the requirements for SV science. Reference whiskers of 1% and 3% are shown
at the bottom of each plot, and we have exaggerated the scale on the right plot by a factor of 10 to make the residual structure more apparent.

Figure 10. The ⇢ statistics for the PSF shape residuals. Negative values are shown in absolute value as dotted lines. The shaded regions are the requirements
for SV data.
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A&A 549, A1 (2013)

True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.

Table 14. Non-turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 8.26 ⇥ 10�4 3.60 ⇥ 10�5 4.59 ⇥ 10�3 1.45 ⇥ 10�4

IDW 1.28 ⇥ 10�3 5.67 ⇥ 10�5 9.37 ⇥ 10�3 2.95 ⇥ 10�4

Kriging 7.06 ⇥ 10�4 3.16 ⇥ 10�5 3.57 ⇥ 10�3 1.13 ⇥ 10�4

Polyfit 8.37 ⇥ 10�4 3.73 ⇥ 10�5 5.23 ⇥ 10�3 1.64 ⇥ 10�4

B-splines 6.28 ⇥ 10�4 2.80 ⇥ 10�5 6.53 ⇥ 10�3 2.06 ⇥ 10�4

of FWHM, masking and telescope e↵ects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more e↵ec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 4.36 ⇥ 10�2 1.81 ⇥ 10�3 4.57 ⇥ 10�3 1.44 ⇥ 10�4

IDW 4.42 ⇥ 10�2 1.79 ⇥ 10�3 9.05 ⇥ 10�3 2.85 ⇥ 10�4

Kriging 4.61 ⇥ 10�2 1.79 ⇥ 10�3 1.11 ⇥ 10�2 3.49 ⇥ 10�4

Polyfit 5.82 ⇥ 10�2 1.89 ⇥ 10�3 5.04 ⇥ 10�3 1.58 ⇥ 10�4

B-splines 5.97 ⇥ 10�2 1.88 ⇥ 10�3 6.31 ⇥ 10�3 1.99 ⇥ 10�4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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(Gentile et al. 2013)

• Select clean sample of stars
• Measure star shapes
• Create PSF model and interpolate (pixel values, ellipticity, PCA

coefficients, . . .) to galaxy positions. Space-based observations: global
PSF model from many exposures possible

• Correct for PSF: galaxy image devonvolution or other (e.g. linearized)
correction, or convolve model
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(Jarvis et al. 2016)
(Jarvis et al. 2016)

A&A 549, A1 (2013)

True PSF – Set 09 – Image 01 Polyfit – Set 09 – Image 01 B-Splines – Set 09 – Image 01

IDW – Set 09 – Image 01 RBF – Set 09 – Image 01 Ordinary Kriging – Set 09 – Image 01

Fig. 9. An illustration of how the various interpolation methods studied in this article handled a turbulent PSF, which in this case is the first image
of set 9. The true ellipticities are plotted on the upper-left corner of the figure and the remaining plots show the predictions of each methods. The
largest whisker in the upper-left corner plot corresponds to an ellipticity of 0.38.
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of FWHM, masking and telescope e↵ects. We also observe
star size to have a negligible impact on E(e) for all meth-
ods, but we clearly see that E(R2) significantly increases
(resp. decreases) for star fields with smaller (resp. larger)
FWHM. Finally, all methods reach a slightly higher accu-
racy on masked images, especially with 6-fold masks.

6.3. Results from individual interpolation methods

– Interpolation with radial basis functions (RBF): as shown in
our previous discussion, the RBF interpolation scheme is the
overall winner of our evaluation. According to our bench-
marks, ellipticity patterns were best estimated by a linear
kernel function, whereas a thin-plate kernel was more e↵ec-
tive on FWHM values. A neighborhood size between 30 and

Table 15. Turbulent sets: average values of E and �.

Method E(e) �(e) E(R2) �(R2)

RBF 4.36 ⇥ 10�2 1.81 ⇥ 10�3 4.57 ⇥ 10�3 1.44 ⇥ 10�4

IDW 4.42 ⇥ 10�2 1.79 ⇥ 10�3 9.05 ⇥ 10�3 2.85 ⇥ 10�4

Kriging 4.61 ⇥ 10�2 1.79 ⇥ 10�3 1.11 ⇥ 10�2 3.49 ⇥ 10�4

Polyfit 5.82 ⇥ 10�2 1.89 ⇥ 10�3 5.04 ⇥ 10�3 1.58 ⇥ 10�4

B-splines 5.97 ⇥ 10�2 1.88 ⇥ 10�3 6.31 ⇥ 10�3 1.99 ⇥ 10�4

40 stars was used. Refer to Sect. 3.5 and Table 5 for a de-
scription of RBF interpolation and the definitions of these
kernels. That combination of linear and thin-plate kernels
yields very competitive error statistics on both turbulent and
non-turbulent sets: Tables 14 and 15 as well as plots Fig. 7
show RBF is the most accurate on turbulent sets whereas its
results on non-turbulent sets are the second best behind ordi-
nary Kriging. The possibility of selecting the most suitable
kernel for a given PSF patterns is a very attractive feature of
RBF interpolation.

– Inverse distance weighted interpolation (IDW): the IDW
methods (see Sect. 3.4) obtains the second best average E(e)
behind RBF over all sets as seen in Table 13. It does so
thanks to very competitive E(e) results on turbulent sets, just
behind RBF (Table 15). But IDW’s estimates of the FWHM
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Quantifying PSF residuals I
Null test: ξsys correlation between star and galaxy shapes expected to vanish,
unless PSF correction (using stars to correct galaxy shapes) is not perfect.

ξsys = 〈ε∗ε〉
This measures residual PSF pattern leakage onto galaxy field.
Caveat: LSS can show chance alignments with PSF pattern. Sample or cosmic
variance has to be accunted for → N -body simulations!

CFHTLenS 9

Figure 1. The star-galaxy cross correlation function ⇠sg(✓) for the eight
individual exposures in example field W1m0m0 as a function of angular
separation (triangles, where each panel is a different exposure). The mea-
sured angular correlation function in each exposure can be compared to
the predicted angular star-galaxy correlation (equation 8, shown as a curve)
calculated using only the zero separation measure ⇠sg(0) (shown offset,
circle). The correlation between the exposures and angular scales is shown
in the covariance matrix of the data points in the upper right panel. Each
block shows one of the eight exposures and contains a 6 ⇥ 6 matrix show-
ing the correlation between the angular scales. The greyscale bar shows the
amplitude of the values in the matrix.

is a reasonable model for the measured star-galaxy correlation. We
also repeated the analysis for our sample fields using the measured
stellar object ellipticities in contrast to the model PSF ellipticity.
Whilst our measurement errors increased, our findings were un-
changed such that for the remainder of our systematics analysis we
conclude that we can safely consider only the zero-lag star-galaxy
cross correlation function ⇠sg(0) as calculated using the model PSF
ellipticity.

3.3 Estimating the level of PSF anisotropy contamination

Assuming the linear shear measurement model of equation 3 is a
good description of the systematics within the data, the systematic
error contribution �⇠ to the cosmological measure of the two-point
shear correlation function ⇠ = h✏obs✏obsi is given by

�⇠sys = AT
sysCAsys , (9)

which can be estimated from the data via8

�⇠obs = ⇠T
sgC�1⇠sg . (10)

When calculating �⇠obs from a very large area of data, such that
the PSF is fully uncorrelated with the intrinsic ellipticity, measure-
ment noise and cosmological shear, the first three terms in the right

8 Note that for a single exposure image, equations 9 and 10 reduce to the
more familiar results of Bacon et al. (2003) with �⇠sys = A2he?e?i and
�⇠obs = h✏obse?i2/he?e?i.

hand side of equation 6 are zero and �⇠obs = �⇠sys. In this case
the PSF correction is deemed successful when �⇠obs is found to
be consistent with zero. This method for data verification has been
applied to many previous weak lensing surveys (see for example
Bacon et al. 2003) but only in an ensemble average across the full
survey area and for single stacked images. By taking an ensemble
average of �⇠obs across the survey, one explicitly assumes that the
true level of PSF contamination that we wish to estimate is indepen-
dent of the variations in the quality of the data. For ground-based
observations where the data quality varies considerably we might
expect our ability to remove the PSF to be reduced in some particu-
lar instances, for example poorer seeing or low signal-to-noise data.
By determining �⇠obs averaged across the survey we could easily
miss a small fraction of the data which exhibit a strong PSF resid-
ual. In the worst case scenario, as the CFHTLS PSF exhibits strong
variation in direction and amplitude between exposures, PSF resid-
ual effects could easily cancel out in an ensemble average (see Sec-
tion 5.2 for further discussion on this point). We therefore choose to
apply this methodology to individual one square degree MegaCam
fields (hereafter referred to as a field), in order to identify fields
with exposures that exhibit a strong PSF residual.

For the individual analysis of a one square degree field, we
can no longer assume that �⇠obs = �⇠sys as the three noise terms
in the right hand side of equation 6 can be significant simply from
a chance alignment of cosmological shear, random measurement
noise or intrinsic ellipticities with the PSF. Using one square de-
gree patches of the CFHTLenS ‘clone’ (see Section 3.1) we find
�⇠obs > �⇠sys even when Asys = 0. To illustrate this point we
multiply each component in equation 6 by the inverse PSF covari-
ance C�1 to define Aobs,

Aobs = C�1⇠sg = Anoise + A� + Asys , (11)

such that Aobs would be equal to Asys, the scale of the true residual
PSF signal in each exposure, if the noise terms Anoise and A�

could be ignored, where

Anoise = C�1h(✏int + ⌘) e?i , (12)

A� = C�1h� e?i . (13)

For each CFHTLenS field we first calculate C�1 from the measured
PSF model in each exposure. We then calculate the distribution of
values we measure for Anoise and A� for each field, keeping C
fixed, but varying ✏int + ⌘ and � using all 184 independent simula-
tions from the ‘clone’. Figure 2 compares the distribution of values
measured for each component of Anoise (dashed) and A� (dotted)
for all simulated realizations of the fields, normalized to the total
number of exposures in the survey. This can be compared to the
total discrete number of exposures with Aobs as measured from the
complete CFHTLenS data set (circles). Note that we use a scalar
symbol here as we show the distribution of measurements over all
exposures in the survey rather than the vector which contains the
measurement across all exposures in a particular field. This figure
shows that the combined distribution of Anoise and A� (solid) as
measured from the simulated data is generally consistent with the
observed distribution of Aobs over all CFHTLenS MegaCam imag-
ing. We do, however, observe some outliers from the expected dis-
tribution and indications of an increased width of the observed dis-
tribution from the simulated distribution. This comparison reveals
the presence of a systematic PSF residual signal in a small fraction
of our data.

Before we further develop our method to identify problem-
atic data in Section 3.4, we should pause to note a general cause

c� 0000 RAS, MNRAS 000, 000–000

(Heymans et al. 2012)
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Quantifying PSF residuals II
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4.2 Field selection

For each field we calculate the systematics test parameter U (equa-
tion 14) applying the calibration corrections described in Sec-
tion 4.1. We then calculate the probability that !ξ obs is consistent
with zero systematics [p(U = 0) as detailed in Section 3.4] and
set an acceptance threshold on this probability using a method that
we demonstrate in Fig. 4. Here, in the upper panel, we show the
measured systematic error observable #(!ξ obs) where the sum is
taken over all fields (hatched area includes the 1σ bootstrap error
on the measure). This can be compared with the distribution of val-
ues obtained from all the different realizations of the CFHTLenS
‘clone’ (solid line). The ‘clone’ distribution shows the probability of
measuring #(!ξ obs) from the full survey area if there were no PSF
residuals in the data. Note that by definition !ξ obs at zero-lag is a
positive quantity (see equation 10) so even for the simulated ‘clone’
catalogues which have zero systematics, by definition, #(!ξ obs) is
non-zero. For comparison we also show the distribution of #(!ξ obs)
that would be measured simply from a random correlation between

Figure 4. Comparison of the measured #(!ξobs) (hatched) where the sum
is taken over all fields (upper panel) or over the fields with a measured
probability of zero systematics p(U = 0) > 0.11 (lower panel). These
measures can be compared with the probability distribution of measuring
#(!ξobs) from the same number of fields realized in the systematics-free
CFHTLenS ‘clone’ (solid line). For the full data set (upper panel), we find
that the measured #(!ξobs) far exceeds what is expected from the simula-
tions. Once a conservative cut is applied to the data (lower panel) removing
25 per cent of the data, we find the measured #(!ξobs) is fully consistent
with the expected distribution for the same number of simulated fields. For
comparison, we also show the probability distribution of #(!ξobs) as mea-
sured from a random correlation between the pure cosmic shear γ and the
range of CFHTLenS PSFs (dashed line).

the pure cosmic shear γ and the range of CFHTLenS PSFs (dashed
line). The significance of this signal reiterates the points made in
Section 3.3 of how important it is to take into account both the
random intrinsic ellipticity noise and underlying cosmic shear in
this type of systematics analysis.

The conclusion we can draw from the upper panel of Fig. 4 is
that when we consider the full data set, the sum of the measured
star–galaxy cross-correlation is very significant compared to the
expectation from the simulated ‘clone’ catalogues. We therefore set
a criterion that selects only those fields above a tunable threshold
probability that !ξ obs is consistent with zero systematics [p(U =
0)]. By increasing the cut on p(U = 0) the measured systematic
error observable #(!ξ obs) decreases rapidly as using p(U = 0)
for our selection criteria preferentially rejects the fields with the
strongest systematic residual errors. As the number of fields in the
analysis decreases, the #(!ξ obs) expected from the ‘clone’ also
decreases. This is because it is summed only over the number of
fields remaining in the analysis and there are fewer positive numbers
to sum. We continue this rejection process until the 1σ confidence
region on our measured systematic error observable #(!ξ obs) is
in agreement with the peak of the probability distribution expected
for this quantity from the same number of fields in the ‘clone’
simulations (lower panel). It is interesting to note that the variance of
the simulated distributions also becomes consistent with the 1σ error
on the measured #(!ξ obs) when the threshold selection is optimized
in this way. This process sets a threshold of p(U = 0) > 0.11 below
which we label the field as ‘failed’. This leaves us with 75 per cent of
CFHTLenS fields which pass the systematics test. We investigate the
impact of this cut for two-point cosmic shear statistics in Section 5.

For a complete and detailed account of the analysis, we should
clarify at this point that the field selection and empirical c2 additive
calibration correction described here and in Section 4.1 are actually
calculated using a two-step iteration. We first select fields apply-
ing only the multiplicative m calibration correction (equation 18) as
calculated from our simulated image analysis in Miller et al. (2012).
This first-pass field selection safeguards that the empirical c2 cali-
bration correction we calculate from the selected data is unrelated to
the PSF. The additive correction that is empirically calculated from
these selected fields is then applied to the full survey. We then rerun
our systematics analysis on the full survey to reselect fields which
pass the systematics tests when both the multiplicative and first-pass
additive calibration corrections are included. This safeguards that
in the first-pass iteration, the additive error term, now corrected by
the c2 calibration, did not mask the presence of PSF residuals, or
appear as a PSF residual in exposures where the PSF is predomi-
nantly in the e⋆

2 direction. At this second-pass iteration, we lose two
fields and gain seven fields into our selected clean data sample. Fi-
nally, we empirically recalculate the additive calibration correction
c2 for this final set of selected fields to improve the accuracy of the
correction on the final field sample. This recalculation introduces a
small per cent level adjustment to the first-pass measure and is the
c2 calibration that is presented in equation (19).

Finally, we discuss duplicate fields, originally imaged with an
i′.MP9701 filter, and reimaged, after this initial filter was damaged
in 2007 October, with the replacement i′.MP9702 filter. In general,
we do not distinguish between these two periods of i′ imaging,
although the different filter response curves are of course accounted
for in our photometric redshift analysis (Hildebrandt et al. 2012).
For the purposes of this discussion, however, we will refer to these
two filters as i ′

1 and i ′
2. Duplicate fields were reimaged in order to

calibrate and assess the impact of the change of filter mid-survey,
in addition to some cases where preliminary concerns about the

C⃝ 2012 The Authors, MNRAS 427, 146–166
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS
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Histogram of probability p that
Σξobs ∼ Σ|ξsys| is not zero (sum over
all pointings), from simulations.

Shaded region = data.

Magenta: simulations without LSS.
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Figure D8. The large-scale two-point correlation function with
✓ > 2 deg before (open symbols) and after (closed symbols) cor-

recting each tomographic slice for the additive bias shown in

Fig. D6. Each tomographic slice (increasing in redshift from left
to right) and KiDS-450 patch (labelled from top to bottom) is

shown. The hashed region shows the amplitude of the correction

and associated error. The cosmological signal (shown solid) is ex-
pected to be consistent with zero on these scales.

additive systematic biases in the measurement. We seek a
similar method for cosmic shear to validate our additive cal-
ibration strategy. There is no null signal, as such, but the
cosmic shear signal on very large scales is expected to be
consistent with zero within the statistical noise of KiDS-
450. Fig. D8 shows the measured ⇠+ on angular scales ✓ >
2 deg, before (open symbols) and after (closed symbols) cor-
recting each tomographic slice for the additive bias shown
in Fig. D6. The hashed region shows the amplitude of that
correction and associated error. After correction the large-
scale signal is consistent with zero, and with the best-fit
cosmological signal. This verifies the calibration correction.
It also sets an upper limit on the angular scales that can be
safely analysed for ⇠+. We set this limit at 1 deg, where the
measured amplitude of ⇠+ is more than an order of mag-
nitude larger than the large-scale cosmic-shear signal that
would be subtracted in error with this empirical calibration
strategy. On smaller scales of ✓ ⇠ 5 arcmin, where the cos-
mic shear signal-to-noise peaks (see Fig. 3), this large-scale
cosmic-shear subtraction is completely negligible. Note that
there is no equivalent upper ✓ limit for ⇠�. Additive terms
do not typically contribute to the ⇠� statistic as for square
geometries hctcti = hc⇥c⇥i.

D5 Star-galaxy cross correlation

We measure the correlation between star and galaxy ellip-
ticities to determine if any tiles exist in our sample with a
significant residual contamination resulting from an imper-

Figure D9. Amplitude of the star-galaxy shear cross-correlation

statistic �⇠obs summed over all KiDS-450 data tiles (hashed) and

mock tiles (solid). The contribution from cosmic shear to this
statistic is shown by the dashed histogram. In KiDS-450 we do

not reject any tiles based on this test since the value of ⌃�⇠obs

is fully consistent with the expectation from simulations which

model chance alignments between galaxies and the PSF due to

cosmic shear, shape noise and shot noise.

fect correction for the PSF. We use the method described in
Heymans et al. (2012) to assess the significance of galaxy-
PSF shape correlations in order to identify problematic tiles.
Previous surveys have used this strategy to flag and remove
significant fractions of the data: 25 per cent (CFHTLenS;
Heymans et al. 2012), 9 per cent (RCSLenS; Hildebrandt
et al. 2016) and 4 per cent (KiDS-DR1/2; Kuijken et al.
2015).

Briefly, the method uses the fact that most galaxies in a
tile have been observed in five di↵erent sub-exposures, with
di↵erent PSFs. It assumes that intrinsic galaxy ellipticities
average to zero, and uses the degree of shape correlation
between the corrected galaxies and the PSF models in the
di↵erent sub-exposures to estimate the amount of PSF print-
through in the tile’s measured shear field. This PSF contam-
ination is then cast in the form of a non-negative contam-
ination, �⇠obs, to the 2-point galaxy ellipticity correlation
function in that tile (see eq. 10 in Heymans et al. 2012).
Mock shear maps with realistic noise properties are used
to generate distributions of this statistic in the absence of
systematic errors, in order to assess the significance of the
measured values.

The hashed bar in Fig. D9 shows the value of the �⇠obs

statistic, measured in each 1 deg2 tile, and then summed over
the full KiDS-450 sample. For comparison, the histogram
in Fig. D9 shows the distribution of ⌃�⇠obs measured for
184 systematic-free mock realisations of the KiDS-450 sur-
vey. We find that the star-galaxy cross correlation measured
in the data agrees well with the signal measured from our
systematic-free mocks.

This agreement is further explored in Fig. D10. For
each tile we determine the probability p(U = 0) that deter-
mines how likely it is that its measured �⇠obs is consistent
with zero systematics (see Heymans et al. 2012 for details).
Fig. D10 shows how the measured cumulative probability
distribution for the KiDS-450 tiles agrees well with a uniform
distribution. As such even the small handful of tiles with low

MNRAS 000, 1–48 (2016)

[Hildebrandt et al. 2016, KiDS-450]
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Weak-lensing measurements of dark energy
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Figure 8. Joint parameter constraints on the dark energy equation of state parameter w0 and the matter density parameter ⌦m, and curvature parameter ⌦K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).

Figure 9. Compressed CFHTLenS tomographic data for two galaxy sam-
ples; early-type (circles) and late-type (cross) galaxies. As in Figure 3, each
point represents a different tomographic bin combination ij as indicated
by zpeak, the peak redshift of the lensing efficiency for that bin. The best-
fitting amplitude ↵ij of the data relative to a fixed fiducial GG-only cos-
mology model is shown, multiplied by the fiducial model at ✓ = 1 arcmin
for ⇠+. The error bars show the 1� constraints on the fit. The data can be
compared to the fiducial GG-only model, shown dotted.

the data. The resulting best-fitting amplitude ↵ij is shown, multi-
plied by the fiducial model at ✓ = 1 arcmin for ⇠+. With only 20 per
cent of the data contained in the early-type sample, it is unsurpris-
ing that the measured signal to noise is significantly weaker than
for the late-type sample which are well fit by the fiducial GG-only
model, shown dotted. We can, however, optimise the measurement
of the intrinsic alignment signal from early-type galaxies, to get a
clearer picture, if we assume the II contribution to cross-correlated
bins is small in comparison to the GI signal. If this is the case, we
can decrease the noise on the GI measurement by using the full

galaxy sample as background galaxies to correlate with the early-
type galaxies in the foreground bin. The result of this optimised
analysis is shown, in compressed tomographic data form, in Fig-
ure 10. The open circles show the tomographic signal measured in
the auto-correlated redshift bins between early-type galaxies (these
auto-correlation bins are also shown in Figure 9). The closed sym-
bols show the tomographic signal in the cross-correlated redshift
bins where early-type galaxies populate the foreground bin and the
full galaxy sample populates the background higher redshift bin.
The data can be compared to the fiducial GG-only model, shown
dotted. What is interesting to note from this Figure is that at low
redshifts, where the intrinsic alignment signal is expected to be
the most prominent, the auto-correlated bins tend to lie above the
GG-only model. We expect this from the II term. For the cross-
correlated bins, however, the measured signal tends to lie below
the GG-only model. We expect this from the GI term.

