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Video restoration problem

*h n St n +wt n
v b - S
Ay ary any

Tt Ty x h Si(T * h) Yt

RTN

> (Ti)ici<T € : original video sequence.
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*h n St - +wt n
v v - S
Ay ary any

Tt Ty x h Si(T * h) Yt

RTN

> (Ti)ici<T € : original video sequence.

> heRP : convolution kernel.
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Video restoration problem

. h n St - + N n
- e
Ay ary any

Tt Ty x h S, (Tt * h) Yt

> (T:)1<t<r € RTY : original video sequence.

> heRP : convolution kernel.

> S; e RLXV : row decimation operator with
S; = S, for odd values of t and S; = S. for even values of ¢.
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Video restoration problem

. h n St - + N n
w0 w er
Ay ary any

Ty Ty x h Si(T * h) Yt
> (T:)1<t<r € RTY : original video sequence.
> heRP : convolution kernel.
> S; e RLXV : row decimation operator with
S: = S, for odd values of ¢t and S; = S, for even values of ¢.
> (wi)i<e<r € RTE : unknown additive noise.
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Video restoration problem

. h n St - + N n
L2 s
Ay ary any

Tt Ty x h Si(T * h) Yt

v

(Z:)1<i<r € RTY : original video sequence.

v

heRP : convolution kernel.

S: € RLXN : row decimation operator with
S; = S, for odd values of t and S; = S. for even values of ¢.

v

v

(wi)1<e<r € RTL : unknown additive noise.
(ye)1<e<r € RTF - interlaced blurred video sequence (N = 2L).

v
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[ minimize F(z) = ®(x) + ¥(x)
$ERTN
@ least squares data fidelity term:

T
1
(Vo € RTY) ®(z) = 5 3 [ISi(hx ) — well?,
t=1

v regularization term:

T
(Vo € R™N) W(z) =) Uy(xy) +M(2),
t=1
where (Vt € {1,...,T}) ¥, encourages

on video frame z;, and M is a
term between neighboring frames.

and
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Minimization strategy

« Minimization of F' = & + ¥ using the PALM approach: ([Bolte et
al., 2013])

Each image x; is updated sequentially thanks to a
forward-backward iteration combining:

1. a gradient step on ® with respect to x4,
2. aproximal step on the restriction to x; of V.

CONTENT OF THIS TALK:

How to compute the proximity operator of a convex function within
a general metric, with limited memory and low computation time?
= Exploit duality and preconditioned block alternation schemes!
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Outline of the talk

1. Proximal operator

2. Dual forward-backward algorithms

» Dual forward-backward algorithm
> Block preconditioned DFB algorithm
» Convergence results

3. Experimental results
4. Distributed strategy



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy
0000 @000 0000000000000 00000000000 0000000

LCS - 2017 7/41

Proximal operator
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[ The set of symmetric definite positive matrices of RV*Y will be de- |
noted ST(RY).
Let U € ST(RY). The weighted norm induced by U is

I Ml =V {1U),

with the convention || - || = || - ||ia-

~

[ The conjugate of a function f: RY — ]—oco,+o0] is f*: RN —
[—00, +00] such that

(Vu € RY)
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> Let I'o(RY) denote the set of proper Isc convex functions
from R¥ to ] — oo, +0c0].

The proximal operator of f € To(RY) at z € RY relative to

the metric induced by U € ST (RY) is the unique vector ; € R such
that

~ 1, ..
F@) + 57 = =l =




Introduction Proximal operator Dual forward-backward algorithms

Experimental results Distributed strategy
0000 [e]e] e} 0000000000000

00000000000 0000000
LCS - 2017

9/41

The proximal operator of f € To(RY) at 2 € RY relative to

the metric induced by U € S*(RY) is the unique vector ; € RY such
that

~ 1, ..
F@) + 55— =llfy =

CHARACTERIZATION OF PROXIMAL OPERATOR
(Vz e RY) 7= proxy s(z) & x -y € U of ().
with 9 f the Moreau sub differential of f:
(Ve € RY) 0f(x) = {t e RY|(vy € RY) f(y) > f(a)+(tly—x)}.
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The proximal operator of f € To(RY) at 2 € RY relative to

the metric induced by U € S*(RY) is the unique vector ; € RY such
that

~ 1, ..
F@) + 55— =llfy =

CHARACTERIZATION OF PROXIMAL OPERATOR

(Vz € RY) Yy =proxy s(r) & r -y € U-of®).

