Machine Learning for Astrophysics :
Identifying Blended Sources in
Galaxy Images

< CosMoSTAT



Dark matter and weak lensing

e Dark matter : theoretical matter, that would represent
around 85% of the total mass of the universe

e Only reacts to gravitational forces

e Whatis dark matter, and what is its distribution ?

e Weak lensing : (very) small shear in the observed
galaxies because of huge foreground masses

e Statistical methods to compute that shear, and find
mass maps
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Two solutions : get rid of those objects, or separate them

Several problems to solve : identification (binary
classification), sources count (multi-class or regression),
finding the contours of each objects (segmentation)...

Many different reasons : line of sight, PSF, shear...

Overlapping of two or more sources in an image
Very different rates of occurence

Issue when it comes to compute the shear
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SExtractor

e Most used tool to detect and extract light sources

e Includes a deblending module, that identifies blended
sources

e Threshold-based method

e Problems: relies on human hand to set the
thresholds, and is not very accurate

Densiry




Other methods

e Several different techniques, mostly for specific
surveys

ASTErIsM : clustering based

PCA-based methods

Flux measurements

No universal method that works well in most of the
cases




Datasets and simulations

Three simulated datasets, using GalSim to be generated

GREAT3 : 20 000 images (10 000 of each class), basic simulations

Euclid : 10 000 images (7500 blends, 2500 non-blends), based on expected Euclid images
CFIS : unlimited amount of images (usually, 40 000 when it comes to run the model),
high-quality simulations based on the CFIS survey

Three different kind of images : blends of two sources, single sources and two separated
sources.

Simulation of blends : generate a first galaxy at the center, and randomly place another
one on the image, until the two of them are blended



Examples of simulations - GREAT'3

Non-blended Blended




Examples of simulations - Euclid

Non-blended Blended
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Examples of simulations - CFIS

Non-blended Blended
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VGG16 image classifier

e Pre-trained network (time of training
reduced)
L TXTX512 e Popular and effective network for
25098 L] X 1000 classification
e Very simple architecture
e No shortcut, normalization or
[l MRV - HakeS concatenation operations

max pooling

: fully connected+Rel.U

| softmax
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Very Deep Convolutional Network For Large-scale Image Recognition, K. Simonyan & A. Zisserman



Results - Methods comparison - GREAT3

VGG16
Predicted | Blended
labels

Non-blended
Siamese networks
Predicted | Blended
labels

Non-blended

Actual labels

Blended | Non-blended
0,963 0,023

0,037 0,977

Actual labels

Blended | Non-blended

0,672 0,144

0,328 0,856

One-class
Predicted @ Blended
labels

Non-blended
SExtractor
Predicted | Blended
labels

Non-blended

Actual labels

Blended | Non-blended
0,794 0,139

0,206 0,861

Actual labels

Blended | Non-blended
0,565 0,245

0,435 0,755
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Results - Methods comparisons - GREAT?3

% of blends identified as blends

B SExtractor
s \/\GGl6

Siamese Networks
B One-Class

When the noise get higher (¢ > 5e-3), the
problems of SExtractor appear even more
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Results - CFIS (trained on GREAT?3)

VGG16
Predicted | Blended
labels

Non-blended
Siamese networks
Predicted | Blended
labels

Non-blended

Actual labels

Blended | Non-blended
0,824 0,110

0,176 0,890

Actual labels

Blended | Non-blended
0,552 0,282

0,448 0,718

One-class
Predicted @ Blended
labels

Non-blended
SExtractor
Predicted | Blended
labels

Non-blended

Actual labels

Blended | Non-blended
0,617 0,164

0,383 0,836

Actual labels

Blended | Non-blended
0,453 0,131

0,547 0,869
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VGG16 - Results analysis
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e Very good general accuracy (95,48% on
CFIS, when trained on a mixed dataset)
e Reasons of misidentifications :
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A few real CFIS-results

Obvious blended objects properly identified
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Current Work

e Creating a database of blended sources from real images to check whether or
not the network performs well on more realistic images
e Running the network on real CFIS images and analysing the flag differences
between the different methods
e Running shape measurement in several situations :
o With all the sources
o Removing the blended sources found by SExtractor
o Removing the blended sources found by VGG16
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Future work

e Extending the model to multi-class classification, in order to count the

number of sources
e Improving the simulations techniques to be closer to real data (using GANs,

for instance)
e Applying segmentation techniques to detect overlapping zones, and create

masks for the actual deblending (SSD, Mask-RCNN, ...)
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Thank you for your attention !