Figure 11 combines the CFHTLenS data split by galaxy type,
and our optimised early-type galaxy tomography analysis, with
auxiliary data from WMAP7, BOSS and R11 to constrain the am-
plitude of the intrinsic alignment model A. Assuming a flat ⇤CDM
model, the resulting 68 per cent and 95 per cent confidence limits
on A and the matter density parameter ⌦m can be compared4. In
the left panel we show constraints from the two galaxy samples
split by SED type. The early-type galaxy constraints are shown
in red and the late-type galaxy constraints are shown in blue. In
the right panel, constraints are shown for the full galaxy sample
in purple and the optimised early-type intrinsic alignment analysis
in pink. The marginalised 68 per cent confidence errors on A, from
the combination of CFHTLenS data with WMAP7, BOSS and R11,
for the four different measurements are

Alate = 0.18+0.83
�0.82 , (17)

Aearly = 5.15+1.74
�2.32 , (18)

4 Note that the constraints on cosmological parameters other than A are
consistent between the early-type and late-type analysis, and that both sets
of parameter constraints, with the exception of A, are consistent with the
full galaxy sample analysis reported in table 3.

c� 0000 RAS, MNRAS 000, 000–000

CFHTLenS (Heymans et al. 2013)

KiDS-450 (Joudaki et al. 2016)

KiDS-450, (Joudaki et al. 2017)
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Redshift estimation I

Redshifted galaxy spectra have different colors.
Photometric redshifts = very low resolution spectra.
#bands between 3 (RCS) and 30 (COSMOS). Typical are 4-5 optical filters
(g, r, i, y, z), maybe with UV (u) and IR (I, J,K).
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[from Y. Mellier]

4000 Å-break strongest feature due to
metal absorption and absence of blue
stars. If not pronounced: metal-poor,
young stars.
→ ellipticals (old, metal-rich stellar
population) best,
→ spirals ok,
→ irregular/star-burst (emission lines)
less reliable.
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→ irregular/star-burst (emission lines)
less reliable.2
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Part I day 2: Measurement of weak lensing

Photometric redshifts
Redshift estimation

This is true per z-bin!



Part I day 2: Measurement of weak lensing Photometric redshifts

Redshift estimation II

Properties

• Redshift desert z ≈ 1.5− 2.5, neither 4000 Å-break nor Ly-break in
visible range, very hard to access from ground.

• Confusion between low-z dwarf ellipticals and high-z galaxies. Confusion
between Balmer and Lyman break. Catastrophic outliers, typically a few
to a few 10

• Need UV band and IR for high redshifts! But: UV very inefficient, IR
absorbed by atmosphere, have go to space.

• Need spectroscopic galaxy sample for comparison, calibration, or
cross-correlation. In general Nspec � NWL.

• Typical accuracy of photo-z’s σ/(1 + z) ∼ 0.05 (depending on filters).
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Part I day 2: Measurement of weak lensing Photometric redshifts

Redshift estimation III

Redshift accuracy and cosmology
To interpret weak lensing correlations in cosmological context, the redshift
distribution needs to be known accurately!
To first order:

Pκ(` ∼ 1000) ∝ Ω−3.5de σ2.9
8 z̄1.6|w|0.31 (Huterer et al. 2006)

Methods

• Template fitting.
Redshifted synthetic or observed templates of various types are fitted to
flux in observed bands.
Examples LePhare (Ilbert et al. 2006)), BPZ (Beńıtez 2000), HyperZ
(Bolzonella et al. 2000).
Spectroscopic sample for calibration, priors.

• Machine-learning.
Learn data using training set (of spectroscopic sample).
Examples: ANNz (Collister & Lahav 2004).
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Part I day 2: Measurement of weak lensing Photometric redshifts

Redshift estimation IV

• Matching photometric properties to spectroscopic sample (Lima
et al. 2008) (direct calibration).

• Spatial cross-correlation with spectroscopic survey (clustering redshifts)

Spectroscopic sample has to be representative in some properties, depending
on the method:

• Template fitting: Same magnitude limit as photometric sample

• Neural networks: Cover redshift range, properties (colors)

• Matching: Cover (color) parameter space

• Clustering: Cover redshift range, sky overlap
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Clustering redshifts (slide from Vivien Scottez)



Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions I

Remember the shear two-point correlation function (2PCF)?

ξ±(ϑ) = 〈γtγt〉 (ϑ)± 〈γ×γ×〉 (ϑ)

Unbiased estimator of ξ± just involves sums over galaxy pairs:

ξ̂±(θ) =

∑
ij wiwj (εt,iεt,j ± ε×,iε×,j)∑

ij wiwj
.

Sum over galaxy pairs with angular distance within bin of θ.

• Unbiased estimator (for bin size → 0, and in absence of intrinsic
alignment)

• No need for random catalogue, or mask geometry, since ξ = 0 in absence
of lensing.

• No need to pixellise data, can use brute-force or tree codes/linked lists
(adaptive pixellisation, effective smoothing)
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Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions II

athena - configuration file

open
angle

Tree code: correlating two ‘nodes’ (2D regions).
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Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions III

From the 2PCF estimator, the aperture-mass dispersion and other
second-order functions can be derived:

γ map

ξ±
filter with

T±

Q

filter with

σ2sum over pairs
(auto-correlation)

Map,⊥ maps

〈M2
ap〉, 〈M2

⊥〉
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Part I day 2: Measurement of weak lensing Estimating shear statistics

Estimator of second-order functions IV
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Figure 7. The measured shear correlation functions ξ+ (top panel) and ξ−
(bottom), for the four Wide patches. The error bars correspond to Poisson
noise.

χ2/degree of freedom (d.o.f.) of 14.9/15 = 0.99, corresponding to
a non-null B-mode probability of 46 per cent. Even if we only take
the highest six (positive) data points, we find the χ2 per d.o.f. to
be χ2/d.o.f. = 4.12/6 = 0.69, which is less than 1σ significance.
The non-zero B-mode signal at around 50–120 arcmin from F08 is
not detected here.

The top-hat shear rms B mode is consistent with zero on all
measured scales, as shown in the middle panel of Fig. 8. Note,
however, that of all second-order functions discussed in this work,
⟨|γ |2⟩ is the one with the highest correlation between data points.
The predicted leakage from the B to the E mode is smaller than the
measured E mode, but becomes comparable to the latter for θ >

100 arcmin, where the leakage reaches up to 50 per cent of the E
mode.

The optimized ring statistic for η = ϑmin/ϑmax = 1/50 is plotted
in the lower panel of Fig. 8. Each data point shows the E and B
modes on the angular range between ϑmin and ϑmax, the latter of
which is labelled on the x-axis. The B mode is found to be consistent
with zero; a χ2 null test yields a 35 per cent probability of a non-zero
B mode.

We first test our calculation of COSEBIs on the CFHTLenS
Clone with noise, where we measure a B mode of at most a few
×10−12 for n ≤ 5 and ϑmax ≤ 250 arcmin. Even though this is a
few orders of magnitudes larger than the B mode due to numerical
errors from the estimation from theory, it is insignificant compared
to the E-mode signal. When including the largest available scales
for the Clone however, ϑmax ∼ 280 arcmin, the B mode increases
to be of the order of the E mode. This is true independent of the
binning or whether noise is added. We presume that this is due
to insufficient accuracy with which the shear correlation function
is estimated from the simulation on these very large scales, from
only a small number of galaxy pairs. Further, for n > 5 a similarly
large B mode is found for some cases of (ϑmin, ϑmax). Again, the
accuracy of the simulations is not sufficient to allow for precise

Figure 8. Smoothed second-order functions: aperture-mass dispersion
⟨M2

ap⟩ (left panel), shear top-hat rms ⟨|γ |2⟩ (middle) and optimized ring
statistic RE (right), split into the E mode (black filled squares) and B mode
(red open squares). The error bars are the Clone field-to-field rms. The
dashed line is the theoretical prediction for a WMAP7 cosmology (with zero
E-/B-mode leakage); the dotted curve shows the Clone lines-of-sight mean
E-mode signal. For ⟨M2

ap⟩ and ⟨|γ |2⟩ the WMAP7-prediction of the leaked
B mode is shown as red dashed curve; the shaded region in the middle
panel corresponds to the 95 per cent WMAP7 confidence interval of σ 8 (flat
(CDM). For the shear top-hat rms, negative points are plotted with dashed
error bars.
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End of day 2.
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Outline

Part I day 3. Reminder: Overview

Part I day 1: Principles of gravitational lensing
Brief history of gravitational lensing
Light deflection in an inhomogeneous Universe
Convergence, shear, and ellipticity
Projected power spectrum
Real-space shear correlations

Part I day 2: Measurement of weak lensing
Galaxy shape measurement
PSF correction
Photometric redshifts
Estimating shear statistics

Part I day 3: Surveys and cosmology
Cosmological modelling
Results from past and ongoing surveys (CFHTLenS, KiDS, DES)
Euclid

Part I day 3+: Extra stuff
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Part I day 3: Surveys and cosmology Cosmological modelling

Intrinsic galaxy alignment (IA)Galaxy Alignments: An Overview 9

Fig. 3 Sketch of the gravitational lensing signal and its intrinsic alignment contamination. Light travels
from the top of the sketch downwards, from the source plane via the lens plane to the plane at the bottom
containing the images as seen by an observer. The matter structure (green ellipsoid) deflects the light from
the background source galaxies (blue discs) and distorts their images tangentially with respect to the apparent
centre of the lens (as seen in the bottom plane). As a consequence, the galaxy images become aligned (GG
signal). Galaxies which are physically close to the lens structure (red ellipsoids) may be subjected to forces
that cause them to point towards the structure, which results in the alignment of their images (II signal).
Images of galaxies close to the lens are then preferentially anti-aligned with the gravitationally sheared images
of background galaxies (GI signal)

They come in principle with their own intrinsic correlations of galaxy observables, which
we will not discuss further here.

Galaxies as light sources are intrinsically non-circular in general, and the deviation from
a circular image can to first order be described by an intrinsic ellipticity ϵs. This ellipticity
is intrinsic in the sense that it is a property of the galaxy itself rather than induced by gravi-
tational deflection as the light travels to the observer, after leaving the galaxy. The observed
ellipticity under the gravitational lens mapping is then given by (Seitz and Schneider 1997)

ϵ = ϵs + g

1 + ϵsg∗ ≈ ϵs + γ with g ≡ γ

1 − κ
, (2)

where g is called the reduced shear. Both ellipticities and shear are understood as complex
numbers in this equation (with the complex conjugate denoted by a star), encoding the shape
in the absolute value and the orientation with respect to some reference axis in the phase,
e.g. ϵ = |ϵ| e2iϕ . The simple summation of shear and ellipticity in the second equality of
Eq. (2) only holds in the limit of very weak lensing effects,2 i.e. |γ |,κ ≪ 1. It is important
to note that the term ‘ellipticity’ is not uniquely defined in general and, even if galaxy images
were simple solid ellipses with semi-minor to semi-major axis ratio b/a, could correspond

2There is a subtlety involved in this approximation: for an individual galaxy, as Eq. (2) has been written, the
expansion produces another term that is first order in the shear and proportional to g∗(ϵs)2. However, since
the relation is only considered in practice when averaging over large numbers of galaxies, this term (as well
as all higher-order terms) becomes negligible if the intrinsic galaxy shapes are uncorrelated, or only weakly
correlated, with the shear acting on them.

(Joachimi et al. 2015)

Galaxy shapes are correlated with
surrounding tidal density field, due to
coupling of spins for spiral galaxies,
tidal stretching for elliptical galaxies.
Shape of galaxies is sum of shear (G)
and intrinsic (I) shape (remember
ε ≈ εs + γ).
So, with intrinsic alignment, the
correlation of galaxy shapes is not only
shear-shear (GG), but also
intrinsic-intrinsic (II) and
shear-intrinsic (GI; (Hirata &
Seljak 2004)).

Contamination to cosmic shear at ∼ 1 - 10%.
Need to model galaxy formation.
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Part I day 3: Surveys and cosmology Cosmological modelling

IA measurement: Ellipticity - density correlations
With (spectroscopic) data measure γt around massive galaxies (= centres of
halos): shape - density correlations.

Intrinsic alignments 7

Figure 1. The GI correlation functions for the SDSS Main sub-
samples, split into colour and luminosity bins.

Figure 2. Confidence contours for power-law fits to wg+(rp) for
Main sample galaxies. Contours are shown for various subsets of
data labelled on the plots; in each case, 1σ, 2σ, and 3σ contours
are shown.

and to place constraints if there is no detection. The GI
signal wg+(rp) for each of the eight subsamples is shown
in Figure 1. Figure 2 shows the confidence contours for
fits to a power law, wg+(rp) = Ar−α

p as discussed in
Mandelbaum et al. (2006a).

As shown, for both colour subsamples there is hardly
any detection in L3 and L4, consistent with previous works.
There is a hint of a signal in L3 for the red sample: when
we fit the whole range of scales to an arbitrary power law
there is no detection, however as we will see in Section 7

Figure 3. The density-shape correlation function wg+(rp) from
1–60 h−1 Mpc with the full spectroscopic LRG sample and various
subsamples as labeled on the plot. Errors are 1σ but are somewhat
correlated on large scales.

if we fit to large scales (rp > 4.7h−1 Mpc) where the bias
is expected to be roughly linear, and restrict to the power
law α = −0.73 observed for the LRGs, there is a marginal
(2.4σ) detection. For L5, the detection with the red sub-
sample is robust whereas there is no detection with the blue
subsample. For L6, the constraints are weak with the blue
sample due to its small size, so while the magnitude of the
alignments are consistent with the red subsample, they are
also marginally consistent with zero. The rest-frame colour
distribution of the L6 blue sample, and the distribution of
Photo pipeline output frac deV (a measure of the degree
to which a galaxy profile is closer to an exponential or de
Vaucouleur profile), suggest that this small L6 blue sample
may contain galaxies that are on the edge of the blue vs.
red galaxy distinction, which could explain this consistency
of results.

5.2 SDSS LRGs

Here we present results of the measurements of density-
shape correlations for the SDSS spectroscopic LRGs
(the measurement is otherwise similar to that of
Mandelbaum et al. 2006a). The plots of wg+(rp) in Figure 3
are in the same form as in that paper, including 1σ errors.
Figure 4 shows the confidence contours for fits to a power-
law, wg+ = Arα

p .
In the top panel of Figure 3, we show wg+(rp) for the full

spectroscopic LRG sample, and the BG and non-BG sub-
samples. As shown, the full sample and the BG subsamples
are robustly detected on all scales, out to 60 h−1 Mpc. The
non-BG subsample has a significantly lower signal to noise
due to its small size, but the amplitude appears roughly
comparable to that of the BG subsamples. In Figure 4, the
contours for the full LRG sample are shown in the upper
left panel, and for BGs and non-BGs separately in the lower

c⃝ 0000 RAS, MNRAS 000, 000–000
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Part I day 3: Surveys and cosmology Cosmological modelling

IA measurement: Ellipticity - ellipticity correlations
With photometric data measure sum of GG, GI, and II.

10 C. Heymans et al.

Figure 2. The observed two-point correlation function ⇠̂ij
+ (✓). The panels show the different ij redshift bin combinations, ordered with increasing redshift bin

i from left to right, and increasing redshift bin j from lower to upper. Refer to table 1 for the redshift ranges of each tomographic bin. The errors are estimated
from an analysis of N-body lensing simulations as discussed in Section 3.3. The theoretical curves show our fiducial total GG+GI+II signal as a solid line.
When distinguishable from the total, the GG only signal is shown dashed. The magnitude of the GI signal is shown dot-dashed (our fiducial GI model has
a negative anti-correlated signal) and the II signal is shown dotted, where the amplitude is more than 10�7. The results of the broad two-bin tomographic
analysis of Benjamin et al. (2012) are shown in the lower right corner.

correspondingly large covariance matrix, that we use in the likeli-
hood analysis. Purely for improving the visualization of this large
data set, however, we propose the following method to compress
the data, motivated by the different methods of Massey et al. (2007)
and Schrabback et al. (2010).

To compress angular scales, we first calculate a WMAP7 cos-
mology GG-only theory model ⇠ij

fid for each redshift bin combina-
tion ij and each statistic (+/�). We then define a free parameter
↵ij

± which allows the overall amplitude of the model to vary, but
keeps the angular dependence fixed. The best-fitting amplitude ↵ij

±
is then found from a �2 minimization of ↵ij

±⇠ij
fid(✓) to the shear

correlation functions measured at 5 angular scales in each ij bin
and each statistic. A best-fitting value of ↵ij

± = 1 implies the data
in bin ij are well-fit by a WMAP7 GG-only cosmology. Each bin is
then assigned a single value of ↵ij ⇠̂ij

fid(✓ = 10) which can be inter-
preted as the amplitude of the two-point shear correlation function
measured in bin ij at an angular scale of ✓ = 1 arcmin.

To compress the information in the redshift bin combination,
we calculate the lensing efficiency function qi(w) (equation 7) for
each redshift bin i, and then determine the peak redshift zpeak of
the combined lensing sensitivity qi(w)qj(w) for each redshift bin
ij combination. This peak redshift locates the epoch that is the
most efficient at lensing the two galaxy samples in the redshift
bin combination ij, but we note that these distributions are very
broad, particularly for the redshift bins with a significant fraction
of catastrophic outliers in the photometric redshift distribution (see
Figure 1).

Figure 3 shows the resulting compressed 21 data points for
each statistic, ⇠+ (circles) and ⇠� (crosses), plotting ↵ij ⇠̂ij

fid(✓ =
10) against zpeak. This can be compared to the fiducial cosmol-
ogy prediction (shown dotted, by setting ↵ = 1). To recover ↵ij

from this figure, one simply divides the value of each data point
by the value of the fiducial model, shown dotted, at that zpeak. We
find a signal that rises as the peak redshift of the lensing efficiency
function increases; the more large scale structure the light from our

c� 0000 RAS, MNRAS 000, 000–000
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Table 1. Tomographic redshift bin selection. Galaxies are selected based on
their maximum posterior photometric redshift estimate zBPZ. The median
redshift zm and mean redshift z̄ for each bin is calculated from the effective
redshift distribution as measured by the weighted sum of the photometric
error distributions P (z).

Bin zBPZ zm z̄

1 0.20 � 0.39 0.28 0.36

2 0.39 � 0.58 0.48 0.50

3 0.58 � 0.72 0.62 0.68

4 0.72 � 0.86 0.82 0.87

5 0.86 � 1.02 0.93 1.00

6 1.02 � 1.30 1.12 1.16

inverse covariance matrix C�1 that sets the maximum number of
data points p in our analysis. The number of tomographic bins Nt

and angular scales N✓ is therefore set by the number of N-body
simulations that we have at our disposal. For p/nµ <⇠ 0.12, and
nµ = 1656, (see Section 3.3), we should therefore limit our analy-
sis to p <⇠ 200.

3.4 Tomographic analysis and redshift distributions

In a tomographic weak lensing analysis there is always a choice
to be made for the number of tomographic redshift bins, Nt, and
the number of scales probed, in our case angular scales, N✓ . As
the number of redshift and angular bins is increased, the amount of
information increases. A saturation limit is eventually reached be-
yond which the data points become so correlated that the extra in-
formation gained with each incremental increase in the number of
bins becomes marginal. With an unlimited number of N-body lens-
ing simulations from which to make an unbiased covariance matrix
estimate, the optimal number of tomographic bins will depend on
the photometric redshift accuracy of the survey, and the method by
which the contamination from intrinsic galaxy alignments is miti-
gated in the analysis. Bridle & King (2007) show that for a survey
with a photometric redshift scatter of �z = 0.05(1 + z), using
Nt ⇠ 8 brings the cosmological parameter constraints to within 20
per cent of the best attainable with a fully 3D approach. This is in
contrast to the conclusions of earlier cosmic-shear only optimiza-
tions, which found Nt ⇠ 3 to be optimal (Simon et al. 2004; Ma
et al. 2006). This difference indicates the importance of using finely
binned tomographic redshift slices when mitigating intrinsic align-
ment effects. Grocutt (2012) investigate the dependence of cosmo-
logical parameter constraints when varying the number of tomo-
graphic redshift bins, Nt, and the number of angular scales probed,
N✓ , simultaneously. A non-linear intrinsic alignment model was
assumed for the II and GI contamination (see Section 3.2). In this
analysis the cosmological parameter constraints were found to be
less sensitive to increases in N✓ , in comparison to increases in
Nt. This is expected for the single-parameter non-linear intrinsic
alignment model, as the cosmic shear, GG, and non-linear intrinsic
alignment II and GI power spectrum, vary smoothly with scale and
the relative amplitude between the II, GI and GG power for each
redshift bin is fixed as a function of scale. As the number of data
points p scales as Nt(Nt +1), however, even small increases in Nt

can quickly lead to an unstable covariance matrix.
Motivated by the findings of Bridle & King (2007) and Gro-

Figure 1. Tomographic redshift distribution. The upper panel shows the
effective weighted number of galaxies as a function of their maximum pos-
terior photometric redshift estimate, separated into six tomographic bins
between 0.2 < zBPZ < 1.3. The effective weighted number of galaxies in
each redshift bin is constant. The lower panel shows the redshift distribution
for each selected bin as estimated from the weighted sum of the photometric
redshift probability distributions P (z).

cutt (2012), and with the limitation that the total number of data
points p <⇠ 200 (see Section 3.3.1), we choose to use Nt = 6 red-
shift bins and N✓ = 5 angular bins such that our total number of
data points p = 210. The angular range is chosen to be spaced
equally in log(✓) between 1.5 < ✓ < 35 arcmin, where the maxi-
mum angular scale is determined by the limitations of the N-body
lensing simulations used to determine the covariance matrix. We
select the Nt = 6 redshift bins to span our high confidence red-
shift range 0.2 < zBPZ < 1.3 such that the effective surface num-
ber density of galaxies in each redshift bin is equal. The effective
number density includes the shear measurement weights w such
that the intrinsic ellipticity noise in each bin is equal. This choice
is in contrast to a cosmic shear signal-to-noise optimised redshift
bin selection which would lead to much broader bins at low red-
shift. Such optimization is undesirable for our purposes, as it is
the lowest redshift bins where the presence of intrinsic alignments
is most prominent. Table 1 lists the resulting redshift selection for
each tomographic bin. The median redshift zm and mean redshift
z̄ is calculated from the effective redshift distribution as measured
by the weighted sum of the photometric error distributions P (z).
These error distributions extend out to zBPZ = 3.5 which skews
the mean redshift measurement, relative to the median, particularly
in the lowest redshift bin.

Figure 1 compares the effective redshift distribution for each
tomographic bin as determined from the maximum posterior red-
shift zBPZ (upper panel) and by the weighted sum of the photomet-
ric error distributions P (z) (lower panel). The binning in the upper
panel is significantly finer than the typical CFHTLenS photometric
redshift error �z ⇠ 0.04(1 + z) (Hildebrandt et al. 2012). The fine
structure revealed by this binning therefore illustrates redshift fo-
cusing effects arising from the photometric redshift measurement,
not true physical structures. Accurate measurements of P (z) for
each galaxy allows us to fully account for these focussing effects,
in addition to overlapping redshift distributions and catastrophic
redshift outliers in our analysis (see Benjamin et al. 2012, for de-
tailed analysis of the P (z) used in this analysis). It is therefore the
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Part I day 3: Surveys and cosmology Cosmological modelling

IA constraints
Intrinsic alignment

CFHTLenS: Tomographic weak lensing 17

Figure 11. Joint parameter constraints on the amplitude of the intrinsic alignment model A and the matter density parameter ⌦m from CFHTLenS combined
with WMAP7, BOSS and R11. In the left panel the constraints can be compared between two galaxy samples split by SED type, (early-type in red and late-type
in blue). In the right panel we present constraints from a optimised analysis to enhance the measurement of the intrinsic alignment amplitude of early-type
galaxies (pink). The full sample, combining early and late-type galaxies, produces an intrinsic alignment signal that is consistent with zero (shown purple). A
flat ⇤CDM cosmology is assumed.

Figure 10. Compressed CFHTLenS tomographic data for an optimised
early-type galaxy intrinsic alignment measurement with auto-correlated
redshift bins containing only early-type galaxies (circles) and cross-
correlation redshift bins containing early-type galaxies in the low redshift
bin and all galaxy types in the high redshift bin (filled). Different tomo-
graphic bin combinations ij are indicated by zpeak, the peak redshift of the
lensing efficiency for that bin. The best-fitting amplitude ↵ij of the data
relative to a fixed fiducial GG-only cosmology model is shown, multiplied
by the fiducial model at ✓ = 1 arcmin for ⇠+. The error bars show the 1�

constraints on the fit. The data can be compared to the fiducial GG-only
model, shown dotted.