MOREAU’S DECOMPOSITION FORMULA

(Vz € RY) proxy ¢+ () = o — UﬁlPFOXUfl,f(Ux)
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[ f(@)

proxf(a:) = prox,y f(w)

translation
zeRY

flz—2)

2+ prox 4 (x — z)

quadratic perturbation
zeRY,a>0,v€R

f@) +allzl®/2+ (x| 2) +7

s
poxt, (551)

scaling p € R*

 (pz)

Torox2 (2)

quadratic function

LeRMN 450 2 eRM yllLa — 2% /2 (Id +yLLT) ™ (x = yL"z)
isomorphism -

LR LI — d, s 0 | T @ —u~ L7 (@ = prox,;(Lz)
reflexion f(=x) —prox; (=)

separability

indicator function

Pc (x)

support function

z — Pc(x)

composite function

Iterative strategy!

Distributed strategy

10/41
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Properties of proximal operator

[ f(x) | prox;(x) = proxy ;() [
translation
LR flz—2) 2+ prox 4 (x — z)
quadratic perturbation 2 oz
zeRY, a>0,y€R F@) +alel/2+ (x| 2) +7 prox:%(““)
scaling p € R* f (pz) %proxpzf(pa:)
quadratic function 2 Tyl 7w
LeRMN 450 2 eRM YLz - 2|*/2 (Id +~yLL") " (x—~L"2)
isomorphism T
LeRMN LLT — uld, u>0 f(Lz) r—p L (z proxpf(Lx)
reflexion f(=x) —prox; (=)
N

separability on(x™ -

; ( ) (prox% (X( ))> 1<n<N

z = (x")icnen
indicator function we(x) Pc(z)
support function ve(x) = oc(x) x — Pc(x)
composite function f(x) ,\;:;’7‘ hi(Ajz) Iterative strategy!

[ Which strategy in the context of large scale optimization ? ]
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Dual forward-backward algorithms
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Primal problem

PRIMAL PROBLEM

Compute prox,,(z) with g = f + ho Aand 7 € RY:

1 ~
minimize f(z) + h(Az) + ||z — 7|2
x€RN 2

where
> f belongs to T'y(RY),
> h belongs to T'g(RM),
> AcRMXN,

[ Qualification condition: ri (A(dom f)) Nri (dom k) # . ]
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Dual problem

DUAL PROBLEM

minimize go( —ATy+ 5) + h*(y),
yeRM

» o= (f+3|-?) is the Moreau envelope of parameter 1 of
f* with a nonexpansive (i.e. 1-Lipschitzian) gradient.
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Dual problem

DUAL PROBLEM

minimize ga( —Aly+ %) + h*(y),
yeRM

» o= (f+3|-?) is the Moreau envelope of parameter 1 of

f* with a (i.e. 1-Lipschitzian) gradient.
= we can apply the algorithm:
Initialization
| 8= 1Al €€]0,1], yo € RM.
Forn=0,1,...

Yo € [eB87, (2= €)B7]
Un = Yn — WV (30 © (_AT : +§)) (yn)’
Yn+1 = Prox,, = (Yn)
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Dual forward-backward algorithm

According to Moreau’s decomposition formula, and the
expression Vo = Id — prox ., the previous algorithm is
equivalent to:

Initialization
| B=14l1% €€]0,1], yo € RM.
Forn:O,l,...

Yo € [e871,(2 - )B_l]

T, = ProxX ¢ (T — Alyn)

Un = Yn + YnAn,

Yn+1 = Yn — YnProx *1h(7n yn)

= Convergence of both (z,,)neny and (yn )nen proved
in [Combettes et al., 2011].
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Dual forward-backward algorithm

According to Moreau’s decomposition formula, and the
expression Vo = 1d — prox ., the previous algorithm is
equivalent to:

Initialization
| B=14l1% €€]0,1], yo € RM.
Forn:O,l,...

T € [eB71, (2 - )5‘1]

T, = Prox ¢ (T — ATyp)

Un = Yn + YAy,

Uil = U — 'anroxwglh('}’;lﬂyvn)-

= A special case is [Bauschke et al, 2007],
itself generalizing the Dykstra algorithm for computing the
projection onto the intersection of convex sets.
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Dual forward-backward algorithm

According to Moreau’s decomposition formula, and the
expression Vo = 1d — prox ., the previous algorithm is
equivalent to:

Initialization
| B=1Al? €€]0,1], yo € RM.
Forn=0,1,...