Aopt
early = 4.26+1.23

�1.39 , (19)

Aall = �0.48+0.75
�0.87 . (20)

We find the intrinsic alignment amplitude of the late-type sample
is consistent with zero. In contrast, the amplitude of the intrinsic
alignment model for the early-type sample is detected to be non-
zero with close to 2� confidence. When we consider the optimised
analysis, we find an even stronger detection, with an intrinsic align-
ment amplitude of A = 0 for early-type galaxies ruled out with
3� confidence. The optimised early-type analysis should be con-
sidered with some caution, however, as the tomographic redshift
bins do overlap and as such a small fraction of late-type with early-
type II correlation will be included in the measurement. The mea-
surement of Aearly should therefore be considered as our cleanest
measurement of the early-type galaxy intrinsic amplitude with the
optimised Aopt

early analysis providing us with the strongest evidence
for intrinsic galaxy alignments between early-type galaxies.

Our constraints show the same broad findings as other stud-
ies; intrinsic alignments are dependent on galaxy type. As previous
studies have focused on specific galaxy samples at fixed redshifts,
however, it is difficult to compare our constraints directly. With that
caveat we can, however, comment on literature results from galaxy
samples that are the most comparable. Our late-type sample is most
similar in its properties to the blue galaxies from the WiggleZ sur-
vey analysed in Mandelbaum et al. (2011). Their null detection is in
agreement with our late-type galaxy results. Our early-type sample
is most similar in terms of luminosity and redshift to the MegaZ-
LRG sample analysed in Joachimi et al. (2011). The best-fit values
4 <⇠ A <⇠ 6 for a range of different types of LRG galaxy selection
with an error of ⇠ 1, are in very good agreement with our early-
type galaxy results.

For the full galaxy sample, there is an indication that negative
values of A are preferred. For flat cosmologies, A is negative at
the 1.4� level when the CFHTLenS data are combined only with
WMAP7 and R11 (see table 3 for constraints on A for the full
galaxy sample for different cosmologies and data combinations).
Whilst we emphasize that this result is not statistically significant
it is however worth commenting on what this finding could mean.
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Simple intrinsic alignment model:!
Galaxy ellipticity linearly related to tidal field 
[Hirata & Seljak 2004, Bridle & King 2007].!
!
One free amplitude parameter A, 
fixed z-dependence.  

A = 1: reference IA model.!
A = 0: no IA
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Figure 8. Joint parameter constraints on the dark energy equation of state parameter w0 and the matter density parameter ⌦m, and curvature parameter ⌦K

for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).

Figure 9. Compressed CFHTLenS tomographic data for two galaxy sam-
ples; early-type (circles) and late-type (cross) galaxies. As in Figure 3, each
point represents a different tomographic bin combination ij as indicated
by zpeak, the peak redshift of the lensing efficiency for that bin. The best-
fitting amplitude ↵ij of the data relative to a fixed fiducial GG-only cos-
mology model is shown, multiplied by the fiducial model at ✓ = 1 arcmin
for ⇠+. The error bars show the 1� constraints on the fit. The data can be
compared to the fiducial GG-only model, shown dotted.

the data. The resulting best-fitting amplitude ↵ij is shown, multi-
plied by the fiducial model at ✓ = 1 arcmin for ⇠+. With only 20 per
cent of the data contained in the early-type sample, it is unsurpris-
ing that the measured signal to noise is significantly weaker than
for the late-type sample which are well fit by the fiducial GG-only
model, shown dotted. We can, however, optimise the measurement
of the intrinsic alignment signal from early-type galaxies, to get a
clearer picture, if we assume the II contribution to cross-correlated
bins is small in comparison to the GI signal. If this is the case, we
can decrease the noise on the GI measurement by using the full

galaxy sample as background galaxies to correlate with the early-
type galaxies in the foreground bin. The result of this optimised
analysis is shown, in compressed tomographic data form, in Fig-
ure 10. The open circles show the tomographic signal measured in
the auto-correlated redshift bins between early-type galaxies (these
auto-correlation bins are also shown in Figure 9). The closed sym-
bols show the tomographic signal in the cross-correlated redshift
bins where early-type galaxies populate the foreground bin and the
full galaxy sample populates the background higher redshift bin.
The data can be compared to the fiducial GG-only model, shown
dotted. What is interesting to note from this Figure is that at low
redshifts, where the intrinsic alignment signal is expected to be
the most prominent, the auto-correlated bins tend to lie above the
GG-only model. We expect this from the II term. For the cross-
correlated bins, however, the measured signal tends to lie below
the GG-only model. We expect this from the GI term.

Figure 11 combines the CFHTLenS data split by galaxy type,
and our optimised early-type galaxy tomography analysis, with
auxiliary data from WMAP7, BOSS and R11 to constrain the am-
plitude of the intrinsic alignment model A. Assuming a flat ⇤CDM
model, the resulting 68 per cent and 95 per cent confidence limits
on A and the matter density parameter ⌦m can be compared4. In
the left panel we show constraints from the two galaxy samples
split by SED type. The early-type galaxy constraints are shown
in red and the late-type galaxy constraints are shown in blue. In
the right panel, constraints are shown for the full galaxy sample
in purple and the optimised early-type intrinsic alignment analysis
in pink. The marginalised 68 per cent confidence errors on A, from
the combination of CFHTLenS data with WMAP7, BOSS and R11,
for the four different measurements are

Alate = 0.18+0.83
�0.82 , (17)

Aearly = 5.15+1.74
�2.32 , (18)

4 Note that the constraints on cosmological parameters other than A are
consistent between the early-type and late-type analysis, and that both sets
of parameter constraints, with the exception of A, are consistent with the
full galaxy sample analysis reported in table 3.
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Part I day 3: Surveys and cosmology Cosmological modelling

Baryons in the LSS
On small (halo) scales, dark-matter only models do not correctly reproduce
clustering:

• R ∼ 1 - 0.1 Mpc: gas pressure → suppression of structure formation, gas
distribution more diffuse wrt dm

• R < 0.1 Mpc (k > 10/Mpc): Baryonic cooling, AGN+SN feedback →
condensation of baryons to form stars and galaxies, increase of density,
stronger clustering

The effect of baryon physics on weak lensing tomography 3

hydrodynamic simulations run with a modified version of the SPH
code Gadget (last described in Springel 2005). A range of physical
processes was considered, as well as a range of model parameters.
In this paper we use a subset of OWLS for which we will give a
brief description, inviting the reader to find more details in the pa-
pers where the simulations are presented. Note that all simulations
have been performed with the same initial conditions1. The sim-
ulations considered here are (following the naming convention of
Schaye et al. 2010):

• DMONLY: a dark matter only simulation, of the kind com-
monly used to compute the non-linear power spectrum which is
needed in weak lensing studies. It is therefore the reference to
which we compare the other simulations.

• REF: although it is not the reference simulation for the study
presented here, this simulation includes most of the mechanisms
which are thought to be important for the star formation history (see
Schaye et al. 2010 for a detailed discussion) but not AGN feedback.
The implementation of radiative cooling, star formation, super-
novae driven winds, and stellar evolution and mass loss have been
described in Wiersma, Schaye & Smith (2009), Schaye & Dalla
Vecchia (2008), Dalla Vecchia & Schaye (2008), and Wiersma et
al. (2009), respectively. This simulation represents a standard sce-
nario assumed in cosmological hydrodynamic simulations.

• DBLIMFV1618: this simulation has been produced using the
same mechanisms as REF. The only difference between the two
simulations is that in this simulation the stellar initial mass func-
tion (IMF) was modified to produce more massive stars when the
pressure of the gas is high, i.e. in starburst galaxies and close to
galactic centres. This is obtained by switching from the Chabrier
(2003) IMF assumed in the REF model to a Baugh et al. (2005)
IMF in those regions. There are both observational and and the-
oretical arguments to support a top-heavy IMF in those extreme
conditions (e.g. Padoan et al. 1997; Baugh et al. 2005; Klessen et
al. 2007; Maness et al. 2007; Dabringhausen et al. 2009; Bartko et
al. 2010; Weidner et al. 2010). The IMF change causes the number
of supernovae and the effect of stellar winds to increase resulting in
a suppression of the SFR at smaller redshifts. However, this mech-
anism alone is not able to reproduce the observed SFR (see Schaye
et al. 2010).

• AGN: a hydrodynamic simulation which differs from REF
only by the inclusion of AGN. The AGN feedback has been mod-
elled following Booth & Schaye (2009). In this approach AGN
transfer energy to the neighbouring gas, heating it up and driv-
ing supersonic outflows which are able to displace a large quan-
tity of baryons far from the AGN itself. Among the three simula-
tions considered here, it is arguably the most realistic, as it is able
to reproduce the gas density, temperature, entropy, and metallic-
ity profiles inferred from X-ray observations, as well as the stel-
lar masses, star formation rates, and stellar age distributions in-
ferred from optical observations of low-redshift groups of galaxies
(McCarthy et al. 2010).

To forecast the cosmic shear signal for the four different sce-
narios, we make use of the results of van Daalen et al. (2011), who
tabulated the power spectra of matter fluctuations P (k, z) in red-
shift slices over the redshift range 0 ! z ! 6 for a number of
OWLS runs. A detailed discussion of the procedure to compute the

1 The cosmology used to realise the simulations is the best-fit to
the WMAP3 data (Spergel et al. 2007): {Ωm,Ωb, ΩΛ, σ8, ns, h} =
{0.238, 0.0418, 0.762, 0.74, 0.951, 0.73}.
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Figure 1. Ratio between the power spectrum of matter fluctuations mea-
sured from the simulations with baryons and the one measured from the
DMONLY simulation. The ratio for the REF simulation is shown in green,
the one for the AGN simulation is shown in blue, and the one for the
DBLIMFV1618 model is shown in pink. Since the simulations have been
carried out using the same initial conditions, deviations of the ratio from
unity are due to the differences in baryon physics.

power spectrum and its accuracy can be found in van Daalen et al.
(2011). Their convergence tests and noise estimations suggest that
the power spectra estimated from OWLS are reliable up to at least
k ≈ 10 h Mpc−1 over the range of redshifts we are interested in
(i.e. z " 1, as the lensing signal is most sensitive to structures that
are halfway between the observer and the source). At small k, the
estimate of the power spectrum is affected by the finite size of the
simulation box (100 h−1 Mpc on a side). This is not a concern, be-
cause on these scales baryonic effects are very small and density
fluctuations are in the linear regime, so that we can compute the
power spectrum from theory instead.

Figure 1 shows the power spectrum measured for each simula-
tion in three redshift bins normalised by the power spectrum of the
dark matter simulation (DMONLY) at the same redshift. In the REF
scenario (green), the presence of the baryons slightly suppresses the
power spectrum at intermediate scales, due to the pressure of the
gas. At smaller scales where baryons cool, the power spectrum is
enhanced as the baryons fall into the potential wells. For this model,
only the small scales are affected in an almost redshift indepen-
dent way. The effect of baryon physics is more pronounced for the
DBLIMFV1618 model, and depends on redshift. The AGN model
leads to the largest difference compared to the DMONLY simula-
tion. The amplitude of the power spectrum is strongly reduced on
scales of ∼ 1− 10 h−1 Mpc and the effect increases as the redshift
decreases; this is in agreement with the results by McCarthy et al.
(2011) who showed that because AGN remove low-entropy gas at
early stages (2 " z " 4), the high-entropy gas left in the haloes
does not cool down and form stars and the suppression of power
becomes more and more accentuated at small scales.

The latter two scenarios are qualitatively similar, although
the mechanisms are different: in the DBLIMFV1618 simulation
baryons are removed due to the enhanced supernova feedback,
whereas in the AGN scenario they are removed mostly by AGN
feedback, at least for the more massive and thus strongly clustered
haloes. Thus, the fraction of baryons which is removed is different,

(Semboloni et al. 2011)
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Figure 3. Top panel: ratio of the correlation function ξ+(θ) for
REF/DMONLY (green), DBLIMFV1618/DMONLY (pink) and
AGN/DMONLY (blue) . The notation binij indicates the correlation
of sources from redshift bin i with sources from redshift bin j. Here, we
show only results from the bins with i = j. Bottom panel: same as the
upper panel but for the correlation function ξ−(θ).

case one can show that the value of Pκ(s) depends mostly on the
density fluctuations with comoving wave numbers ≈ s/fK(wmax)

with fK(wmax) maximising the ratio fK(ws−w)fK(w)
fK(ws)

. In the top
panel of Figure 2, we show, for various source redshifts zs, the re-
lation between the angular wave number s and the wave number
s/fK(wmax) using the adopted WMAP3 cosmology. It shows, for
example, that measuring the power spectrum Pκ(s) at s ∼ 1× 104

of galaxies with redshifts ∼ 0.8, probes density fluctuations at
scales k ∼ 10h Mpc−1, where baryon physics is important.

However, one might wonder if the signal at arcminute scales
is statistically important. To examine this, the bottom panel of Fig-
ure 2 shows a typical signal-to-noise ratio of Pκ(s). The signal
has been computed assuming a WMAP3 cosmology. The noise ac-
counts for sampling and statistical noise, assuming a WMAP3 cos-
mology and a survey area A = 20000 deg2, a number density
of galaxies of n = 30 gal/arcmin2 all placed at the same red-
shift zs and with intrinsic ellipticity dispersion σe = 0.33 (see sec-
tion 4 for more details on the noise computation). As one can see,
the signal-to-noise ratio peaks at scales between 2 and 10 arcmin,
where baryon physics is important.

Having established that cosmic shear studies are sensitive to

the scales where baryon physics modifies the power spectrum, we
now want to quantify how various scenarios change the two-point
shear statistics. For that we adopt a source redshift distribution that
is representative of the CFHTLS-Wide (Benjamin et al. 2007) and
a fair approximation for Euclid (Laurejis et al. 2009). We adopt the
following parametrisation:

p(z) =
α

(z + z0)β
, (6)

with α = 0.836, β = 3.425, and z0 = 1.171. We divide the
source galaxies in three tomographic bins with limits [0, 0.6, 1.2,
3.4], which yields six cross-power spectra.

The top panel of Figure 3 shows the value of ξ+(θ) measured
for the various feedback scenarios, normalised by the results for
DMONLY. The effect of baryons is small and limited to very small
scales for the REF scenario. However, for DBLIMFV1618, and in
particular for the AGN model, the difference with the DMONLY
result is large and increases when the redshift of the sources de-
creases. The redshift dependence is the result of two effects. The
first is a geometric one: when the redshift of the sources decreases,
the physical scales probed by the lensing signal become smaller
(see Figure 2). The second reason is the suppression of the ampli-
tude of the power spectrum due to feedback, which becomes larger
at late times (see Figure 1). The bottom panel of Figure 3 shows
the value of ξ−(θ) measured for the various feedback scenarios,
normalised by the results for DMONLY. Notice that the bias for
ξ− is more pronounced out to larger scales. This is because ξ− is
much more sensitive to small-scale structures (i.e. to the shape of
the power spectrum Pκ(s) for large s).

3.2 Effect on cosmological parameter estimation

It is clear from Figure 1 that the change in the power spectrum
is large in the case of the AGN and DBLIMFV1618 scenarios.
The modification is, however, scale-dependent, which may help to
ameliorate the problem, since this cannot be reproduced by vary-
ing cosmological parameters which predominantly affect the over-
all amplitude of the weak lensing power spectrum. In other words,
it might be possible to separate the effects of baryonic feedback, or
at least to identify them: the inferred values for cosmological pa-
rameters from weak lensing statistics are scale-dependent for the
AGN and DBLIMFV1618 scenarios.

We first investigate the effect on the recovered value of σ8, the
rms fluctuation of matter in spheres of size 8 h−1Mpc. A compli-
cation to our analysis is the limited accuracy of the prescriptions
for the non-linear power spectrum, be it Peacock & Dodds (1996)
or the halofit approach (Smith et al. 2003) used here. We therefore
cannot predict ξ+,DMONLY(θ, zs) directly, but the procedure out-
lined below is accurate as the predictions should have the correct
scaling as a function of σ8. For the various feedback models we
first define the ratio

R+,hydro(θ, zs) =
ξ+,hydro(θ, zs)

ξ+,DMONLY(θ, zs)
, (7)

as a function of source redshift zs and angular scale θ. Here
ξ+,hydro(θ, zs) is the correlation function measured for REF,
DBLIMFV1618 or AGN, whereas ξ+,DMONLY(θ, zs) is the
DMONLY correlation function. We use the halofit prescription
(Smith et al. 2003) to compute ξ+,halofit(θ, zs; σ8), keeping all
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Baryons in the LSS
On small (halo) scales, dark-matter only models do not correctly reproduce
clustering:

• R ∼ 1 - 0.1 Mpc: gas pressure → suppression of structure formation, gas
distribution more diffuse wrt dm

• R < 0.1 Mpc (k > 10/Mpc): Baryonic cooling, AGN+SN feedback →
condensation of baryons to form stars and galaxies, increase of density,
stronger clustering

The effect of baryon physics on weak lensing tomography 3

hydrodynamic simulations run with a modified version of the SPH
code Gadget (last described in Springel 2005). A range of physical
processes was considered, as well as a range of model parameters.
In this paper we use a subset of OWLS for which we will give a
brief description, inviting the reader to find more details in the pa-
pers where the simulations are presented. Note that all simulations
have been performed with the same initial conditions1. The sim-
ulations considered here are (following the naming convention of
Schaye et al. 2010):

• DMONLY: a dark matter only simulation, of the kind com-
monly used to compute the non-linear power spectrum which is
needed in weak lensing studies. It is therefore the reference to
which we compare the other simulations.

• REF: although it is not the reference simulation for the study
presented here, this simulation includes most of the mechanisms
which are thought to be important for the star formation history (see
Schaye et al. 2010 for a detailed discussion) but not AGN feedback.
The implementation of radiative cooling, star formation, super-
novae driven winds, and stellar evolution and mass loss have been
described in Wiersma, Schaye & Smith (2009), Schaye & Dalla
Vecchia (2008), Dalla Vecchia & Schaye (2008), and Wiersma et
al. (2009), respectively. This simulation represents a standard sce-
nario assumed in cosmological hydrodynamic simulations.

• DBLIMFV1618: this simulation has been produced using the
same mechanisms as REF. The only difference between the two
simulations is that in this simulation the stellar initial mass func-
tion (IMF) was modified to produce more massive stars when the
pressure of the gas is high, i.e. in starburst galaxies and close to
galactic centres. This is obtained by switching from the Chabrier
(2003) IMF assumed in the REF model to a Baugh et al. (2005)
IMF in those regions. There are both observational and and the-
oretical arguments to support a top-heavy IMF in those extreme
conditions (e.g. Padoan et al. 1997; Baugh et al. 2005; Klessen et
al. 2007; Maness et al. 2007; Dabringhausen et al. 2009; Bartko et
al. 2010; Weidner et al. 2010). The IMF change causes the number
of supernovae and the effect of stellar winds to increase resulting in
a suppression of the SFR at smaller redshifts. However, this mech-
anism alone is not able to reproduce the observed SFR (see Schaye
et al. 2010).

• AGN: a hydrodynamic simulation which differs from REF
only by the inclusion of AGN. The AGN feedback has been mod-
elled following Booth & Schaye (2009). In this approach AGN
transfer energy to the neighbouring gas, heating it up and driv-
ing supersonic outflows which are able to displace a large quan-
tity of baryons far from the AGN itself. Among the three simula-
tions considered here, it is arguably the most realistic, as it is able
to reproduce the gas density, temperature, entropy, and metallic-
ity profiles inferred from X-ray observations, as well as the stel-
lar masses, star formation rates, and stellar age distributions in-
ferred from optical observations of low-redshift groups of galaxies
(McCarthy et al. 2010).

To forecast the cosmic shear signal for the four different sce-
narios, we make use of the results of van Daalen et al. (2011), who
tabulated the power spectra of matter fluctuations P (k, z) in red-
shift slices over the redshift range 0 ! z ! 6 for a number of
OWLS runs. A detailed discussion of the procedure to compute the

1 The cosmology used to realise the simulations is the best-fit to
the WMAP3 data (Spergel et al. 2007): {Ωm,Ωb, ΩΛ, σ8, ns, h} =
{0.238, 0.0418, 0.762, 0.74, 0.951, 0.73}.
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Figure 1. Ratio between the power spectrum of matter fluctuations mea-
sured from the simulations with baryons and the one measured from the
DMONLY simulation. The ratio for the REF simulation is shown in green,
the one for the AGN simulation is shown in blue, and the one for the
DBLIMFV1618 model is shown in pink. Since the simulations have been
carried out using the same initial conditions, deviations of the ratio from
unity are due to the differences in baryon physics.

power spectrum and its accuracy can be found in van Daalen et al.
(2011). Their convergence tests and noise estimations suggest that
the power spectra estimated from OWLS are reliable up to at least
k ≈ 10 h Mpc−1 over the range of redshifts we are interested in
(i.e. z " 1, as the lensing signal is most sensitive to structures that
are halfway between the observer and the source). At small k, the
estimate of the power spectrum is affected by the finite size of the
simulation box (100 h−1 Mpc on a side). This is not a concern, be-
cause on these scales baryonic effects are very small and density
fluctuations are in the linear regime, so that we can compute the
power spectrum from theory instead.

Figure 1 shows the power spectrum measured for each simula-
tion in three redshift bins normalised by the power spectrum of the
dark matter simulation (DMONLY) at the same redshift. In the REF
scenario (green), the presence of the baryons slightly suppresses the
power spectrum at intermediate scales, due to the pressure of the
gas. At smaller scales where baryons cool, the power spectrum is
enhanced as the baryons fall into the potential wells. For this model,
only the small scales are affected in an almost redshift indepen-
dent way. The effect of baryon physics is more pronounced for the
DBLIMFV1618 model, and depends on redshift. The AGN model
leads to the largest difference compared to the DMONLY simula-
tion. The amplitude of the power spectrum is strongly reduced on
scales of ∼ 1− 10 h−1 Mpc and the effect increases as the redshift
decreases; this is in agreement with the results by McCarthy et al.
(2011) who showed that because AGN remove low-entropy gas at
early stages (2 " z " 4), the high-entropy gas left in the haloes
does not cool down and form stars and the suppression of power
becomes more and more accentuated at small scales.

The latter two scenarios are qualitatively similar, although
the mechanisms are different: in the DBLIMFV1618 simulation
baryons are removed due to the enhanced supernova feedback,
whereas in the AGN scenario they are removed mostly by AGN
feedback, at least for the more massive and thus strongly clustered
haloes. Thus, the fraction of baryons which is removed is different,

(Semboloni et al. 2011)
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Figure 3. Top panel: ratio of the correlation function ξ+(θ) for
REF/DMONLY (green), DBLIMFV1618/DMONLY (pink) and
AGN/DMONLY (blue) . The notation binij indicates the correlation
of sources from redshift bin i with sources from redshift bin j. Here, we
show only results from the bins with i = j. Bottom panel: same as the
upper panel but for the correlation function ξ−(θ).

case one can show that the value of Pκ(s) depends mostly on the
density fluctuations with comoving wave numbers ≈ s/fK(wmax)

with fK(wmax) maximising the ratio fK(ws−w)fK(w)
fK(ws)

. In the top
panel of Figure 2, we show, for various source redshifts zs, the re-
lation between the angular wave number s and the wave number
s/fK(wmax) using the adopted WMAP3 cosmology. It shows, for
example, that measuring the power spectrum Pκ(s) at s ∼ 1× 104

of galaxies with redshifts ∼ 0.8, probes density fluctuations at
scales k ∼ 10h Mpc−1, where baryon physics is important.

However, one might wonder if the signal at arcminute scales
is statistically important. To examine this, the bottom panel of Fig-
ure 2 shows a typical signal-to-noise ratio of Pκ(s). The signal
has been computed assuming a WMAP3 cosmology. The noise ac-
counts for sampling and statistical noise, assuming a WMAP3 cos-
mology and a survey area A = 20000 deg2, a number density
of galaxies of n = 30 gal/arcmin2 all placed at the same red-
shift zs and with intrinsic ellipticity dispersion σe = 0.33 (see sec-
tion 4 for more details on the noise computation). As one can see,
the signal-to-noise ratio peaks at scales between 2 and 10 arcmin,
where baryon physics is important.

Having established that cosmic shear studies are sensitive to

the scales where baryon physics modifies the power spectrum, we
now want to quantify how various scenarios change the two-point
shear statistics. For that we adopt a source redshift distribution that
is representative of the CFHTLS-Wide (Benjamin et al. 2007) and
a fair approximation for Euclid (Laurejis et al. 2009). We adopt the
following parametrisation:

p(z) =
α

(z + z0)β
, (6)

with α = 0.836, β = 3.425, and z0 = 1.171. We divide the
source galaxies in three tomographic bins with limits [0, 0.6, 1.2,
3.4], which yields six cross-power spectra.

The top panel of Figure 3 shows the value of ξ+(θ) measured
for the various feedback scenarios, normalised by the results for
DMONLY. The effect of baryons is small and limited to very small
scales for the REF scenario. However, for DBLIMFV1618, and in
particular for the AGN model, the difference with the DMONLY
result is large and increases when the redshift of the sources de-
creases. The redshift dependence is the result of two effects. The
first is a geometric one: when the redshift of the sources decreases,
the physical scales probed by the lensing signal become smaller
(see Figure 2). The second reason is the suppression of the ampli-
tude of the power spectrum due to feedback, which becomes larger
at late times (see Figure 1). The bottom panel of Figure 3 shows
the value of ξ−(θ) measured for the various feedback scenarios,
normalised by the results for DMONLY. Notice that the bias for
ξ− is more pronounced out to larger scales. This is because ξ− is
much more sensitive to small-scale structures (i.e. to the shape of
the power spectrum Pκ(s) for large s).

3.2 Effect on cosmological parameter estimation

It is clear from Figure 1 that the change in the power spectrum
is large in the case of the AGN and DBLIMFV1618 scenarios.
The modification is, however, scale-dependent, which may help to
ameliorate the problem, since this cannot be reproduced by vary-
ing cosmological parameters which predominantly affect the over-
all amplitude of the weak lensing power spectrum. In other words,
it might be possible to separate the effects of baryonic feedback, or
at least to identify them: the inferred values for cosmological pa-
rameters from weak lensing statistics are scale-dependent for the
AGN and DBLIMFV1618 scenarios.

We first investigate the effect on the recovered value of σ8, the
rms fluctuation of matter in spheres of size 8 h−1Mpc. A compli-
cation to our analysis is the limited accuracy of the prescriptions
for the non-linear power spectrum, be it Peacock & Dodds (1996)
or the halofit approach (Smith et al. 2003) used here. We therefore
cannot predict ξ+,DMONLY(θ, zs) directly, but the procedure out-
lined below is accurate as the predictions should have the correct
scaling as a function of σ8. For the various feedback models we
first define the ratio

R+,hydro(θ, zs) =
ξ+,hydro(θ, zs)

ξ+,DMONLY(θ, zs)
, (7)

as a function of source redshift zs and angular scale θ. Here
ξ+,hydro(θ, zs) is the correlation function measured for REF,
DBLIMFV1618 or AGN, whereas ξ+,DMONLY(θ, zs) is the
DMONLY correlation function. We use the halofit prescription
(Smith et al. 2003) to compute ξ+,halofit(θ, zs; σ8), keeping all
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Part I day 3: Surveys and cosmology Survey results

CFHTLS/CFHTLenS

Groundbreaking for weak cosmological lensing:

• MegaCam 1 deg2 fov (@ 3.6m CFHT)

• Multiple optical bands → photometric redshifts, tomography

• Large team (> 20; led by Yannick Mellier, Catherine Heymans, Ludovic
van Waerbeke), thorough testing, multiple pipelines

• Public release of all data and lensing catalogues (www.cfhtlens.org)
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CFHTLenS cosmological constraints
CFHTLenS: cosmological model comparison using 2D weak lensing 15
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Figure 10.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(red) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is flat
ΛCDM (left panel) and curved ΛCDM (middle and right panel), respec-
tively.
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Figure 11.Marginalised posterior density contours (68.3%, 95.5%, 99.7%)
for CFHTLenS (blue contours), WMAP7 (green), CFHTLenS+WMAP7
(magenta) and CFHTLenS+WMAP7+BOSS+R09 (black). The model is
flat wCDM.

the convergence bispectrum, is very time-consuming and unfeasi-
ble for Monte-Carlo sampling, requiring the calculation of tens of
thousands of different models.

Instead, we explore the fitting formulae from Kilbinger (2010)
as a good approximation of reduced-shear effects. For a WMAP7
ΛCDM cosmology, the ratio between the 2PCFs with and without
taking into account reduced shear is 1 per cent for ξ+ and 4 per cent
for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.

Number of simulated lines of sight Following Huff et al. (2011),
we examine the influence of the number of simulated lines of sight
on the parameter constraints. We calculate the covariance of ⟨M2

ap⟩
from 110 instead of 184 lines of sight (Sect. 3.3.4). Using the cor-
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less than a per cent.
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for ξ− at the smallest scale considered, ϑ = 0.8 arcmin. Since the
fitting formulae are valid within a small range around the WMAP7
cosmology, we use them for the combined Lensing+CMB parame-
ter constraints. The changes in Ωm and σ8 for a ΛCDM model are
less than a per cent.
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Figure 7. Joint parameter constraints on curvature showing constraints on the curvature parameter !K and the matter density parameter !m from WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11 (pink) and CFHTLenS combined with BOSS, WMAP7
and R11 (white).

"CDM cosmology the constraint σ 8 = 0.799 ± 0.015 is almost
entirely driven by CFHTLenS in combination with WMAP7 alone.

4.3.2 Curved cosmological models

We consider two curved cosmologies where the sum of the different
density components of the Universe is no longer limited to the
critical density. Fig. 7 shows joint parameter constraints on the
curvature !K and the matter density parameter !m for WMAP7-only
(blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS
combined with WMAP7 and R11 (pink) and CFHTLenS combined
with BOSS, WMAP7 and R11 (white). In both the curved "CDM
and curved wCDM cosmology, we find that the data are consistent
with a flat Universe with !K ≃ −0.004 ± 0.004 (see Table 3 for
exact numbers for the different cosmologies and data combinations).

In this parameter space, we find a factor of 2 improvement when R11
is included in combination with CFHTLenS and WMAP7. This is
partly because when curvature is allowed the degeneracy direction
of the CMB in the σ8−!m plane changes such that the combination
of lensing with the CMB becomes less powerful. Little improvement
is found in the constraining power when BOSS is included in our
parameter combination, but the mean !K changes by nearly 2σ .

4.3.3 Constraints on dark energy

Finally, we turn to the constraints that can be placed on the dark en-
ergy equation-of-state parameter w0 in flat and curved cosmologies.
Fig. 8 shows joint parameter constraints in the w−!m plane and also
the w−!K plane for a curved wCDM cosmology. As with the other
parameter planes that we have commented upon in this section, we

Figure 8. Joint parameter constraints on the dark energy equation-of-state parameter w0 and the matter density parameter !m, and curvature parameter !K
for a curved wCDM cosmology from WMAP7-only (blue), BOSS combined with WMAP7 and R11 (green), CFHTLenS combined with WMAP7 and R11
(pink) and CFHTLenS combined with BOSS, WMAP7 and R11 (white).
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Part I day 3: Surveys and cosmology Survey results

DES — Dark Energy Survey
• Dedicated new camera: DECam, 3 deg2 fov, weak lensing as main science

goal
• @ 4m class Blanco telecsope on Cerro Tololo, Chile
• 5, 000 deg2 when completed
• Large coverage in other wavelength (e.g. SPT)
• Ongoing survey. Last release & results from year-1, 1, 321 deg2 = 1/5 of

final area6 The Dark Energy Survey Collaboration

Figure 2. Constraints on the amplitude of fluctuations �8 and

the matter density ⌦m from DES SV cosmic shear (purple filled

contours) compared with constraints from Planck (red filled con-

tours) and CFHTLenS (orange filled, using the correlation func-

tions and covariances presented in Heymans et al. (2013), and the

‘original conservative scale cuts’ described in Section 6.1.1). DES

SV and CFHTLenS are marginalised over the same astrophysical

systematics parameters and DES SV is additionally marginalised

over uncertainties in photometric redshifts and shear calibration.

Planck is marginalised over the 6 parameters of ⇤CDM (the 5 we

vary in our fiducial analysis plus ⌧). The DES SV and CFHTLenS

constraints are marginalised over wide flat priors on ns, ⌦b and

h (see text), assuming a flat universe. For each dataset, we show

contours which encapsulate 68% and 95% of the probability, as is

the case for subsequent contour plots.

The fiducial data vector is the real-space shear–shear
angular correlation function ⇠±(✓) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, ⌦m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <
⌦b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
use a fixed neutrino mass of 0.06 eV.

We summarise our systematics treatments below:
(i) Shear calibration: For each redshift bin, we
marginalise over a single free parameter to account for
shear measurement uncertainties: the predicted data vector
is modified to account for a potential unaccounted multi-
plicative bias ⇠ij ! (1+mi)(1+mj)⇠

ij . We place a separate
Gaussian prior on each of the three mi parameters. Each is

centred on 0 and of width 0.05, as advocated by J15. See
Section 5.1 for more details.
(ii) Photometric redshift calibration: Similarly, we
marginalise over one free parameter per redshift bin to de-
scribe photometric redshift calibration uncertainties. We al-
low for an independent shift of the estimated photomet-
ric redshift distribution ni(z) in redshift bin i i.e. ni(z) !
ni(z � �zi). We use independent Gaussian priors on each of
the three �zi values of width 0.05 as recommended by Bo15.
See Section 5.2 for more details.
(iii) Intrinsic alignments: We assume an unknown ampli-
tude of the intrinsic alignment signal and marginalise over
this single parameter, assuming the non-linear alignment
model of Bridle & King (2007). See Section 5.3 for more
details of our implementation and tests on the sensitivity of
our results to intrinsic alignment model choice.
(iv) Matter power spectrum: We use halofit (Smith
et al. 2003a), with updates from Takahashi et al. (2012) to
model the non-linear matter power spectrum, and refer to
this prescription simply as ‘halofit’ henceforth. The range
of scales for the fiducial data vector is chosen to reduce the
bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
statistical uncertainties (see Sections 4.2 and 5.4, and Table
2 for the minimum angular scale for each bin combination).
We thus marginalise over 3 + 3 + 1 = 7 nuisance parame-
ters characterising potential biases in the shear calibration,
photometric redshift estimates and intrinsic alignments re-
spectively.

Figure 2 shows our main DES SV cosmological con-
straints in the ⌦m � �8 plane, from the fiducial data vec-
tor and systematics treatment, compared to those from
CFHTLenS and Planck. For the CFHTLenS constraints, we
use the same six redshift bin data vector and covariance as
H13, but apply the conservative cuts to small scales used
as a consistency test in that work (for ⇠+ we exclude an-
gles < 30 for redshift bin combinations involving the lowest
two redshift bins, and for ⇠�, we exclude angles < 300 for
bin combinations involving the lowest four redshift bins, and
angles < 160 for bin combinations involving the highest two
redshift bins). We see that in this plane, our results are mid-
way between the two datasets and are compatible with both.
We discuss this further in Section 6.1.

Using the MCMC chains generated for Figure 2 we find
the best fit power law �8(⌦m/0.3)↵ to describe the degen-
eracy direction in the �8, ⌦m plane (we estimate ↵ using
the covariance of the samples in the chain in log�8 � log⌦m

space). We find ↵ = 0.478 and so use a fiducial value for ↵
of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 ⌘ �8(⌦m/0.3)0.5 = 0.81 ± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either ⌦m or �8 alone are weaker; we find
⌦m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES

SV constraints instead of a full likelihood analysis - S8 is sensi-

tive to the tails of the probability distribution, and also weakly

depends on the priors used on the other cosmological parameters.
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Planck is marginalised over the 6 parameters of ⇤CDM (the 5 we

vary in our fiducial analysis plus ⌧). The DES SV and CFHTLenS

constraints are marginalised over wide flat priors on ns, ⌦b and
h (see text), assuming a flat universe. For each dataset, we show

contours which encapsulate 68% and 95% of the probability, as is

the case for subsequent contour plots.
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angular correlation function ⇠±(✓) measured in three red-
shift bins (hereafter bins 1, 2, 3, with ranges of 0.3 < z <
0.55, 0.55 < z < 0.83 and 0.83 < z < 1.3, and galaxies
assigned to bins according the mean of their photometric
redshift probability distribution function) including cross-
correlations, as shown in Figure 1. The data vector initially
includes galaxy pairs with separations between 2 and 300 ar-
cmin (although many of these pairs are excluded by the scale
cuts described in Section 4.2). We focus mostly on placing
constraints on the matter density of the Universe, ⌦m, and
�8, defined as the rms mass density fluctuations in 8 Mpc/h
spheres at the present day, as predicted by linear theory.

We marginalise over wide flat priors 0.2 < h < 1, 0.01 <
⌦b < 0.07 and 0.7 < ns < 1.3, assuming a flat Universe, and
thus we vary 5 cosmological parameters in total. The priors
were chosen to be wider than the constraints in a variety
of existing Planck chains.. In practice the results are very
similar to those with these parameters fixed, due to the weak
dependence of cosmic shear on these other parameters. We
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low for an independent shift of the estimated photomet-
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this single parameter, assuming the non-linear alignment
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model the non-linear matter power spectrum, and refer to
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bias from theoretical uncertainties in the non-linear matter
power spectrum to a level which is not significant given our
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the covariance of the samples in the chain in log�8 � log⌦m

space). We find ↵ = 0.478 and so use a fiducial value for ↵
of 0.5 for the remainder of the paper 9 We find a constraint
perpendicular to the degeneracy direction of

S8 ⌘ �8(⌦m/0.3)0.5 = 0.81 ± 0.06 (68%). (1)

Because of the strong degeneracy, the marginalised 1d con-
straints on either ⌦m or �8 alone are weaker; we find
⌦m = 0.36+0.09

�0.21 and �8 = 0.81+0.16
�0.26. In Table 1 we also show

other results which are discussed in the later sections, includ-

9 We would advise caution when using S8 to characterise the DES

SV constraints instead of a full likelihood analysis - S8 is sensi-
tive to the tails of the probability distribution, and also weakly

depends on the priors used on the other cosmological parameters.
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18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration

Table 4. Setups for the di↵erent MCMC runs. The first column gives a short descriptive name to the setup and the second and third

column refer the reader to the section and figure in which the setup is discussed. Columns 4–6 indicate which astrophysical systematics
are marginalised over in each run. Column 7 and column 8 report the choices for the redshift distribution and the covariance matrix,

respectively. Column 8, 9, and 10 indicate whether the equation-of-state parameter w is varied, the KiDS results are combined with
Planck (TT + lowP), and 2 ⇥ ⇠B is subtracted from ⇠+. The last column gives the angular scales used for ⇠+. For ⇠� we use scales of

4.2–300 arcmin for all setups.

Setup Sect. Fig. baryons IA photo-z n(z) covariance w comb. w. B mode scales

error Planck subtr. ⇠+
KiDS-450 6.2 6

p p p
DIR analytical – – – 0.05 – 720

DIR 6.3 7 –
p p

DIR analytical – – – 0.05 – 720

CC 6.3 7 –
p p

CC analytical – – – 0.05 – 720

BOR 6.3 7 –
p

– BOR analytical – – – 0.05 – 720

BPZ 6.3 7 –
p

– BPZ analytical – – – 0.05 – 720

no systematics 6.4 – – – – DIR analytical – – – 0.05 – 720

N -body 6.4 – – – – DIR N -body – – – 0.05 – 720

DIR no error 6.5 8 –
p

– DIR analytical – – – 0.05 – 720

B mode 6.5 8 –
p

– DIR analytical – –
p

0.05 – 720

⇠+ large-scale 6.5 8 –
p

– DIR analytical – – – 4.02 – 720

wCDM 6.7 9
p p p

DIR analytical
p

– – 0.05 – 720

+Planck 7 –
p p p

DIR analytical –
p

– 0.05 – 720
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the

present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal

extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.
The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

pact on the overall result, and since for a sensitivity test
we are more interested in parameter changes than in actual
values, we revert to a dark-matter only power spectrum in
this comparison. This choice also enables us to switch from
HMcode to the faster Takahashi et al. (2012) model for the
non-linear power spectrum.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while

larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
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C. Modeling Shear Systematics

The shear multiplicative bias is modeled as [131, 132]

⇠ij = (1 + mi)(1 + mj)⇠ij
true, (11)

where mi are free to independently vary in each tomographic
bin. We do not explicitly marginalize over the potential im-
pact of additive systematics. We use a Gaussian prior on
mi of 0.012 ± 0.023 for METACALIBRATION, given in Ta-
ble II, which is rescaled from the non-tomographic prior
m = 0.012 ± 0.013 due to potential correlations between
tomographic bins as discussed in Appendix D of [54]. The
equivalent IM3SHAPE prior on mi is 0.0 ± 0.035. Both are
allowed to vary independently in each tomographic bin.

The only potential source of additive systematics we have
identified in [54] is related to incorrect modeling of the PSF.
We can model the impact of the PSF model errors in cosmic
shear and this is described in detail in Appendix A along with
a discussion of the residual mean shear in each tomographic
bin, which is not fully described by PSF model errors. We find
that after correcting the signal for the mean shear, the effect
of PSF modeling errors is negligible.

D. Modeling Photo-z Systematics

The photo-z bias is modeled as an additive shift of the n(z)

ni = ni
PZ(z ��zi), (12)

where �zi are free to independently vary in each tomographic
bin. As discussed in Sec. II B, this is a sufficient approx-
imation for the DES Y1 cosmic shear analysis, and this is
further validated in Sec. IX C. The Gaussian priors on �zi

for the METACALIBRATION measurements are listed in Ta-
ble II. We separately calibrate priors for the IM3SHAPE mea-
surements, which have Gaussian priors of �zi = (0.004 ±
0.015;�0.024 ± 0.013;�0.003 ± 0.011;�0.057 ± 0.022)
[39, 42]. When using the resampled COSMOS ni(z), the
same width for the prior on �zi is used, but it is centered
at zero. All �zi are allowed to vary independently in each to-
mographic bin. As in the case of shear calibration, the width
of these priors accounts for correlations between tomographic
bins as described in Appendix A of [39].

VIII. COSMOLOGICAL PARAMETER CONSTRAINTS

Given the size and quality of the DES Y1 shape catalogs,
we are able to make a highly significant statement about the
robustness of the standard ⇤CDM cosmological model. Our
measurements of cosmic shear probe the evolution of nonlin-
ear fluctuations in the underlying matter field and expansion
of space across a very large volume around z ⇡ 0.6. By com-
parison, equally constraining measurements of the CMB at
z = 1100 use information from linear perturbations in the ra-
diation field to constrain the same model eight billion years
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FIG. 7. Fiducial constraints on the clustering amplitude �8 and S8

with the matter density ⌦m in ⇤CDM. The fiducial DES Y1 cosmic
shear constraints are shown by the gray filled contours, with Planck
CMB constraints given by the filled green contours, and cosmic shear
constraints from KiDS-450 by unfilled blue contours. In all cases,
68% and 95% confidence levels are shown.

before light left the galaxies we now observe in DES. Com-
paring the prediction of these very different probes at the same
redshift via the parameter S8 allows us to test whether these
results are consistent within the ⇤CDM model to high preci-
sion.

Using the fiducial modeling choices described in the pre-
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redshift via the parameter S8 allows us to test whether these
results are consistent within the ⇤CDM model to high preci-
sion.
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KiDS
• 1, 500 deg2 in four optical (+ 5 IR) bands
• New camera (OmegaCAM 1 deg2 fov) and telecsope (2.6 m VST), long

delay
• Compared four different redshift estimation methodsKiDS: Cosmological Parameters 9

Figure 2. Comparison of the normalised redshift distributions for the four tomographic bins as estimated from the weighted direct

calibration (DIR, blue with errors), the calibration with cross-correlations (CC, red with errors), the re-calibrated stacked Precal(z)

(BOR, purple with errors that are barely visible), and the original stacked P (z) from bpz (green). The gray-shaded regions indicate the
target redshift range selected by cuts on the Bayesian photo-z zB.

ative values that would lead to unphysical negative ampli-
tudes in the n(z). Nevertheless, it is important to allow
for these negative values in the estimation of the cross-
correlation functions so as not to introduce any bias. Such
negative amplitudes can for example be caused by local over-
or underdensities in the spec-z catalogue as explained by
Rahman et al. (2015). Only after the full redshift recovery
process do we re-bin the distributions with a coarser redshift
resolution to attain positive values for n(z) throughout.

The redshift distributions from this method, based on
the combination of the DEEP2 and zCOSMOS results, are
displayed in Fig. 2 (red line with confidence regions). Note
that the uncertainties on the redshift distributions from the
cross-correlation technique are larger than the uncertainties
on the weighted direct calibration, owing to the relatively
small area of sky covered by the spec-z catalogues. As will
be shown in Section 6, propagating the n(z) and associated
errors from the CC method into the cosmological analysis
yields cosmological parameters that are consistent with the
ones that are obtained when using the DIR redshift distribu-
tions, despite some di↵erences in the details of the redshift
distributions.

3.4 Re-calibration of the photometric P(z ) (BOR)

Many photo-z codes estimate a full redshift likelihood, L(z),
for each galaxy or a posterior probability distribution, P (z),
in case of a Bayesian code like bpz. Bordoloi et al. (2010)
suggested to use a representative spectroscopic training sam-
ple and analyse the properties of the photometric redshift
likelihoods of those galaxies.

For each spectroscopic training object the photometric
P (z) is integrated from zero to zspec yielding the cumulative
quantity:

P⌃(zspec) =

Z zspec

0

P (z0) dz0 . (1)

If the P (z) are a fair representation of the underlying prob-
ability density, the P⌃ for the full training sample should be
uniformly distributed between zero and one. If this distribu-
tion N(P⌃) is not flat, its shape can be used to re-calibrate
the original P (z) as explained in Bordoloi et al. (2010).

One requirement for this approach to work is that the
training sample is completely representative of the photo-
metric sample to be calibrated. Since this is not the case for
KiDS-450 we employ this re-calibration technique in combi-
nation with the re-weighting procedure in magnitude space

MNRAS 000, 1–48 (2016)
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KiDS

Very thorough weak-lensing analysis,
including:

• n(z) errors

• IA, baryonic effects

• Shear calibration

• Non-Gaussian covariance

• Blinded analysis

(Hildebrandt et al. 2017)

18 Hildebrandt, Viola, Heymans, Joudaki, Kuijken & the KiDS collaboration
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Figure 6. Marginalized posterior contours (inner 68% CL, outer 95% CL) in the ⌦m-�8 plane (left) and ⌦m-S8 plane (right) from the
present work (green), CFHTLenS (grey), pre-Planck CMB measurements (blue), and Planck 2015 (orange). Note that the horizontal
extent of the confidence contours of the lensing measurements is sensitive to the choice of the prior on the scalar spectrum amplitude As.
The CFHTLenS results are based on a more informative prior on As artificially shortening the contour along the degeneracy direction.

For each of the three calibration methods (DIR, CC,
BOR) we estimate statistical errors from a bootstrap re-
sampling of the spectroscopic calibration sample (see Sec-
tion 6.2 for details of the implementation). Including those
uncertainties will broaden the contours. As can be seen in
Fig. 2 these bootstrap errors are very small for the BOR
method. This is due to the fact that a lot of information
in that technique is based on the photometric P (z) and the
re-calibration is more stable under bootstrap re-sampling of
the spectroscopic calibration sample than for the other two
methods. Hence to further speed up the MCMC runs we ne-
glect the BOR errors in the following with no visible impact
on the results. The uncertainties on the DIR method – while
larger than the BOR errors – are also negligible compared
to the shot noise in the shear correlation function (see Ap-
pendix C2). We nevertheless include these errors here (as
before) since DIR is our primary calibration method. The
statistical errors on the CC method are larger than for the
two other methods, owing to the as yet small area covered by
the spectroscopic surveys that we can cross-correlate with.
More importantly, we estimate that the limited available
area also gives rise to a larger systematic uncertainty on the
CC method compared to the DIR technique. All major re-
quirements for the DIR technique are met in this analysis
whereas the CC method will only realise its full potential
when larger deep spec-z surveys become available.

The resulting confidence contours in the ⌦m-�8 plane
for the four cases are shown in Fig. 7. All four cases give
fully consistent results although there are some shifts in
the contours with respect to each other. However, with
��2

e↵ ' �10, we find that the DIR and CC methods provide
a better fit to the data as compared to the BPZ and BOR
methods. For future cosmic shear surveys, with considerably
larger datasets, it will be essential to reduce the statistical
uncertainty in the redshift calibration in order to not com-
promise the statistical power of the shear measurement. For
KiDS-450 the uncertainty for our favoured DIR calibration
scheme is still subdominant.

In summary, we find that the four possible choices for

the photometric redshift calibration technique yield consis-
tent cosmological parameters.

6.4 Impact of analytical and numerical covariance
matrices

For our primary analysis we choose to adopt the analytical
estimate of the covariance matrix described in Section 5.3,
as it yields the most reliable estimate of large-scale sample
variance (including super-sample contributions), is free from
noise, and is broadly consistent with the N -body covariance
(see Section 5.4). In this section we compare the cosmo-
logical parameter constraints obtained with the analytical
covariance matrix to the alternative numerical estimate as
described in Section 5.2. For this test, we set all astrophysi-
cal and data-related systematics to zero: this applies to the
intrinsic alignment amplitude, the baryon feedback ampli-
tude, the errors on the shear calibration, and the errors on
the redshift distributions. Fixing these parameters allows us
to focus on the e↵ect of the di↵erent covariance matrices on
the cosmological parameters.

We correct for noise bias in the inverse of the numerical
covariance matrix estimate using the method proposed by
Sellentin & Heavens (2016). As we have a significant num-
ber of N-body simulations, however, we note that the con-
straints derived using our numerical covariance matrix are
unchanged if we use the less precise but alternative Hartlap
et al. (2007) bias correction scheme.

We find consistency between the results for the di↵erent
covariance matrices given the statistical errors of KiDS-450.
There are however small shifts in the central values of the
best-fit parameters; most notably the S8 constraints for the
analytical and numerical covariances which di↵er by ⇠ 1�.
We attribute these shifts to super-sample-covariance terms
that are correctly included only in the analytical estimate
(which is also the reason why we adopt it as our preferred
covariance). The SSC reduces the significance of the large
angular ⇠± measurements (see Fig. 4) where our measured
signal is rather low in comparison to the best-fit model (see
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Figure 10. Constraints on S8 for the di↵erent runs considered in the KiDS-450 analysis as well as several literature measurements.
The grey band indicates the 1� constraints from our primary analysis. Note that most of the runs which test for systematic errors (blue
data points) switch o↵ some of the astrophysical or redshift systematics. Hence not all data points shown here are fully comparable. For
numerical values of the plotted data points see Table F1.

that concordance tests grounded in the deviance information
criterion (DIC; Section 6.1) and Bayesian evidence largely
agreed, with the former enjoying the benefit of being more
readily obtained from existing MCMC chains. We therefore
assess the level of concordance between the two datasets D1

and D2 by computing

I(D1, D2) ⌘ exp{�G(D1, D2)/2}, (14)

where

G(D1, D2) = DIC(D1 [ D2) � DIC(D1) � DIC(D2), (15)

and DIC(D1 [ D2) is the DIC of the combined dataset.
Thus, log I is constructed to be positive when the datasets
are concordant and negative when the datasets are discor-
dant. The significance of the concordance test follows Jef-
freys’ scale (Je↵reys 1961), such that log I values in excess
of ±1/2 are ‘substantial’, in excess of ±1 are ‘strong’, and
in excess of ±2 are ‘decisive’.

For our primary analysis we find that log I = �0.79,
which translates into substantial discordance between KiDS-
450 and Planck. This is consistent with the level of discor-
dance inferred from the respective S8 constraints.

7 DISCUSSION

The KiDS-450 dataset analysed here represents one of the
most powerful cosmic shear surveys to date. Its combination

of area, depth, and image quality is unprecedented, and this
results in one of the most accurate and precise cosmological
constraints from cosmic shear to date. In view of this preci-
sion, understanding systematic uncertainties becomes more
important than in any previous such analysis. The treatment
of systematic errors in the shear and photo-z measurements
of KiDS-450 is based on the most advanced methods de-
scribed in the literature. After accounting for residual uncer-
tainties in these calibrations, KiDS-450 yields a constraining
power on cosmological parameters similar to CFHTLenS.

The results presented in Section 6 reveal a tension be-
tween Planck and KiDS-450 constraints on the matter den-
sity and the normalisation of the matter power spectrum.
While the 2.3-� level tension in the combined parameter S8

is similar compared to previous analyses like CFHTLenS,
there is now less room for explaining this tension with pho-
tometric redshift errors that were either unaccounted for or
not considered as rigorously in the past. The reduced �2

value of �2
e↵/dof = 1.3 for our primary analysis indicates

that our model is a reasonable fit. Traditionally weak lens-
ing analyses have focused on possible systematic errors in
the shear measurements, and there are now a number of
techniques that are able to achieve calibration uncertainties
on the order of a per cent (see Mandelbaum et al. 2015 for
a recent compilation). This level of accuracy is adequate for
ground-based surveys like KiDS. Attention is therefore shift-
ing to the other main observable, the photometric redshifts.

The calibration of the source redshift distribution re-
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Discrepancy with Planck? I

• Maybe not (2 - 3σ). However, also discrepancy of CMB C`’s with SZ
cluster counts.

• Additional physics, e.g. massive neutrinos? Not sufficient evidence.

• WL systematics? (E.g. shear bias, baryonic uncertainty on small scales.)
KiDS say not likely.
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Discrepancy with Planck? II
Updates

1. Weak-lensing, (Troxel et al. 2018).
Improved computation of shape noise, shear bias correction, and angular
scales weighting.5002 M. A. Troxel et al.

Figure 2. Left-hand panels: The impact of data vector and covariance corrections on the KiDS-450 cosmic shear results in the H17 analysis configuration.
’θ corr.’ refers to the update of the θ values for the data vector that appropriately averages the mean pair separation noted in Footnote 1 of Joudaki et al.
(2018). ’θ+Cov corr.’ refers to additionally including the covariance corrections discussed in Section 3 – updating the CovSN and σm components. The CovSN

update alone has relatively little impact on the cosmological constraints compared to the σm change. Right-hand panels: A comparison of the final cosmic
shear results from the KiDS-450 and the DES Y1 data in the T17 analysis configuration. In both panels, we include constraints from the CMB (Planck) for
comparison, analysed separately in the two analysis configurations, and show the marginalized S8 constraints on each side. Note that, among other differences
described in the text, the neutrino mass density is fixed in the left-hand panels (H17) and marginalized over in the right-hand panels (T17), which causes the
Planck contours in particular to differ. The cosmic shear results of the DES and KiDS analyses are strongly consistent, though the complete overlap found here
is likely coincidental and not necessarily expected statistically. The 2D 68 per cent CL of both overlap with those of the CMB in the right-hand panels (and
nearly so in the left-hand panels).

30 per cent on most scales due to the effects described in Section 3
can significantly worsen the best-fitting reduced χ2 for a cosmo-
logical model, even if it does not (as found in T17) significantly
modify the resulting cosmological constraints. The effect is larger
for the KiDS-450 geometry, due to the presence of multiple disjoint
fields, leading to changes in both the χ2 and, to a small degree, the
inferred model parameters. In the original parameter space of H17,
we find significant improvements to the $CDM best-fitting χ2 of
the KiDS-450 cosmic shear data due to the shape noise update. The
best-fitting χ2 is reduced from 161 to 121 for 118 dof, correspond-
ing to an increase in the p-value from 5 × 10−3 to 0.4. Similarly,
in the parameter space of T17, the best-fitting χ2 is reduced from
122 to 78 for 67 dof. The interpretation of the DES cosmic shear
best-fitting χ2 in this parameter space is similar, with a χ2 that was
reduced from 268 to 227 for 211 dof, with p = 0.21.

The update to the way σ m is included in the covariance in equa-
tion (7) more strongly impacts the inferred cosmology, while not
significantly modifying the χ2. This is shown in the left-hand pan-
els of Fig. 2 combined with the shape noise update (solid contour),
along with the impact of updating the reported θ value in the data
vector (dotted), both relative to the analysis of the original data
vector and covariance (dashed). Both of these updates increase the
inferred S8. We find a similar shift in S8 in the T17 parameter space.
This shift improves agreement in the S8–%m plane compared to both
DES Y1 (T17) and Planck (TT+lowP; Ade et al. 2016) results. How-
ever, the complete overlap of the KiDS and DES constraints found
here is likely coincidental and not necessarily expected statistically.

We compare the final parameter constraints from KiDS-450 and
DES Y1 in the right-hand panels of Fig. 2, finding complete over-
lap of the KiDS-450 and DES Y1 cosmic shear contours in S8

and %m, with constraints of S8 = 0.782+0.027
−0.027 for DES Y1 and

S8 = 0.772+0.037
−0.031 for KiDS-450 in the T17 analysis configuration.

Beyond the primary cosmological parameters, it is also important to
recognize (as recently highlighted in Efstathiou & Lemos 2018) the
impact that the major astrophysical systematic in cosmic shear, the
intrinsic alignment of galaxies (IA) (see Joachimi et al. 2015; Troxel
& Ishak 2015, and references therein), can have on the interpreta-
tion of cosmological results. One diagnostic of potential residual
systematics is an inconsistent model fit for the IA signal, up to
a potential difference in the effective amplitude due to the use of
different shape measurement methods. We also find excellent agree-
ment here, with an amplitude for the intrinsic alignment model of
AIA = 1.0+0.4

−0.7 (DES Y1) and AIA = 0.9+0.9
−0.6 (KiDS-450) in the T17

analysis configuration, marginalizing over a free redshift power-law
evolution that is also strongly consistent. This is a powerful demon-
stration of consistency between the cosmic shear analyses of these
two surveys, which lends credence to the robustness of constraints
shown here from cosmic shear.

5 C O N C L U S I O N S A N D O U T L O O K

We have demonstrated that using an exact measurement [e.g. the
actual Np(θ )] of the shape noise component of analytic cosmic
shear covariance matrix estimates is critical for ongoing and future
analyses where the survey footprint is non-compact or disjoint. In
the case of KiDS-450, we have demonstrated that this correction
increases the shape noise term in the covariance by up to a factor
of 3.5 on the largest scales. This shape noise correction is sufficient
to completely resolve the large best-fitting reduced χ2 for $CDM
from the original analysis of H17, and the first preprint version of
T17. With these updates, there is no longer any evidence for a lack of
internal model consistency in this basic test for these cosmic shear
analyses. We find that these changes can also relieve previously
discussed tensions in other internal consistency tests, such as those

MNRAS 479, 4998–5004 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/479/4/4998/5057023
by UPMC user
on 14 August 2018
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Discrepancy with Planck? III

2. Planck 2018 results, (Planck Collaboration et al. 2018)Planck Collaboration: Cosmological parameters
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Fig. 19. Base-⇤CDM model 68 % and 95 % constraint contours
on the matter-density parameter ⌦m and fluctuation amplitude
�8 from DES lensing (Troxel et al. 2017, green), Planck CMB
lensing (grey), and the joint lensing constraint (red). For compar-
ison, the dashed line shows the constraint from the DES cosmic
shear plus galaxy-clustering joint analysis (DES Collaboration
2017a), the dotted line the constraint from the original KiDS-450
analysis (Hildebrandt et al. 2017, without the corrections con-
sidered in Troxel et al. 2018), and the blue filled contour shows
the independent constraint from the Planck CMB power spectra.

fits are shown in Fig. 18. Note that intrinsic alignments con-
tribute significantly to the observed shear correlation functions
(as shown by the dotted lines in the figure). This introduces ad-
ditional modelling uncertainty and a possible source of bias if
the intrinsic alignment model is not correct. The DES model is
validated in Troxel et al. (2017); Krause et al. (2017).

Figure 19 shows the constraints in the ⌦m–�8 plane from
DES lensing, compared to the constraints from the CMB power
spectra and CMB lensing. The DES cosmic shear constraint is of
comparable statistical power to CMB lensing, but due to the sig-
nificantly lower mean source redshift, the degeneracy directions
are di↵erent (with DES cosmic shear approximately constrain-
ing ⌦m�

0.5
8 and CMB lensing constraining ⌦m�

0.25
8 ). The corre-

lation between the DES cosmic shear and CMB lensing results
is relatively small, since the sky area of the CMB reconstruction
is much larger than that for DES, and it is also mostly not at
high signal-to-noise ratio. Neglecting the cross-correlation, we
combine the DES and Planck lensing results to break a large
part of the degeneracy, giving a substantially tighter constraint
than either alone. The lensing results separately, and jointly, are
both consistent with the main Planck power-spectrum results,
although preferring �8 and ⌦m values at the lower end of those
allowed by Planck. The DES joint analysis of lensing and clus-
tering is also marginally consistent, but with posteriors prefer-
ring lower values of ⌦m (see the next subsection). Overlap of
contours in a marginalized 2D subspace does not of course guar-
antee consistency in the full parameter space. However, the val-
ues of the Hubble parameter in the region of ⌦m–�8 parameter
space consistent with Planck ⌦m and �8 are also consistent with
Planck’s value of H0. A joint analysis of DES with BAO and a
BBN baryon-density constraint gives values of the Hubble pa-

Planck power spectrum constraints are much less sensitive to priors and
we use our default priors for those.

rameter that are very consistent with the Planck power spectrum
analysis (DES Collaboration 2017b).

5.6. Galaxy clustering and cross-correlation

The power spectrum of tracers of large-scale structure can yield
a biased estimate of the matter power spectrum, which can then
be used as a probe of cosmology. For adiabatic Gaussian ini-
tial perturbations the bias is expected to be constant on large
scales where the tracers are out of causal contact with each
other, and nearly constant on scales where nonlinear growth
e↵ects are small. Much more information is available if small
scales can also be used, but this requires detailed modelling of
perturbative biases out to k ⇡ 0.3–0.6 Mpc�1, and fully non-
linear predictions beyond that. Any violation of scale-invariant
bias on super-horizon scales would be a robust test for non-
Gaussian initial perturbations protected by causality (Dalal et al.
2008). However, using the shape of the biased-tracer power
spectrum on smaller scales to constrain cosmology requires at
least a model of constant bias parameters for each population at
each redshift, and, as precision is increased, or smaller scales
probed, a model for the scale dependence of the bias. Early
galaxy surveys provided cosmology constraints that were com-
petitive with those from CMB power spectrum measurements
(e.g., Percival et al. 2001), but as precision has improved, fo-
cus has mainly moved away to using the cleaner BAO and RSD
measurements and, in parallel, developing ways to get the quasi-
linear theoretical predictions under better control. Most recent
studies of galaxy clustering have focussed on investigating bias
rather than background cosmology, with the notable exception
of WiggleZ (Parkinson et al. 2012).

Here we focus on the first-year DES survey measurement
of galaxy clustering (Elvin-Poole et al. 2017) and the cross-
correlation with galaxy lensing (Prat et al. 2017, “galaxy-galaxy
lensing”). By simultaneously fitting for the clustering, lensing,
and cross-correlation, the bias parameters can be constrained
empirically (DES Collaboration 2017a). Similar analyses using
KiDS lensing data combined with spectroscopic surveys have
been performed by van Uitert et al. (2018) and Joudaki et al.
(2018).

To keep the theoretical model under control (nearly in the
linear regime), DES exclude all correlations on scales where
modelling uncertainties in the nonlinear regime could begin to
bias parameter constraints (at the price of substantially reduc-
ing the total statistical power available in the data). Assuming
a constant bias parameter for each of the given source red-
shift bins, parameter constraints are obtained after marginaliz-
ing over the bias, as well as a photometric redshift window
mid-point shift parameter to account for redshift uncertainties.
Together with galaxy lensing parameters, the full joint analysis
has 20 nuisance parameters. Although this is a relatively com-
plex nuisance-parameter model, it clearly does not fully model
all possible sources of error: for example, correlations between
redshift bins may depend on photometric redshift uncertainties
that are not well captured by a single shift in the mean of each
window’s population. However, Troxel et al. (2017) estimate
that the impact on parameters is below 0.5� for all more com-
plex models they considered. The DES theoretical model for the
correlation functions (which we follow) neglects redshift-space
distortions, and assumes that the bias is constant in redshift and k
across each redshift bin; these may be adequate approximations
for current noise levels and data cuts, but will likely need to be
re-examined in the future as statistical errors improve.

28
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Part I day 3: Surveys and cosmology Euclid

The Euclid mission

Why is Euclid so special and challenging?
Increase of factor 100 in data volume compare to current surveys!
Few Million to few 100 Million galaxies.

For 2PCF: Naive increase of ncorrel by 10, 000!

Comparison with Planck:
Planck all-sky, pixel size ∼ 7 arc min.
Euclid 1/3 sky, pixel size ∼ typical angular distance between galaxies ∼ arc
sec.
Factor 105 more pixels!
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Weak-lensing resolutionWeighing the Giants – I 19

Figure 11. The cluster MACS J1621.3+3810 (z = 0.463). Each panel above shows the 24 arcmin × 24 arcmin optical image composed of the SuprimeCam
VJICz+ observations. The yellow contours in the top-right panel indicate the distribution of galaxies on the cluster red sequence, smoothed with a Gaussian of
3 arcmin width. The blue contours in the bottom-left panel illustrate the aperture mass map, starting at 2.5σ and increasing by 0.5σ increments, reconstructed
from the RC lensing image. The outer radius of the Map filter function corresponds to 1.5 Mpc at the cluster redshift. In the bottom-right panel, the pink contours
indicate the X-ray emission. The white, thin contour illustrates the edge of the Chandra image (merged from four exposures); the flux contours are spaced
on a square root scale. MACS J1621.3+3810 is in the dynamically relaxed cluster sample of A08, though not in the cosmology sample of M10. Despite its
relative high redshift and low X-ray flux, the multiwavelength analysis reveals a wealth of information. The cluster is embedded in a large filament, running
from south-east to north-west in the image. In an extension of the filament (projected), 4 Mpc to the south-east of MACS J1621.3+3810, a secondary, less
massive cluster is seen in both the red sequence map and the lensing map. Another secondary cluster, possibly along a weaker filament, is located 4 Mpc to the
south-south-west. (The third such cluster, in the north-west image corner, is detected in the IC-band lensing image.) The figure on the left shows the profile of
the average tangential and radial shear (top and bottom panels, respectively) measured with respect to the X-ray centroid, which is at the centre of the image.
A coherent tangential shear signal is detected out to ∼3 Mpc.
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Weak-lensing resolutionWeighing the Giants – I 19
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from the RC lensing image. The outer radius of the Map filter function corresponds to 1.5 Mpc at the cluster redshift. In the bottom-right panel, the pink contours
indicate the X-ray emission. The white, thin contour illustrates the edge of the Chandra image (merged from four exposures); the flux contours are spaced
on a square root scale. MACS J1621.3+3810 is in the dynamically relaxed cluster sample of A08, though not in the cosmology sample of M10. Despite its
relative high redshift and low X-ray flux, the multiwavelength analysis reveals a wealth of information. The cluster is embedded in a large filament, running
from south-east to north-west in the image. In an extension of the filament (projected), 4 Mpc to the south-east of MACS J1621.3+3810, a secondary, less
massive cluster is seen in both the red sequence map and the lensing map. Another secondary cluster, possibly along a weaker filament, is located 4 Mpc to the
south-south-west. (The third such cluster, in the north-west image corner, is detected in the IC-band lensing image.) The figure on the left shows the profile of
the average tangential and radial shear (top and bottom panels, respectively) measured with respect to the X-ray centroid, which is at the centre of the image.
A coherent tangential shear signal is detected out to ∼3 Mpc.
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Figure 1. Chandra images in the 0.7–7 keV energy range. The color bars reflect
the number of counts detected by Chandra. SZ contour levels are (+2, �2, �4,
�6, �8, . . .) times the rms noise in the short baseline data, after removal of
radio sources; solid contours are for negative levels, and dashed contours are for
positive levels. The elliptical Gaussian approximation to the synthesized beam
of the SZ observations is shown in the lower left corner.

in which � describes the slope of the matter density at large radii and rs is a scale radius. The
parameterization of the Bulbul et al (2010) model does not allow the inner slope of the matter
density to vary, which is fixed at r

�1 as in the Navarro et al (1997) model. The resolution
of our SZ data can only effectively constrain the matter distribution on scales larger than the
synthesized beam, which is of the order of 1 arcmin for these observations, and therefore we

New Journal of Physics 14 (2012) 025010 (http://www.njp.org/)

(Bonamente et al. 2012) — X- and SZ
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Weak-lensing resolution
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Mass maps from CFHTLenS
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Euclid imaging
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Some Euclid WL challenges

Martin Kilbinger, SAp/LCSEuclid: Univers sombre et distortions cosmiques 16

Euclid: new challenges
under-sampled PSF

CTI 
(charge transfer inefficiency)

color gradients

unresolved binary stars
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Open questions (selection) I
Modelling

• Intrinsic alignment. Dependence on L, type, z? Physically motivated
model. N -body simulations.

Codis et al. (2014)

Intrinsic alignment of galaxies 11
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Figure 9. Correlation functions of the projected ellipticity η(r) for the ∼ 58 000 middle-mass (left panels), ∼ 25 000 blue (middle panels)
and ∼ 25 000 red (right panels) galaxies as a function of the comoving 3D separation r, in the top row, and as a function of the (projected)
angular separation θ in the bottom row; this latter quantity being closer to observations, we call it ξII

+ . Note the change in scale from
one row to the other.

show any correlations. We reach identical conclusions when
studying the alignment of galaxy spins with one another,
namely that the spins of galaxies are also correlated on sim-
ilar scales (∼ 10 h−1 Mpc) and are similarly colour and mass-
dependent.

We have also investigated how spin–spin correlations
project into weak lensing observables like the shear correla-
tion function ξ+, these correlations being cast into the so-
called II contributions to IA. As in 3D, a ξII+ correlation at a
level of a few 10−4 is found for blue and intermediate-mass
galaxies out to separations of >∼ 10′ for sources at redshift
∼ 1.2. The results for blue galaxies are in broad agreement
with the recent work of Joachimi et al. (2013b), who com-
bines observational results on IA from the COSMOS survey
and predictions from semi-analytical models applied to DM-
only simulations.

Presently, the “spin-gives-ellipticity” prescription al-
lows one to quantify the new insights that large volume hy-
drodynamical cosmological simulations bring to the issue of
IA. For instance, the large-scale coherence of gas motions ad-
vected all the way to the center of galaxies through cold flows
regardless of the DM behaviour can uniquely be captured by
such simulations (Kimm et al. 2011). Large-scale dynamics
imprint their coherence and morphology (filaments, walls,
voids) onto the spin of galaxies. This complex topology is

likely to have an even more prominent impact on higher-
order statistics beyond the shear two-point correlation func-
tion. Attempts to capture such effects with simple halo occu-
pancy distribution prescriptions may therefore fail at high
redshift (z >∼ 0.8), which is the place where galaxies carry
more cosmological lensing signal and is also, to large extent,
the population of sources targeted by future surveys like Eu-
clid or LSST. The challenge for simulations is to cover large
cosmological volumes while preserving a sufficient resolution
so that baryonic physics (star formation, feedback processes,
etc) is correctly treated.

When the Horizon-AGN simulation reaches redshift
zero, we will be in a good position to compare our findings
with existing observations. In order to get a good match
for massive red galaxies, we will certainly adopt a differ-
ent ansatz for our recipe – currently based on a thin disk
approximation – and use directly the resolved shape of mas-
sive galaxies as a proxy for the projected ellipticities. How-
ever, this concerns only a small fraction of the galaxies that
made up the typical weak lensing catalogues of background
sources. Once the Horizon-AGN light-cone is completed, we
will estimate more realistic galactic shapes, taking full ac-
count of the spectral energy distribution of young and old
stars (giving a non trivial weight to the relative contribution
of the disk and the bulge) into a well chosen rest-frame filter

CFHTLenS ξ+GG

Why is II = 0 for red galaxies?

M < Mtransition = 2 × 106 M⊙: aligned w filaments;  
M > Mtransition: perpendicular!

Spins might not capture full shape of triaxial  
early-type galaxies

Intrinsic alignment of galaxies 7
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Figure 4. PDF of the cosine of the angle between the spin of galaxies and the minor/intermediate/major axis (from left to right) of
the tidal tensor in the Horizon-AGN simulation when the sample is separated into three different mass bins (solid lines for stellar mass
between 2×108 and 3×109 M⊙, dashed lines for stellar mass between 3×109 and 4×1010 M⊙ and dotted lines for stellar mass between
4 × 1010 and 6 × 1011 M⊙). The error bars represent the Poisson noise and are only shown for e1 (left panel) since they are the same for
e2 (middle panel) and e3 (right panel). The spin of galaxies tends to align with the minor eigen-direction at small mass and becomes
perpendicular to it at larger mass.

0.0 0.2 0.4 0.6 0.8 1.0
0.85

0.90

0.95

1.00

1.05

1.10

cos(θ)

1
+
ξ

−0.40  < u−r < 0.78
  0.78  < u−r < 1.10
  1.10  < u−r < 1.84

e1

0.0 0.2 0.4 0.6 0.8 1.0
0.85

0.90

0.95

1.00

1.05

1.10

cos(θ)

1
+
ξ

−0.40  < u−r < 0.78
  0.78  < u−r < 1.10
  1.10  < u−r < 1.84

e2

0.0 0.2 0.4 0.6 0.8 1.0
0.85

0.90

0.95

1.00

1.05

1.10

cos(θ)

1
+
ξ

−0.40  < u−r < 0.78
  0.78  < u−r < 1.10
  1.10  < u−r < 1.84

e3

Figure 5. Same as Fig. 4 but for different galaxy colours as labeled, meaning that the left, middle and right panels respectively show
the PDF of the angle between the e1, e2, e3 directions of the tidal tensor and the galactic spins. The bluer the galaxy the larger the
correlations with the surrounding tidal field. Hence red galaxies are less sensitive to IA.

delta function. The minor, intermediate and major eigen-
directions of the tidal tensor Tij are called e1, e2 and e3 cor-
responding to the ordered eigenvalues λ1 ! λ2 ! λ3 of the
Hessian of the gravitational potential, ∂ijΦ (with which the
tidal tensor shares the eigen-directions). In the filamentary
regions, e1 gives the direction of the filament (see Fig. 1),
while the walls are collapsing along e3 and extend, locally, in
the plane spanned by e1 and e2 (Pogosyan, Bond & Kofman
1998).

The tidal shear tensor smoothed on scale Rs, Tij =
∂ijΦRs − ∆ΦRs δij/3, is computed via Fast Fourier Trans-
form of the density field (including dark matter, stars, gas
and black holes) sampled on a 5123 cartesian grid and
convolved with a Gaussian filter of comoving scale Rs =
200 h−1 kpc

∂ijΦRs (x) =
3H2

0Ω0

2a

∫
d3k δ(k)

kikj

k2
WG(kRs) exp (ik·x) ,

where δ(k) is the Fourier transform of the sampled density
field and WG a Gaussian filter.

4.1 One-point cross-correlations

We begin with a measurement of the correlations between
the spin and the eigen-directions of the tidal tensor at the
same spatial position. In practice, we compute the cosine
of the angle between the spin of the galaxies and the three
eigen-directions of the local tidal tensor cos θ = L · ei/|L|.
The resulting histogram is shown in Fig. 3. The spin is pref-
erentially aligned with the minor eigen-direction (i.e. the
filaments) in agreement with the spin-filament correlations
detected by Dubois et al. (2014) at redshift z ∼ 1.83. To a
lower extent, some alignment is found with the direction of
the intermediate axis.

When galaxies are binned in mass (see Fig. 4), it ap-
pears that the most massive galaxies tend to have a spin ly-
ing in the plane (e2, e3) perpendicular to the filaments, while
the less massive galaxies have their spin aligned with e1. The
transition occurs at stellar masses about 4 × 1010 M⊙. We
conclude that the spins of galaxies are definitely influenced
by their surrounding environment differentially with their
mass.

(Codis et al. 2015)
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Open questions (selection) II
• IA contamination depends on shape measurement method!12 Singh & Mandelbaum
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Figure 7. (a) The projected galaxy density-shape correlation function wg+ (Eq. 9) using the full LOWZ sample and di↵erent shape

measurement methods, isophotal (blue), re-Gaussianization (red) and de Vaucouleurs shapes (green), along with the best-fitting NLA

models. For comparison, the best-fitting NLA models for all three shape measurement methods are plotted on all panels. Isophotal shapes

show the highest IA signal, followed by de Vaucouleurs and re-Gaussianization shapes (note that error bars are correlated between the

di↵erent shape measurement methods). The solid black line shows the SDSS fiber collision limit, and the dashed cyan lines show the

range of rp used for the NLA model fitting. (b) Same as (a), but for the projected shape-shape correlation function w++ (Eq. 10).
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Figure 8. Comparison of NLA model amplitude AI for isophotal
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Isophotal (de Vaucouleurs) shapes consistently give a higher am-

plitude by ⇠ 40% (20%) compared to re-Gaussianization shapes.

The de Vaucouleurs results have been shifted horizontally for clar-

ity.

using isophotal shapes. To display NLA model predictions,
we use the best-fitting parameters from fitting wg+, with
fII = 1 (solid lines) and fII = 2 (dashed lines). The two-
dimensional contours in Fig. 10e suggest that the data pre-
fer the model with fII = 2. However, these contours are
quite noisy, so Fig. 10e is not a reliable test of the validity

0.8
1.0
1.2
1.4
1.6
1.8
2.0

hγ
i

Ratio, Shape/re-Gaussianization

10�1 100 101 102

rp [Mpc/h]

0.8
1.0
1.2
1.4
1.6
1.8
2.0

4
5
� �

hθ
i

Isophotal de Vaucouleurs

Figure 9. Ratio of mean intrinsic shear, h�i (Eq. 27) and mean

alignment angle, 45� � h✓i (Eq. 28) using di↵erent shape mea-

surement methods.

of the model. In Fig. 10f, we show a clear detection of the
monopole for ⇠++, with the data again preferring a higher
amplitude than predicted by NLA model (fII > 1). This
discrepancy could either be from the e↵ects of non-linear
physics that is not included in the NLA model (Blazek et al.
2015), or from additive PSF contamination. Even though ad-
ditive PSF contamination was shown to be low for isophotal
shapes (|APSF | ⇠ 0.05), the contamination in ⇠++ could still
be strong enough to increase the observed ⇠++ amplitude.

MNRAS 000, 1–18 (2015)

(Singh & Mandelbaum 2016)
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Open questions (selection) III

• Baryonic feedback in clusters, influence on WL, modelling.

Photometric redshifts

• Euclid needs (very deep!) ground-based follow-up in multiple optical
bands. Data (DES, KiDS, CFIS, . . .) will be inhomogeneous. Problem of
reliable photo-z’s not yet solved.

Martin Kilbinger (CEA) WL Part I/II 107 / 143



Part I day 3+: Extra stuff

Further possible topics

1. Cluster weak lensing

2. Nature of dark matter (bullet cluster)

3. Higher-order statistics: peak counts
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Stacked cluster weak lensing: Large scales
Weak lensing by stacked galaxy clusters

4 COVONE ET AL.

Table 1
Results of the fit of profiles of the N=6 stacked bins in optical richness. Reported central values and uncertainties were obtained as bi-weight estimators of the

marginalized probability distributions. The �2 value refers to the best fit model.

richness bin Nclus RL⇤ M200 c200 bh�
2
8 �2

(1014M� h�1)
12  RL⇤ < 16 476 13.8 ± 1.1 0.48 ± 0.09 8.6 ± 5.8 1.76 ± 0.39 11.9
16  RL⇤ < 21 347 18.1 ± 1.4 0.51 ± 0.11 4.3 ± 5.3 1.20 ± 0.49 10.7
21  RL⇤ < 30 216 24.7 ± 2.6 0.81 ± 0.13 9.3 ± 5.5 1.77 ± 0.56 4.45
30  RL⇤ < 40 90 34.2 ± 2.7 1.52 ± 0.24 1.8 ± 1.1 1.87 ± 0.94 18.8
40  RL⇤ < 70 37 47.8 ± 6.7 1.95 ± 0.30 10.1 ± 5.6 2.14 ± 1.15 16.2
70  RL⇤ < 100 10 85.6 ± 10.3 3.21 ± 0.54 10.4 ± 5.2 5.45 ± 2.31 14.3

Figure 1. Radial profiles of the excess surface mass density �⌃ for the six samples of galaxy clusters, binned according to their optical richness RL⇤ . Black
points are our measurements. The green line is the main galaxy cluster halo, the blue line is the contribution from the 2-halo term. The black line is the overall
fitted radial profile. Dashed lines are extrapolation from the best fit model.
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1200 clusters in 150 deg2 CFHTLenS 
area, 0.1 < z < 0.6 (mean z = 0.37).
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Weak lensing measures mass  
associated with clusters.!

At large distances: excess mass  
in nearby, correlated clusters  
→ clustering of galaxy clusters.!

 
bg shear - fg position ~

4 COVONE ET AL.

Table 1
Results of the fit of profiles of the N=6 stacked bins in optical richness. Reported central values and uncertainties were obtained as bi-weight estimators of the

marginalized probability distributions. The �2 value refers to the best fit model.

richness bin Nclus RL⇤ M200 c200 bh�
2
8 �2

(1014M� h�1)
12  RL⇤ < 16 476 13.8 ± 1.1 0.48 ± 0.09 8.6 ± 5.8 1.76 ± 0.39 11.9
16  RL⇤ < 21 347 18.1 ± 1.4 0.51 ± 0.11 4.3 ± 5.3 1.20 ± 0.49 10.7
21  RL⇤ < 30 216 24.7 ± 2.6 0.81 ± 0.13 9.3 ± 5.5 1.77 ± 0.56 4.45
30  RL⇤ < 40 90 34.2 ± 2.7 1.52 ± 0.24 1.8 ± 1.1 1.87 ± 0.94 18.8
40  RL⇤ < 70 37 47.8 ± 6.7 1.95 ± 0.30 10.1 ± 5.6 2.14 ± 1.15 16.2
70  RL⇤ < 100 10 85.6 ± 10.3 3.21 ± 0.54 10.4 ± 5.2 5.45 ± 2.31 14.3

Figure 1. Radial profiles of the excess surface mass density �⌃ for the six samples of galaxy clusters, binned according to their optical richness RL⇤ . Black
points are our measurements. The green line is the main galaxy cluster halo, the blue line is the contribution from the 2-halo term. The black line is the overall
fitted radial profile. Dashed lines are extrapolation from the best fit model.

halo bias, function of mass
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Fig. 1.— Left: Weak lensing profiles ∆Σ(R) for 12 bins of optical richness, N200. Right: ∆Σ(R) for 16 i-band luminosity bins, L200.

TABLE 2
16 L200 bins

Bin number L200(1010h−2L⊙) Number of clusters per bin

1 5 - 6.24 19618
2 6.24 - 7.8 18597
3 7.8 - 9.74 16042
4 9.74 - 12.2 12269
5 12.2- 15.2 9010
6 15.2 - 19.0 6152
7 19.0 - 23.7 4164
8 23.7 - 29.6 2666
9 29.6 - 36.9 1703
10 36.9 - 46.1 1042
11 46.1 - 57.6 638
12 57.6 - 71.9 344
13 71.9 - 89.8 210
14 89.8 - 112.1 108
15 112.1 - 140 49
16 140 - 450 46

Note. — The catalog is also divided into 16 L200 richness
bins. This table shows the boundaries of L200 values and the
number of clusters for each bin.

Sheldon et al. (2004) to obtain the galaxy-mass correla-
tion function from galaxy-galaxy lensing measurements.
Here, we provide a brief overview of the methods.

The mean excess 3D density profile ∆ρ(r) around a
set of clusters with a given observable O (e.g., rich-
ness or luminosity) is best thought of in terms of the
cluster–mass two-point correlation function, ξcm, since
∆ρ(r) = ρ̄ ξcm(r), where ρ̄ is the mean density of the Uni-
verse. By the assumptions of spatial homogeneity and
isotropy, ξcm depends only on the magnitude of the sep-
aration, r, not on direction. As a consequence, the mean
density profile ∆ρ(r) should be very nearly spherically
symmetric. Note that this is a purely statistical state-
ment: we do not assume that individual cluster density

profiles are spherically symmetric. The spherical sym-
metry of the average density profile enables the inversion
of the stacked lensing signal ∆Σ(R) to the 3D density
∆ρ(R) and the aperture mass M(R). By contrast, weak
lensing measurements of individual clusters can only be
used to reconstruct the projected 2D mass density, Σ(x⃗),
since lensing is produced by all of the mass projected
along the line of sight.

The mean 3D density profile is obtained as an integral
of the derivative of the shear profile ∆Σ(R) through a
purely geometric relation,

∆ρ(r) =
1

π

∫ ∞

r

dR
−Σ′(R)√
R2 − r2

, (1)

where a prime denotes a derivative with respect to R.
The lensing data ∆Σ enters here since it can be shown
that

− Σ′(R) = ∆Σ′(R) + 2∆Σ(R)/R . (2)

The 3D mass profile is given in terms of ∆Σ(R) and
∆ρ(R) as

M(R) = πR2∆Σ(R) + 2π

∫ ∞

R

dr r ∆ρ(r) ×
[

R2

√
r2 − R2

− 2
(
r −

√
r2 − R2

)]
. (3)

In practice, these integrals must be truncated at some
maximum radius, Rmax, the largest scale at which one
has lensing data (30h−1 Mpc for our data). The uncer-
tainty from this truncation is related to the mass-sheet
degeneracy. Due to the steepness of the cluster profiles
we infer in this paper, this truncation creates only a few
percent uncertainty in the last few radial bins of both
density or mass and virtually none in bins at smaller
radii. Complete details of the procedure are given in
Johnston et al. (2007).

CROSS-CORRELATION CLUSTER LENSING IN THE SDSS II 3

York et al. 2000). These clusters were selected from
the maxBCG cluster catalog described in Koester et al.
(2007b); the maxBCG cluster finding algorithm, based
on the red sequence of early-type cluster galaxies, is de-
scribed in Koester et al. (2007a).

In this paper, we analyze the detected lensing signal
presented in Paper I and model the features seen in the
shear profiles. In §2 we summarize the relevant results
from Paper I. In §3 we apply the non-parametric in-
versions of Johnston et al. (2007) to infer the mean 3D
cluster mass density and aperture mass profiles in bins
of optical richness and luminosity (see §2.1). These in-
verted density and mass profiles, however, cannot be di-
rectly interpreted as profiles of dark matter halos. In
§4, we discuss why this is so and develop a parameter-
ized model which includes the effects of: displacement
of the center of the cluster halo from the brightest clus-
ter galaxy (BCG); non-linear shear corrections; lensing
by the central BCG; and lensing by neighboring clusters
and structures. When these effects are included, we find
that the inferred halo profiles are well fit by the uni-
versal dark matter profiles of Navarro, Frenk & White
(Navarro et al. 1997). In the context of this model, we
estimate the average halo virial mass, M200, as a function
of cluster galaxy richness and total galaxy luminosity.
We infer the mean halo concentration and halo bias as a
function of M200 and find them to be in good agreement
with the predictions of N-body simulations for the stan-
dard LCDM cosmology. In §6 we compare the inferred
mean halo masses vs. galaxy richness to recent dynam-
ical mass estimates from measured velocity dispersions
for the same cluster sample (Becker et al. 2007); the two
mass estimates agree very well, with the lensing estimates
having smaller errors. We conclude by discussing some
cosmological applications of these results as well as ap-
plications in future optical surveys.

For computing distances and, where needed, the lin-
ear power spectrum of density perturbations, we use
a spatially flat cosmological model with a cosmologi-
cal constant and cold dark matter (LCDM) with scaled
CDM density Ωm = 0.27, baryon density Ωb = 0.045,
scaled Hubble parameter h = 0.71 (for the linear power
spectrum not distances) and primordial spectral index
ns = 0.95. The linear power spectrum amplitude σ8 is
left free except where specified. We employ the linear
transfer function of Eisenstein and Hu (Eisenstein & Hu
1998). This model (with σ8 = 0.8) fits both the WMAP
third-year data Spergel et al. (2007) and the SDSS lumi-
nous red galaxy (LRG) clustering data (Eisenstein et al.
2005). All distances in this paper are in physical not
comoving units of h−1Mpc.

2. WEAK LENSING SHEAR MEASUREMENTS

The methods of measuring the weak lensing signal
are described in detail in Paper I. We briefly summa-
rize some of the important features here. For any pro-
jected mass distribution, the azimuthally averaged tan-
gential shear at projected radius R from the center of
the distribution is given by γ(R) = ∆Σ(R)/Σcrit ≡
[Σ(< R) − Σ(R)]/Σcrit, where Σ(R) is the 2D pro-
jected mass density at radius R, Σ(< R) is the aver-
age of Σ inside a disk of radius R, Σ(R) is the az-
imuthal average of Σ(R) in a thin annulus of radius
R, and the critical density for strong lensing is given

TABLE 1
12 N200 bins

Bin number N200 Number of clusters per bin

1 3 58788
2 4 27083
3 5 14925
4 6 8744
5 7 5630
6 8 3858
7 9-11 6196
8 12-17 4427
9 18-25 1711
10 26-40 787
11 41-70 272
12 71-220 47

Note. — The catalog is divided into 12 N200 rich-
ness bins. This table shows the boundaries of N200
values and the number of clusters for each bin.

by Σcrit ≡ c2/(4πG) DS/(DLDLS), with DS , DL, DLS

the angular diameter distances from the observer to the
source, to the lens, and between the lens and source,
respectively. These distances are cosmology-dependent
functions of redshift. Paper I presents average profiles
of ∆Σ(R) for maxBCG clusters binned by cluster galaxy
number, N200, and by optical luminosity L200. For these
measurements, the radius R is defined with respect to
the position of the BCG; see §4.3 for further discussion
of this point.

2.1. Richness and Luminosity measures N200 and L200

Although the richness and luminosity measures N200

and L200 are discussed in detail in Paper I, here we em-
phasize some of their important features to avoid possible
confusion. N200 and L200 are the galaxy number and to-
tal i-band luminosity measured within a projected radius

we call rgals
200 , in both cases counting only red-sequence

galaxies with luminosities larger than 0.4L∗ and satisfy-
ing other selection criteria (see Koester et al. 2007a for
details). This radius is not by definition, equivalent to
the r200 defined by the mass (Eqn. 4), which can in prin-
ciple be measured directly from lensing, since r200 is not
known prior to performing the weak lensing analysis. In-

stead, rgals
200 is determined by first measuring the number

of galaxies, Ngal, within a fixed 1 h−1 Mpc aperture and

calculating rgals
200 = 0.156 N0.6

gal h−1 Mpc, as discussed

in Hansen et al. (2005). Nevertheless, we find that rgals
200

is in fact a good approximation to r200 as determined
in this paper from the lensing data to within about 5%.
The mass-to-light ratio as a function of radius will be pre-
sented in Paper III of this series (Sheldon et al. 2007).
Note that N200 is dimensionless, and L200 has units of
1010h−2L⊙.

For the purpose of lensing measurement, the catalog
is subdivided into 12 N200 richness bins and 16 L200

richness bins. The richness boundaries for each richness
measure as well as the number of clusters per bin are
displayed in Tables 1 and 2.

3. INVERTING CLUSTER PROFILES

3.1. Inversion Method

The methods used to invert the lensing ∆Σ(R) pro-
files to 3D density and mass profiles are discussed in
detail in Johnston et al. (2007) and were first used by

mass

130,000 clusters in  
of SDSS ~ 6,000 deg2 

at z=0.25

Johnston et al. (2009)

Martin Kilbinger (CEA) WL Part I/II 110 / 143



Part I day 3+: Extra stuff Cluster weak lensing

Stacked cluster weak lensing: Scaling relations

Scaling relations from weak lensing

HALO BIAS IN GALAXY CLUSTERS 5

10 100

1

5

RL*

M
20
0
@101

4 M
ü
êhD

Figure 2. Correlation between the mass of the galaxy clusters and the optical
richness RL⇤ . The line and the shaded regions show the linear relation and
its 1 � � uncertainty.
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Figure 3. Concentration-mass relation for the stacked galaxy clusters.
Green: relation and its scatter found in this work. Red line: theoretical pre-
diction for individual galaxy clusters by Duffy et al. (2008).
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Figure 4. The quantity bh �2
8 as a function of the halo mass. Black points

are our measurements and blue points measurements are from Johnston et al.
(2007). Red curves are the theoretical predictions from Tinker et al. (2010)
for three fiducial values of �8.

based on the LCDM cosmological models. While consistent
at 1 � � level with the predictions from Duffy et al. (2008),
we find evidence for a an over-concentration of the c(M)-
relation.

Our results partially reconcile present tension between ob-
served c-M relations and theoretical predictions. On one
hand, studies of single clusters found very steep and over-
concentrated relations (Oguri et al. 2012, Fedeli 2012, Sereno
& Covone 2013). On the other hand, previous stacked anal-
yses found flat relations of the expected amplitude (Mandel-
baum et al. 2008). We found an alternative scenario on a
middling ground: an over-concentrated but still flat relation.
Analysis of single clusters might be affected by low S/N and
high correlation, as well as by selection effects whereas previ-
ous SDSS stacked analysis might suffer from contamination
and off-set effects.

The large scale shear profile is a degenerate function of the
halo bias and the power spectrum normalisation, therefore our
measurement of the halo bias term is not independent of �8.
Our measurement of the quantity bh(M)�2

8 as a function of
the average halo mass is in very good agreement with theo-
retical predictions by Tinker et al. (2010), and systematically
higher than the ones by Johnston et al. (2007), see Fig. 4. Our
analysis is also consistent with measurements from the corre-
lation function of galaxy clusters. Veropalumbo et al. (2013)
analyzed a spectroscopic sample of 25226 clusters of rich-
ness RL � 12 at z ⇠ 0.3 and obtained bh = 2.06 ± 0.04 for
�8 = 0.8.

Our results open the possibility to verify further phys-
ical effects on the clustering properties of massive halos:
Villaescusa-Navarro et al. (2013) have used N-body simula-
tions to show that cosmological models with massive neutri-
nos show a scale-dependent bias on large scales, while Dalal
et al. (2008) have shown that the nongaussianity of primordial
fluctuations brings to a strongly scale-dependent bias.
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Fig. 10.— The model fits of Fig. 8 and 9 over-plotted on the inverted 3D mass profiles for the 12 N200 richness (left panel) and 16 L200
luminosity bins (right panel).
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Fig. 11.— The inferred mean halo mass vs. richness (left panel) and mass vs. luminosity (it right panel) relations from the model fits to
the lensing profiles. The red lines show the best-fit power-law relations (see text).

(black points) on the same plot — these are not indepen-
dent, since the same clusters are used for both. The blue
curve shows the best-fit power law,

c200(M200) = c200|14(M200/1014h−1M⊙)βc (28)

c200|14 = 4.1 ± 0.2stat ± 1.2sys

βc = −0.12 ± 0.04.

The fit is performed with all data points from both bin-
nings but the errors are adjusted upward by

√
2 so that

they are not treated as independent data points. These
results indicate that the halo concentrations, with typical
values c200 ≃ 5, depend only weakly on halo mass, as has
been suggested by previous observational and theoretical
results. Note that ignoring the parameters pc, σs and M0

in the model fits would lead to a (biased) underestimate

of the halo concentration parameter c200 by about a fac-
tor of 3, as well as to unrealistically small error estimates
on the concentration.

For comparison with the lensing results, the green
curve in Fig. 12 shows the predicted concentration
vs. mass relation from the halo formation model of
Bullock et al. (2001). Note that Bullock et al. (2001) use
a different definition of halo mass Mvir and concentration
cvir, so we have converted their predictions to our param-
eters M200 and c200 following the translation given in the
Appendix. In their model, the halo concentration is given
by cvir = K (a/ac), where a = 1/(1 + z) and ac is the
collapse epoch of the halo; the time at which the typical
collapsed mass, M∗, is a fixed fraction F of the halo mass,
M∗(ac) = F Mvir. This model is defined by the two pa-
rameters K and F , which are assumed to be independent

Covone et al. (2014) Johnston et al. (2009)

• Scaling relations, necessary calibrating (mass - observable)  
    for cosmology!

• XXL (M. Pierre): ~ 100 X-ray selected clusters, 25 deg2 overlap  
    with CFHTLS, compare lensing and X-ray derived masses.
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Figure 2. Correlation between the mass of the galaxy clusters and the optical
richness RL⇤ . The line and the shaded regions show the linear relation and
its 1 � � uncertainty.
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Figure 3. Concentration-mass relation for the stacked galaxy clusters.
Green: relation and its scatter found in this work. Red line: theoretical pre-
diction for individual galaxy clusters by Duffy et al. (2008).
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Figure 4. The quantity bh �2
8 as a function of the halo mass. Black points

are our measurements and blue points measurements are from Johnston et al.
(2007). Red curves are the theoretical predictions from Tinker et al. (2010)
for three fiducial values of �8.

based on the LCDM cosmological models. While consistent
at 1 � � level with the predictions from Duffy et al. (2008),
we find evidence for a an over-concentration of the c(M)-
relation.

Our results partially reconcile present tension between ob-
served c-M relations and theoretical predictions. On one
hand, studies of single clusters found very steep and over-
concentrated relations (Oguri et al. 2012, Fedeli 2012, Sereno
& Covone 2013). On the other hand, previous stacked anal-
yses found flat relations of the expected amplitude (Mandel-
baum et al. 2008). We found an alternative scenario on a
middling ground: an over-concentrated but still flat relation.
Analysis of single clusters might be affected by low S/N and
high correlation, as well as by selection effects whereas previ-
ous SDSS stacked analysis might suffer from contamination
and off-set effects.

The large scale shear profile is a degenerate function of the
halo bias and the power spectrum normalisation, therefore our
measurement of the halo bias term is not independent of �8.
Our measurement of the quantity bh(M)�2

8 as a function of
the average halo mass is in very good agreement with theo-
retical predictions by Tinker et al. (2010), and systematically
higher than the ones by Johnston et al. (2007), see Fig. 4. Our
analysis is also consistent with measurements from the corre-
lation function of galaxy clusters. Veropalumbo et al. (2013)
analyzed a spectroscopic sample of 25226 clusters of rich-
ness RL � 12 at z ⇠ 0.3 and obtained bh = 2.06 ± 0.04 for
�8 = 0.8.

Our results open the possibility to verify further phys-
ical effects on the clustering properties of massive halos:
Villaescusa-Navarro et al. (2013) have used N-body simula-
tions to show that cosmological models with massive neutri-
nos show a scale-dependent bias on large scales, while Dalal
et al. (2008) have shown that the nongaussianity of primordial
fluctuations brings to a strongly scale-dependent bias.
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TABLE 10
Mass Richness Power-law Fits: N200 Bins

Mass type M200|20 αN c200|20 βN

M200 8.794E+13 1.28 3.99 -0.15
M180b 1.204E+14 1.30 6.14 -0.14
Mvir 1.055E+14 1.29 5.08 -0.15
M500 6.069E+13 1.25 2.60 -0.16

Note. — Coefficients and exponents
of the power-law fits of mass and concen-
tration versus richness for the different virial
mass definitions. The mass–richness relation
and concentration–richness relation is of the
form M = M200|20 (N200/20)αN and c =

c200|20 (N200/20)βN . The relative errors on pa-

rameters are the same as the M200 versions (see
text).

TABLE 11
Mass Richness Power-law Fits: L200 Bins

Mass type M200|40 αL c200|40 βL

M200 9.504E+13 1.23 4.37 -0.15
M180b 1.284E+14 1.25 6.68 -0.14
Mvir 1.131E+14 1.24 5.54 -0.14
M500 6.672E+13 1.20 2.86 -0.16

Note. — Coefficients and exponents of
the power-law fits of mass and concentra-
tion versus luminosity for the different virial
mass definitions. The mass–luminosity relation
and concentration–luminosity relation are of the
form M = M200|40 (L200/40)αL and c =

c200|40 (L200/40)βL . The relative errors on pa-

rameters are the same as the M200 versions (see
text).

of cosmological parameters. Here M∗ is the non-linear
mass scale at scale factor a in Press-Schechter theory, i.e.,
the mass for which D(a)σ(M∗(a)) = δc, where the linear
growth factor D(a) is given by Eqn. 13, δc=1.686 is the
critical density in the spherical collapse model, and σ(M)
is the variance of the linear density field smoothed on the
scale that on average encloses mass M . We choose the
parameter values K = 2.9 and F = 0.001 (different from
the original Bullock numbers), which have been demon-
strated to reproduce the measured halo concentrations
in a more recent set of LCDM dark matter simulations
(Wechsler et al. 2006). With those choices, the predicted
concentrations of this galaxy formation model, shown as
the green curve in Figure 12, fit those inferred from the
lensing data fairly well. The χ2 between the two is 8 (for
12 degrees of freedom) for the N200 richness binning and
12 (for 16 degrees of freedom) for the L200 binning. In
making this comparison, we have used the fiducial cosmo-
logical parameters given at the end of §1. Furthermore,
if we keep the Bullock F parameter and cosmological pa-
rameters fixed we can determine the best fit Bullock K
parameter from our data: Kfit = 3.00 ± 0.24 (assuming
our fiducial cosmology with σ8 = 0.8).

Recently, Neto et al. (2007) studied the concentra-
tions of halos identified from the Millennium Simu-
lation (Springel et al. 2005) and found a power-law
relation for the average halo concentration, c200 =
5.26(M200/1014h−1M⊙)−0.1. The Millennium simulation

1013 1014

M200  ( h −1 MO · )

1

10

c 2
00

Best fit power−law
Neto et al. 2007
Bullock et al. 2001

Buote et al. 2007
Comerford & Nat. 2007

Fig. 12.— The mean NFW halo concentration parameter c200
versus halo mass M200. Black points are from the shear profile
fits for the L200 luminosity bins and the red points are from the
N200 richness bins. The blue curve shows the best-fit power law
to the data (see text). The green curve shows the prediction from
the Bullock et al. (2001) model with F = 0.001, K = 2.9, and
our fiducial cosmology. The magenta curve shows the result from
Neto et al. (2007) for the Millennium Simulation (adjusted to z =
0.25). Note that this was fit to a cosmology with a slightly higher
normalization (σ8 = 0.9 vs. σ8 = 0.8) and is thus expected to
have slightly higher concentrations. The purple dashed curve is a
result from Buote et al. (2007) on X-ray clusters; the red dashed
line shows a result from a compilation of X-ray and strong-lensing
clusters (Comerford & Natarajan 2007)

uses a flat LCDM cosmology with Ωm = 0.25, Ωb =
0.045, h = 0.73, ns = 1, σ8 = 0.9 and z = 0.
Bullock et al. (2001) found that halo concentration scales
as 1/(1 + z), which is consistent with recent observa-
tional results from X-ray clusters ; c ∝ (1 + z)−0.71±0.52

(Schmidt & Allen 2007). We thus shift the Neto et al.
(2007) relation by 0.8 to put it at our median cluster
redshift of z = 0.25; this is shown as the magenta curve
in Fig. 12. This result for dissipationless halos agrees
very well with both the Bullock et al. (2001) model and
our data (χ2 = 8). Note that because the Neto et al.
(2007) results are calculated for a cosmology with slightly
higher normalization (σ8 = 0.9 vs. σ8 = 0.8) they are
expected to have slightly higher concentrations and the
agreement between the two models is even better than
it looks in the figure. The large difference shown in the
Neto et al. (2007) paper between their results and the
results of Bullock et al. (2001) are due to the fact that
these authors used the original Bullock et al. (2001) val-
ues for K and F , instead of the updated ones that we
use here; with this change the two theoretical models
are virtually indistinguishable, and are both in excellent
agreement with our results.

Buote et al. (2007) have recently presented a deter-
mination of the concentration–mass relation as mea-
sured by a set of 39 clusters with X-ray measurements,
finding cvir(1 + z) = (9.0 ± 0.4)(Mvir/M14)

−0.172±0.026.

Covone et al. (2014) Johnston et al. (2009)

• Concentration parameter c reflects central  
    halo density; depends on assembly history,  
    formation time!

• Predictions usually from N-body simulations!

• Indirect test of CDM paradigm
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The bullet cluster and the nature of dark matter
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The bullet cluster

• Merging galaxy cluster at
z = 0.296

• Recent major merger 100 Myr ago

• Components moving nearly
perpendicular to line of sight with
v = 4700 km s−1

• Galaxy concentration offset from
X-ray emission. Bow shocks
visible
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The bullet cluster: SL+WL measurements

Bradac et al. + Clowe et al. (2006)
Weak (and strong) lensing measurements

3

TABLE 1
Optical Imaging Sets

Instrument Date of Obs. FoV Passband texp (s) mlim nd (′−2) seeing

2.2m ESO/MPG 01/2004 34′ × 34′ R 14100 23.9 15 0.′′8
Wide Field Imager 01/2004 B 6580 1.′′0

01/2004 V 5640 0.′′9
6.5m Magellan 01/15/2004 8′ radius R 10800 25.1 35 0.′′6
IMACS 01/15/2004 B 2700 0.′′9

01/15/2004 V 2400 0.′′8
HST ACS 10/21/2004 3.′5×3.′5 F814W 4944 27.6 87 0.′′12
subcluster 10/21/2004 F435W 2420 0.′′12

10/21/2004 F606W 2336 0.′′12
main cluster 10/21/2004 3.′5×3.′5 F606W 2336 26.1 54 0.′′12

Note. — Limiting magnitudes for completion are given for galaxies and measured by where the number counts depart from
a power law. All image sets had objects detected in the reddest passband available.

m435 − m606 > 1.5 ∗ (m606 − m814) − 0.25, and m435 −
m606 < 1.6∗(m606−m814)+0.4 for the ACS images; sim-
ilar for the other image sets) that were calibrated with
photometric redshifts from the HDF-S (Fontana et al.
1999). Each galaxy has a statistical weight based on its
significance of detection in the image set (Clowe et al.
2006), and the weights are normalized among catalogs
by comparing the rms reduced shear measured in a re-
gion away from the cores of the cluster common to all five
data sets. To combine the catalogs, we adopt a weighted
average of the reduced shear measurements and appro-
priately increase the statistical weight of galaxies that
occur in more than one catalog.

3. ANALYSIS

We use the combined catalog to create a two-
dimensional κ reconstruction, the central portion of
which is shown in Fig. 1. Two major peaks are clearly
visible in the reconstruction, one centered 7.′′1 east and
6.′′5 north of the subcluster’s brightest cluster galaxy
(BCG) and detected at 8σ significance (as compared to
3σ in (Clowe et al. 2004)), and one centered 2.′′5 east
and 11.′′5 south of the northern BCG in the main clus-
ter (21.′′2 west and 17.′′7 north of the southern BCG)
detected at 12σ. We estimate centroid uncertainties by
repeating bootstrap samplings of the background galaxy
catalog, performing a κ reconstruction with the resam-
pled catalogs, and measuring the centroid of each peak.
Both peaks are offset from their respective BCG by ∼ 2σ,
but are within 1σ of the luminosity centroid of the re-
spective component’s galaxies (both BCGs are slightly
offset from the center of galaxy concentrations). Both
peaks are also offset at ∼ 8σ from the center of mass
of their respective plasma clouds. They are skewed
toward the plasma clouds, which is expected because
the plasma contributes about 1/10th of the total clus-
ter mass (Allen et al. 2002; Vikhlinin et al. 2006) (and
a higher fraction in non-standard gravity models with-
out dark matter). The skew in each κ peak toward the
X-ray plasma is significant even after correcting for the
overlapping wings of the other peak, and the degree of
skewness is consistent with the X-ray plasma contribut-
ing 14%+16%

−14% of the observed κ in the main cluster and

10%+30%
−10% in the subcluster (see Table 2). Because of the

large size of the reconstruction (34′ or 9 Mpc on a side),
the change in κ due to the mass-sheet degeneracy should
be less than 1% and any systematic effects on the cen-
troid and skewness of the peaks are much smaller than
the measured error bars.

The projected cluster galaxy stellar mass and plasma
mass within 100 kpc apertures centered on the BCGs
and X-ray plasma peaks are shown in Table 2. This
aperture size was chosen as smaller apertures had sig-
nificantly higher kappa measurement errors and larger
apertures resulted in significant overlap of the apertures.
Plasma masses were computed from a multicomponent 3-
dimensional cluster model fit to the Chandra X-ray image
(details of this fit will be given elsewhere). The emission
in the Chandra energy band (mostly optically-thin ther-
mal bremsstrahlung) is proportional to the square of the
plasma density, with a small correction for the plasma
temperature (also measured from the X-ray spectra),
which gives the plasma mass. Because of the simplic-
ity of this cluster’s geometry, especially at the location
of the subcluster, this mass estimate is quite robust (to
a 10% accuracy).

Stellar masses are calculated from the I-band lumi-
nosity of all galaxies equal in brightness or fainter than
the component BCG. The luminosities were converted
into mass assuming (Kauffmann et al. 2003) M/LI = 2.
The assumed mass-to-light ratio is highly uncertain (can
vary between 0.5 and 3) and depends on the history of
recent star formation of the galaxies in the apertures;
however even in the case of an extreme deviation, the X-
ray plasma is still the dominant baryonic component in
all of the apertures. The quoted errors are only the errors
on measuring the luminosity and do not include the un-
certainty in the assumed mass-to-light ratio. Because we
did not apply a color selection to the galaxies, these mea-
surements are an upper limit on the stellar mass as they
include contributions from galaxies not affiliated with the
cluster.

The mean κ at each BCG was calculated by fitting a
two peak model, each peak circularly symmetric, to the
reconstruction and subtracting the contribution of the
other peak at that distance. The mean κ for each plasma
cloud is the excess κ after subtracting off the values for
both peaks.

(Bradač et al. 2006, Clowe et al. 2006)

Martin Kilbinger (CEA) WL Part I/II 115 / 143



Part I day 3+: Extra stuff Cluster weak lensing: Dark-matter nature

The bullet cluster: strong lensing

Martin Kilbinger (CEA) WL Part I/II 116 / 143



Part I day 3+: Extra stuff Cluster weak lensing: Dark-matter nature

The bullet cluster: WL and X-ray
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The bullet cluster: Evidence for dark matter

• 10σ(6σ) offset between main (sub-)mass peak and X-ray gas → most
cluster mass is not in hot X-ray gas (unlike most baryonic mass:
mX � m∗!)

• Main mass associated with galaxies → this matter is collisionless

Modified gravity theories without dark matter: MoND (Modified Newtonian
Dynamics), (Milgrom 1983), changes Newton’s law for low accelerations
(a ∼ 10−10 m s−2), can produce flat galaxy rotation curves and Tully-Fisher
relation.
MoND’s relativistic version (Bekenstein 2004), varying gravitational constant
G(r). Introduces new vector field (“phion”) with coupling strenght α(r) and
range λ(r) as free functions.
This can produce non-local weak-lensing convergence mass, where κ 6∝ δ!
Necessary to explain offset between main κ peak and main baryonic mass.
Model with four mass peaks can roughly reproduce WL map with additional
collisionless mass! E.g. 2 eV neutrinos.
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The bullet cluster: MoND model
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WL peak counts: Why do we want to study peaks?

Martin KilbingerWL: higher-order stats. / 45

Weak-lensing peak counts

21

• WL peaks probe high-density regions ↔ non-Gaussian tail of LSS 
• First-order in observed shear: less sensitive to systematics, circular average! 
• High-density regions ↔ halo mass function, but indirect probe: 

• Intrinsic ellipticity shape noise, creating false positives, up-scatter in S/N 
• Projections along line of sight

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

Chapter 5 — Peak-count modelling

Figure 5.9: Similar to Fig. 5.4, comparison between four cases on the large field. Here, Case 1 is only
indicative since it is still the result from the small field.

Galaxy redshift, redshift errors, tomography One can either suppose a constant source
redshift or generate sources from a distribution law. If a model for photo-z or other redshift
errors is provided, our forward model generates without any di�culties a series of realis-
tic observed redshifts for galaxies. To better extract cosmological information, performing
tomographic studies is also feasible.

Galaxy shape noise & intrinsic alignment Another extension for our model is the noise
model. When isotropy for galaxy shape orientation is assumed, Gaussian noise is added.
Beyond Gaussian noise, some physically-motivated models for IA can be added easily. In this
case, one needs to identify pairs of galaxy and hosted halo. The galaxy orientation can be
provided by an IA model depending, on its type and the distance to the halo center.

Inversion & filtering A large number of options are available for our model to make a mass
map. For example, using a Ÿ-peak approach, one could compute directly the convergence
signal without worrying about the inversion problem (see Sect. 4.4), while a more realistic
way would be simulating shears and using inversion techniques (Kaiser & Squires 1993, Seitz &
Schneider 1995, etc.) to get convergence maps. Besides, one can also adopt an aperture-mass
approach: convolving the shear field with a zero-mean filter. By definition, the aperture mass
is already a smoothing, while both Ÿ-peak methods require in addition filtering techniques,
linear or nonlinear ones, to reduce noise (see further Chap. 8). For all three modelling
approaches, taking masking into account is not necessarily trivial. Reducing the e�ective
survey area, determining near-mask areas with a higher noise level (Liu X. et al. 2014), or
filling missing data with inpainting (method: Pires et al. 2009b, data application: Jullo et al.
2014), are di�erent options.

S/N determination In most studies, the noise level in S/N is a global value derived from
the whole survey, which yields a global significance. However, in reality, depending on mask
and the galaxy spatial distribution, the local noise level is not uniform. Taking the local
significance into account would make the modelling more accurate (see also Chap. 8).

100 PhD thesis of Chieh-An Lin

linc.tw Chieh-An Lin (CEA Saclay)

Weak-lensing peak counts

• Local maxima of the projected mass
• Probe the mass function
• Non-Gaussian information

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 4

interpretation ?

modelling

counting
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WL peak counts. What are peaks good for?

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp-AIM)

What is peak counting?

What do we gain from peak counting?
• Additional and complementary

information and constraints
compared to 2nd order shear

• Non-Gaussian information

Figure from Dietrich & Hartlap 2010

red/orange: cosmic shear

green: shear & peak

CAMELUS: A New Model to Predict Weak Lensing Peak Counts IWCS2, Nice — September 9th, 2014 8
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WL peaks: A fast stochastic model

Martin KilbingerWL: higher-order stats. / 45

Fast simulations for WL peak counts

25

linc.tw Chieh-An Lin (CEA Saclay)

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term
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WL peaks: histograms

Martin KilbingerWL: higher-order stats. / 4526

Fast simulations for WL peak counts
Hypotheses:

1. Clustering of halos not important for counting peaks  
(along los: Marian et al. 2013) 

2. Unbound LSS does not contribute to WL peaks

Test:

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Results (on a small field)

Field of view = 54 deg2; 10 halo redshift bins from z = 0 to 1; galaxies on regular grid, zs = 1.0

A New Model to Predict Weak Lensing Peak Counts IAS — January 27th, 2015 30
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WL peaks: cosmological parameters

chieh-an.lin@cea.fr Chieh-An Lin (CEA/SAp)

Dependance on parameters

Lin & Kilbinger (2015a)

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 20
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In general: Constraining cosmological parameters
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Constraining parameters

29

p(⇡|x, m) =
L(x|⇡, m)P (⇡|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

� : model parameter

p(�|d, m) =
L(d|�, m)⇥(�|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3

Monday, June 14, 2010
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⇡ : parameters
x : data
m : model

Bayes’ theorem

Parameter constraints = integrals over the posterior

For example:

Approaches: Sampling (Monte-Carlo integration), Fisher-matrix approximation,  
frequentist evaluation, ABC, …

Z
dn⇡ h(⇡)p(⇡|x, m)

h(⇡) = ⇡ : mean
h(⇡) = 168% : 68% credible region

Martin Kilbinger (CEA) WL Part I/II 125 / 143



Part I day 3+: Extra stuff Higher order statistics: peak counts

WL peaks: data vector choices
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Fast simulations for WL peak counts

25

linc.tw Chieh-An Lin (CEA Saclay)

A new model to predict weak-lensing peak counts

Public code in C: Camelus@GitHub See also Lin & Kilbinger (2015a)

ABC: an application to weak-lensing peak counts Cosmo21, Chania — May 26th, 2016 7

Replace N-body simulations by Poisson distribution of halos

Lin, MK & Pires 2016

Simulating 
1-halo term
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WL peaks: Gaussian likelihood

Martin KilbingerWL: higher-order stats. / 45

Parameter constraints: Gaussian

32

A&A proofs: manuscript no. Submit1

Fig. 3. Confidence regions derived from Lcg, Lsvg, and Lvg with xabd5. The solid and dashed lines represent Lcg in the left panel and Lvg in the right
panel, while the colored areas are from Lsvg. The black star stands for ⇡in and grey areas represents the non-explored parameter space. The dotted
lines are di↵erent isolines, the variance Ĉ55 of the bin with highest S/N in the left panel and ln(det Ĉ) for the right panel. The contour area is
reduced by 22% when taking into account the CDC e↵ect. The parameter-dependent determinant term does not contribute significantly.

4. Testing the copula transform

4.1. Formalism

Consider a multivariate joint distribution P(x1, . . . , xd). In gen-
eral, P could be far from Gaussian so that imposing a Gaussian
likelihood could induce biases. The idea of the copula technique
is to evaluate the likelihood in a new observable space in which
the Gaussian approximation is better. Using a change of vari-
ables, individual marginalized distributions of P can be approx-
imated to Gaussian ones. This is achieved by a series of suc-
cessive 1-dimensional, axis-wise transformations. The multivari-
ate Gaussianity of the transformed distribution is not garanteed.
However, in some cases, this transformation tunes the distribu-
tion and makes it more “Gaussian”, so that evaluating the like-
lihood in the tuned space is more realistic (Benabed et al. 2009;
Sato et al. 2011).

From Sklar’s theorem (Sklar 1959), any multivariate distri-
bution P(x1, . . . , xd) can be decomposed into the copula density
multiplied by marginalized distributions. A comprehensible and
elegant demonstration is given by Rüschendorf (2009). Readers
are also encouraged to follow Scherrer et al. (2010) for detailed
physical interpretations and Sato et al. (2011) for a very peda-
gogical derivation of the Gaussian copula transform.

Consider a d-dimensional distribution P(x), where x =
(x1, . . . , xd) is a random vector. Let Pi be the marginalized 1-
point PDF of xi, and Fi the corresponding CDF. Sklar’s theorem
shows that there exists an unique d-dimensional function c de-
fined on [0, 1]d with uniform marginal PDF, such that

P(x) = c(u)P1(x1) · · · Pd(xd), (11)

where ui ⌘ Fi(xi). The function c is called the copula density.
On the other hand, let qi ⌘ ��1

i (ui), where �i is the CDF of the
normal distribution with the same means µi and variances �2

i as

the laws Pi, such that

�i(qi) ⌘
Z qi

�1
�i(q0)dq0, (12)

�i(qi) ⌘ 1q
2⇡�2

i

exp
266664� (qi � µi)2

2�2
i

377775 . (13)

We can then define a new joint PDF P0 in the q-space that corre-
sponds to P in x-space, i.e. P0(q) = P(x). The marginal PDF and
CDF of P0 are nothing but �i and�i, respectively. Thus, applying
Eq. (11) to P0 and �i, one gets

P0(q) = c(u)�1(q1) · · · �d(qd). (14)

By uniqueness of the copula density, c in Eqs. (11) and (14) are
the same. Thus, we obtain

P(x) = P0(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (15)

We note that the marginal PDFs of P0 are identical to a multi-
variate Gaussian distribution � with mean µ and covariance C,
where C is the covariance matrix of x. The PDF of � is given by

�(q) ⌘ 1p
(2⇡)d det C

exp

26666664�
1
2

X

i, j

(qi � µi)C�1
i j (q j � µ j)

37777775 . (16)

Finally, by approximating P0 to �, one gets the Gaussian copula
transform:

P(x) = �(q)
P1(x1) · · · Pd(xd)
�1(q1) · · · �d(qd)

. (17)

Why is it more accurate to calculate the likelihood in this
way? In the classical case, since the shape of P(x) is unknown,
we approximate it to a normal distribution: P(x) ⇡ �(x). Apply-
ing the Gaussian copula transform means that we carry out this
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Fig. 2. Middle panel: the likelihood value using xabd5 on the ⌦m-⌃8 plane. The green star represents the input cosmology ⇡in. Since log�8 and
log⌦m form an approximately linear degenerency, the quantity ⌃8 ⌘ �8(⌦m/0.27)↵ allows us to characterize the banana-shape contour thickness.
Right panel: the marginalized PDF of ⌃8. The dashed lines give the 1-� interval (68.3%), while the borders of the shaded areas represent 2-�
limits (95.4%). Left panel: the log-value of the marginalized likelihood ratio. Dashed lines in the left panel give corresponding value for 1 and 2-�
significance levels, respectively.

Gaussian (labelled vg) log-likelihoods as

Lcg ⌘ �xT (⇡)dC�1(⇡obs) �x(⇡), (8)

Lsvg ⌘ �xT (⇡)dC�1(⇡) �x(⇡), and (9)

Lvg ⌘ ln
h
detbC(⇡)

i
+ �xT (⇡)dC�1(⇡) �x(⇡). (10)

Here, the termdC�1(⇡obs) in Eq. (8) refers todC�1(⇡in), where ⇡in is
described in Sect. 2.2. By comparing the contours derived from
di↵erent likelihoods, we aim to measure (1) the evolution of the
�2 term by substituing the constant matrix with the true vary-

ing dC�1, and (2) the impact from adding the determinant term.
Therefore, Lsvg is just an illustrative case to assess the influence
of the two terms in the likelihood.

3.2. The �2 term

The left panel of Fig. 3 shows the comparison between confi-
dence regions derived from Lcg and Lsvg with xabd. It shows a
clear di↵erence of the contours between Lcg and Lsvg. Since the
o↵-diagonal correlation coe�cients are weak (as shown in Ta-
ble 3), the variation of diagonal terms of C plays a major role in
the size of credible regions. The isolines for Ĉ55 are also drawn
in Fig. 3. These isolines cross the⌦m-�8 degenerency lines from
Lcg and thus shrink the credible region. We also find that the iso-
lines for Ĉ11 and Ĉ22 are noisy, and that those for Ĉ33 and Ĉ44
coincide well with the original degeneracy direction.

Table 4 shows the values of both criteria for di↵erent like-
lihoods. We observe that using Lsvg improves significantly the
constraints by 24% in terms of FoM. Regarding �⌃8, the im-
provement is weak. As a result, using varying covariance ma-
trices breaks down part of the banana-shape degenerency and
shrinks the contour length, but does not reduce the thickness.

We show in the left panels of Fig. 4 the same constraints de-
rived from two other observables xpct5 and xcut5. We see a similar
CDC e↵ect for both. We observe that xpct5 has less constraining
power than xabd5, and xcut5 is outperformed by both other data
vectors. This is due to the cuto↵ value ⌫min. Introducing a cuto↵
at ⌫min = 3 decreases the total number of peaks and amplifies
the fluctuation of high-peak values in the CDF. When we use

percentiles to define observables, the distribution of each com-
ponent of xcut5 becomes wider than the one of the corresponding
component of xpct5, and this greater scatter in the CDF enlarges
the contours. However, the cuto↵ also introduces a tilt of the
contours. Table 5 shows the best-fit ↵ for the di↵erent cases.
The di↵erence of the tilt could be a useful tool to improve the
constraining power. This has also been observed by Dietrich &
Hartlap (2010). Nevertheless, we do not procced any joint analy-
sis since xabd5 and xcut5 contain essentially the same information.

3.3. Impact from the determinant term

The right panel of Fig. 3 shows the comparison between Lsvg and
Lvg with xabd5. It shows that adding the determinant term does
not result in significant changes of the parameter constraints. The
isolines from ln(det Ĉ) explain this, since the graidents are per-
pendicular to the degenerency lines. We observe that including
the determinant makes the contours slightly larger, but almost
negligibly so. The total improvement of the contour area com-
pared to Lcg is 22%.

However, a di↵erent change is seen for xpct5 and xcut5.
Adding the determinant to the likelihood computed from these
observables induces a shift of contours toward the higher-⌦m
area. In the case of xcut5, this shift compensates the contour o↵-
set from the varying �2 term, but does not improve significantly
either �⌃8 or FoM, as shown in Table 4. As a result, using the
Gaussian likelihood, the total CDC e↵ect can be summed up as
an improvement of at least 14% in terms of thickness and 38%
in terms of area.

The results from Bayesian inference is very similar to the
likelihood-ratio test. Thus, we only show their �⌃8 and FoM in
Table 6 and best fits in Table 7. We recall that a similar analy-
sis has been done by Eifler et al. (2009) on shear covariances.
Our observations agree with their conlusions: a relatively large
impact from the �2 term and negligible change from the deter-
minant term. However, the total CDC e↵ect is more significant
in the peak-count framework than for the power spectrum.
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Approximate Bayesian Computation (ABC)

35

p(⇡|x, m) =
L(x|⇡, m)P (⇡|m)

E(x|m)

Martin Kilbinger Bayesian model selection in cosmology with PMC RA E Science day 14/06/2010 /23

Bayes’ theorem

• In cosmology, we often have:

• data

• parametrised theoretical model(s)
to predict the data

• We want: best parameters/model
to describe data, with confidence regions

• Bayes’ theorem:

Evidence

Likelihood:
probability of data given
parameters and model Prior

Posterior:
probability of parameters

given data and model

m : model

d : data

� : model parameter

p(�|d, m) =
L(d|�, m)⇥(�|m)

E(d|m)

Power Spectrum Present

Dunkley et al (2008)

Angular power spectrum (WMAP5)

3

Monday, June 14, 2010

⇡ : parameters
x : data
m : model

xLikelihood: how likely is it that model prediction                 reproduces data    ?xmod(⇡)
C.-A. Lin & M. Kilbinger: A new model to predict weak-lensing peak counts II.

Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = xobs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(xobs|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� xobs|  ✏. What is retained after repeating this process is
an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs|  ✏ used above is generalized to
D(s(X), s(xobs))  ✏. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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Alternative: compute fraction of models  
that are equal to the data    . 
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ABC can be performed if: 

• it is possible and easy to sample from L 
 

ABC is useful when: 

• functional form of L is unknown 
• evaluation of L is expensive 
• model is intrinsically stochastic

Probability = p/N in frequentist sense. 

Magic: Don’t need to sample N models. 
One per parameter     is sufficient  
with accept-reject algorithm.

⇡

C.-A. Lin & M. Kilbinger: A new model to predict weak-lensing peak counts II.

Fig. 6. Example for the p-value determination. The x-axis indicates a
one-dimensional observable, and the y-axis is the PDF. The PDF is ob-
tained from a kernel density estimation using the N = 1000 realizations.
Their values are shown as bars in the rug plot on the top of the panel.
The shaded area is the corresponding p-value for given observational
data xobs.

Fig. 7. This figure shows the PDF from two di↵erent models (denoted
by ⇡1 and ⇡2) and the observation xobs. The dashed lines show 1-� in-
tervals for both models, while the shaded areas are intervals beyond the
2-� level. In this figure, the model ⇡1 is excluded at more than 2-�,
whereas the significance of the model ⇡2 is between 1 and 2-�.

to move a step further, and bypass the likelihood estimation al-
together.

Based on an accept-reject rule, approximate Bayesian com-
putation (ABC) is an algorithm that provides the posterior dis-
tribution of a complex stochastic process when evaluation of the
likelihood is expensive or unreachable. There are only two re-
quirements: (1) a stochastic model for the observed data that
samples the likelihood function of the observable and (2) a mea-
sure, called summary statistic, to perform model comparison.
We present below a brief description of ABC. Readers can find
detailed reviews of ABC in Marin et al. (2011), and Sect. 1 of
Cameron & Pettitt (2012).

The idea behind ABC can be most easily illustrated in the
case of discrete data as follows. Instead of explicitly calculating
the likelihood, one generates first a set of parameters {⇡i} as sam-
ples under the prior P(⇡), and then for each ⇡i simulates a model
prediction X sampled under the likelihood function P(·|⇡i) (we
put here X in upper case to emphasize that X is a random vari-
able). Keeping only those ⇡i for which X = xobs, the distribution
of the accepted samples PABC(⇡) equals to the posterior distribu-

tion of the parameter P(⇡|xobs) given the observed data, since

PABC(⇡) =
X

X

P(X|⇡)P(⇡)�X,xobs

= P(xobs|⇡)P(⇡)

= P(⇡|xobs), (27)

where �X,xobs is Kronecker’s delta. Therefore, {⇡i} is an iid sample
from the posterior. It is su�cient to perform a one-sample test:
using a single realization X for each parameter ⇡ to obtain a
sample under the posterior.

ABC can also be adapted to continuous data and parameters,
where obtaining a strict equality X = xobs is pratically impossi-
ble. Hence, sampled points are accepted with a tolerance level ✏,
say |X� xobs|  ✏. What is retained after repeating this process is
an ensemble of parameters ⇡ that are compatible with the data,
and that follow a probability distribution, which is a modified
version of Eq. (27):

P✏(⇡|xobs) = A✏(⇡)P(⇡), (28)

where A✏(⇡) is the probability that a proposed parameter ⇡ passes
the one-sample test within the error ✏:

A✏(⇡) ⌘
Z

dX P(X|⇡) |X�xobs |✏(X). (29)

The Kronecker delta from Eq. (27) has now been replaced with
the indicator function of the set of points X that satisfy the tol-
erance criterion. The basic assumption of ABC is that the proba-
bility distribution (28) is a good approximation of the underlying
posterior, such that

P✏(⇡|xobs) ⇡ P(⇡|xobs). (30)

Therefore, the one-sample test with tolerance generates samples
under P✏ . This means that the fact that only one model for a given
parameter ⇡ is tested does not add additional noise compared to
ordinary Monte Carlo sampling.

A further addition to the ABC algorithm is a reduction of the
complexity of the full model and data. This is necessary in cases
of very large dimensions, for example when the model produces
entire maps or large catalogues. The reduction of data complex-
ity is done with the so-called summary statistic s. For instance,
in our peak-count framework, a complete data set x is a peak cat-
alogue with positions and S/N values, and the summary statistic
s is chosen here to be s(x) = xabd5, xpct5, or xcut5, respectively,
for the three cases of observables introduced in Sect. 2.2.

For a general comparison of model and data, one chooses a
metric D adapted to the summary statistic s, and the schematic
expression |X � xobs|  ✏ used above is generalized to
D(s(X), s(xobs))  ✏. We highlight that the summary statistic
can have low dimension and a very simple form. In practice, it
is be motivated by computational e�ciency, and it seems that a
simple summary can still produce reliable constraints (Weyant
et al. 2013).

The integral of Eq. (28) over ⇡ is smaller than unity, and
the deficit represents just the probability that a parameter is re-
jected by ABC. This is not problematic since density estimation
will automatically normalize the total integral over the posterior.
However, a more subtle issue is the choice of the tolerance level
✏. If ✏ is too large, A(⇡) is close to 1, and Eq. (30) becomes a
bad estimate. If ✏ is too small, A(⇡) is close to 0, and sampling
becomes extremely di�cult and ine�cient. How, then, should
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
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Example: let’s make soup.

Goal: Determine ingredients from final result. 
Model physical processes? Complicated. 
Easier: Make lots of soups with different ingredients, compare.
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Example: let’s make soup.

Questions: 
• What aspect of data and simulations do we compare? (summary statistic) 
• How do we compare? (metric, distance) 
• When do we accept? (tolerance) 
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Parameter constraints: ABC

40

• Summary statistic 
 
s = x (data vector for 2 cases)  

• Metric  D: two cases 
 
 
 
 

• ABC algorithm: iterative importance 
sampling (PMC) with decreasing  
tolerance

A&A 593, A88 (2016)

Fig. 4. Distribution of evaluated parameter points on the ⌦m-�8 plane.
This figure can be considered as a slice of points with the same wde

0 .
There are in total 46 slices of 816 points.

we use

xmod
i =

1
N

NX

k=1

x(k)
i , (32)

Ĉi j =
1

N � 1

NX

k=1

⇣
x(k)

i � xmod
i

⌘ ⇣
x(k)

j � xmod
j

⌘
, (33)

dC�1 =
N � d � 2

N � 1
bC�1
, and (34)

P̂i(xi) =
1
N

NX

k=1

1
hi

W

0BBBBB@
xi � x(k)

i

hi

1CCCCCA (35)

for the estimations, where d is the dimension of x, W is the
Gaussian kernel, and hi = (4/3N)1/5�̂i. Note that the model pre-
diction xmod is nothing but the average over the realization set;
the inverse covariance matrix is unbiased (Hartlap et al. 2007) to
good accuracy (see also Sellentin & Heavens 2016); and Eq. (35)
is a kernel density estimation (KDE).

We evaluated the copula likelihoods, given by Eq. (31), on a
grid. The range of wde

0 is [–1.8, 0], with �wde
0 = 0.04. Concerning

⌦m and �8, only some particular values were chosen for eval-
uation in order to reduce the computing cost. This resulted in
816 points in the ⌦m-�8 plane, as displayed in Fig. 4, and the
total number of parameter sets was 37536. For each parameter
set, we carried out N = 400 realizations of our model, to es-
timate L using Eqs. (31)–(35). Each realization produced data
vectors for three cases: (1) the Gaussian kernel; (2) the starlet
kernel; (3) MRLens, so that the comparisons between cases are
based on the same stochasticity. The aperture mass was not in-
cluded here because of the time consuming convolution of the
unbinned shear catalog with the filter Q. The FDR ↵ of MRLens
was set to 0.05. A map example is displayed in Fig. 5 for the
three cases and the input simulated  field.

Table 2. Definition of the data vector x for PMC ABC runs.

Filter ✓ker [arcmin] or ↵ Number of bins d
Gaussian ✓ker = 1.2, 2.4, 4.8 9 ⌫ bins 27

Starlet ✓ker = 2, 4, 8 9 ⌫ bins 27
Map tanh ✓ker = 2.125, 4.25, 8.5 9 ⌫ bins 27
MRLens ↵ = 0.05 6  bins 6

Notes. The 9 bins of ⌫ are [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, and the 6 bins of
 are [0.02, 0.03, 0.04, 0.06, 0.10, 0.16, +1[. The symbol d is the total
dimension of x, and ↵ stands for the input value of FDR for MRLens.

4.4.2. Population Monte Carlo approximate Bayesian
computation

The second analysis adopts the approximate Bayesian compu-
tation (ABC) technique. ABC bypasses the likelihood evalua-
tion to estimate directly the posterior by accept-reject sampling.
It is fast and robust, and has already had several applications
in astrophysics (Cameron & Pettitt 2012; Weyant et al. 2013;
Robin et al. 2014; Paper II; Killedar et al. 2016). Here, we use
the Population Monte Carlo ABC (PMC ABC) algorithm to con-
strain parameters. This algorithm adjusts the tolerance level iter-
atively, such that ABC posterior converges. A detailed descrip-
tion of the PMC ABC algorithm can be found in Sect. 6 of
Paper II.

We ran PMC ABC for four cases: the Gaussian kernel, the
starlet kernel, the aperture mass with the hyperbolic tangent
function, and MRLens with ↵ = 0.05. For the three first lin-
ear cases, the data vector x was composed of three scales. The
S/N bins of each scale were [1, 1.5, 2, . . ., 4, 4.5, 5, +1[, which
result in 27 bins in total (Table 2). For MRLens, x was a 6-
bin  histogram, which is the same as for the analysis using the
likelihood.

Concerning the ABC parameters, we used 1500 particles in
the PMC process. The iteration stoped when the success ratio
of accept-reject processes fell below 1%. Finally, we tested two
distances. Between the sampled data vector x and the observed
one, xobs, we considered a simplified distance D1 and a fully
correlated one D2, which are respectively defined as

D1

⇣
x, xobs

⌘
⌘

vuutX

i

⇣
xi � xobs

i

⌘2

Cii
, (36)

D2

⇣
x, xobs

⌘
⌘

q�
x � xobs�T C�1 �

x � xobs�, (37)

where Cii and C�1 are now independent from cosmology,
estimated using Eqs. (33) and (34) under (⌦m,�8, w

de
0 ) =

(0.28, 0.82,�0.96). Note that D1 has been shown in Paper II to be
able to produce constraints which agree well with the likelihood.
However, with multiscale data, bins could be highly correlated,
and therefore we also ran ABC with D2 in this paper.

5. Results

5.1. Comparing filtering techniques using the likelihood

We propose two methods to measure the quality of constraints.
The first indicator is the uncertainty on the derived parameter ⌃8.
Here, we define ⌃8 di↵erently from the literature:

⌃8 ⌘
 
⌦m + �

1 � ↵
!1�↵ ✓

�8

↵

◆↵
· (38)
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D1 in Lin & MK 2015b  

D1 + D2 in Lin, MK & Pires 2016
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Approximate Bayesian computation

ABC’s accept-reject process is actually a
sampling under P‘ (green curve):

P‘(fi|xobs) = A‘(fi)P(fi),

where P(fi) stands for the prior (blue curve) and

A‘(fi) ©
⁄

dx P(x|fi) |x≠xobs|Æ‘(x),

is the accept probability under fi (red area). One
can see that

lim
‘æ0

A‘(fi0)/‘ = P(xobs|fi0) = L(fi0),

so P‘ is proportional to the true posterior when
‘ æ 0.

A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 B 5
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Approximate Bayesian computation

Lin & Kilbinger (2015b)
A fast stochastic approach for constraints using peaks Irfu — Jul 2nd, 2015 24
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Parameter constraints: comparison

42

A&A proofs: manuscript no. Submit1

Fig. 10. Weights of particles from t = 8 with s(x) = xabd5. The weight
is represented by the size and the color at the same time.

Fig. 11. Comparison between credible regions derived from Lcg (col-
ored areas) and ABC (solid and dashed lines).

that the CDC e↵ect can increase the constraining power up to
22%. The main contribution comes from the additional variation
of the �2 term and the contribution from the determinant term
is negligible. These observations conform a previous study by
Eifler et al. (2009).

We also perform a copula analysis, which makes weaker as-
sumption than Gaussianity. In this case, the marginalized PDF is
Gaussianized by the copula transform. The result shows that the
di↵erence with the Gaussian likelihood is small. This is dom-
inated by the CDC e↵ect if a varying covariance is taken into
account.

Discarding the Gaussian hypothesis on the PDF of observ-
ables, we provide two straightforward ways to use the full PDF
information. The first one is the true likelihood. The direct eval-
uation of the likelihood is noisy due to the high statistical fluc-
tuations from the finite number of sample points. However, we
find that the varying-covariance copula likelihood, noted as Lvc
above, seems to be a good approximation to the truth. The sec-
ond method is to determine directly the p-value for a given pa-
rameter set, and this approach gives us more conservative con-
straints. We outline that both methods are covariance-free, avoid-
ing non-linear e↵ects caused by the covariance inversion.

At the end we show how approximate Bayesian computation
(ABC) derives cosmological constraints using the accept-reject
sampling. Combined with importance sampling, this method re-
quires less computational ressources than all the others. We
prove that by reducing the computational time by a factor of 300,
ABC is able to yield consistent constraints from weak-lensing
peak counts. Furthermore, Weyant et al. (2013) showed in their
study that ABC is able to perform unbiased constraints using
contaminated data, demonstrating the robustness of this algo-
rithm.

A comparison between di↵erent data vectors is done in this
study. Although we find for all analyses that xabd5 outperforms
xpct5 by 20%–40% in terms of FoM, this is not necessarily true
in general when we use a di↵erent percentile choice. Actually,
the performance of xpct depends on the correlation between its
di↵erent components. However, the xpct family is not recom-
mended in practice due to model biases induced for very low
peaks (S/N < 0). In addition, our study shows that the xcut fam-
ily is largely outperformed by xabd. Thus, we conclude that xabd

seems to be good candidates for peak-count analysis, while the
change of contour tilt from xcut could be interesting when com-
bining with other information.

The methodology that we show for parameter constraints can
be applied to all fast stochastic forward models. Flexible and ef-
ficient, this approach possesses a great potential whenever the
modeling of complex e↵ects is desired. Our study displays two
di↵erent parameter-constraint philosophies. On the one hand,
parameteric estimation (Sects. 3 and 4), under some specific
hypotheses such as Gaussianity, requires only some statistical
quantities such as the covariances. However, the appropriateness
of the likelihood should be examined and validated to avoid bi-
ases. On the other hand, non-analytic estimation (Sects. 5 and
6) is directly derived from the PDF. The problem of inappropri-
ateness vanishes, but instead the uncertainty and bias of density
estimation becomes a drawback. Depending on modeling perti-
nence, an aspect may be more advantageous than another. Not
studied in this work, an hybrid approach using semi-analytic es-
timator could be interesting. This solicits more detailed studies
on trade-o↵ between the unappropriatenss of analytic estimators
and the uncertainty of density estimation.
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Fig. 10. Weights of particles from t = 8 with s(x) = xabd5. The weight
is represented by the size and the color at the same time.

Fig. 11. Comparison between credible regions derived from Lcg (col-
ored areas) and ABC (solid and dashed lines).
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