T € [eB87,(2—€)B7]

Ty, = Prox (T — ATy,)

gn =Yn + ’VnAJ;nv

Yn+1 = o — FnProX 1, (Y Tn)-

= The DFB algorithm is also known, in machine learning, as
the
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Proposed acceleration strategy

[JIn the context of large scale problems, accelerating the DFB
algorithm is of main interest:

A strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).
A strategy is adopted for better flexibility, and

reduction of the computational cost per iteration
(~ Gauss-Seidel methods).
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Proposed acceleration strategy

[In the context of large scale problems, accelerating the DFB
algorithm is of main interest:

A strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).
A strategy is adopted for better flexibility, and

reduction of the computational cost per iteration
(~ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:
e Dual coordinate ascent algorithms [Shalev-Shwartz et al., 2013] , [Jaggi
etal., 2014] = Stochastic selection of blocks.
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Proposed acceleration strategy

[In the context of large scale problems, accelerating the DFB
algorithm is of main interest:
~ A variable metric strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).
~ A block-coordinate strategy is adopted for better flexibility, and
reduction of the computational cost per iteration
(~ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:
¢ Dual coordinate ascent algorithms

e Accelerated proximal alternating descent [Chambolle et al., 2015]
= FISTA-like acceleration.
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Proposed acceleration strategy

[In the context of large scale problems, accelerating the DFB
algorithm is of main interest:
~ A variable metric strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).
~ A block-coordinate strategy is adopted for better flexibility, and
reduction of the computational cost per iteration
(~ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:
e Dual coordinate ascent algorithms
¢ Accelerated proximal alternating descent

e Sparse Kaczmarz algorithm [Lorentz et al, 2014] = When f is the
/1 norm, and h is the sum of indicator functions of singletons.
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Primal problem

PRIMAL PROBLEM

Compute prox, (%) with (vz € RY) g(x) = f(z) + Y _ hj(4;2),

where
> f belongs to To(RY),
> (Vj e {l,...,J}) h; belongs to I'o(RM),
> (Vje{l,...,J}) A; € RMixN,
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Primal problem

PRIMAL PROBLEM
! 1
minimize f(z)+ Z hi(Ajx) + §||x - 7%

N
z€eR =1

where
> f belongs to T'y(RY),
> (Vj € {1,...,J}) h; belongs to ['o(RM),
> (Vje{l,...,J}) A; € RMixN,

Qualification condition:
(Vje{l,...,J}) ri(Aj(dom f))Nri(domh;) # &
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DUAL PROBLEM

J J
minimize gp( - Z A;—yj + :?) + Z h} ("),
j=1 j=1

(¥)1<j<sERM

» The right part of the criterion is now with respect to
the dual components.

= We can apply the
from [Chouzenoux et al., 2014] t0 solve the dual problem:

At each iterationn € N, a Kk index j, is selected. The
corresponding dual variable y7," is updated, according to a
rule, while all the other dual

variables are kept unchanged.
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Dual block preconditioned forward-backward algorithm

[ Algorithm DBFB:
Initialization
Bj € RM;*M; with Bj EAJA;—, Vj e {1,...,J}

e €10, 1], W)1<j<s €RM, 20 =7 ATyl

Forn=0,1,...

Tn € [6,2 — €]

Jn€A{l,...,J}

Ty, = Prox (T + 2y)

T = o +mB; Ay o ,
Yo1 = T =By ProX, 5. % h;, (v ' 5. 007)
Yni1=Yn, VjE€{l,...,J}\ {jn}

An+1 = #n — A;—n (ygzy—ll—l - y%")
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Proximity operator within a general metric
» Computation of prox,. ,(Z) with (' € ST(RY) ?

[ Algorithm DBFB:

Initialization 7
B; € RMi>M; with B; = A;C'AT, Vie{1,...,J}
€ €)0,1], (Whcjcs €RM, 20 = —C ' TI_ ATl

Forn=0,1,...
Tn € [€6,2 — €]
gn€f{l,...,J}

Tn = Prox . (T + zn)

=y B, Ao |
Yoy = B — B, prox B3 gy (va ' Bj. ")
yfl-i-l = ygu vje{l,. 2 ,J} \{]n}

Zny1 =20 — O A (4in ) — o0

n




Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy
0000 [e]e]e]e] 0000000008000 00000000000 0000000

LCS - 2017 20/41

Particular case when f =0

» When f = 0, the algorithm simplifies as follows:

[ Algorithm DBFBO: )
Initialization

Bj € RM>*Mi with B = A;A7, Vje{l,...,J}

€ 6]07 1]7 (y(]))léjéJ € RM: To=1T — Z;‘Izl A;'ry(])‘

Forn=0,1,...
7n€[€72_€]
Jn €1{1,...,J}

P =g+, Ajuen .
Ynir = T =y, Prox, oy (B )
?JZLH:%, VjG{l,,J}\{]n}

— T J J
Tptl = Ty — Ajn (ynz_l _ ynn).
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( A

ASSUMPTIONS:
1. The functions f and (h;)1<j<s are semi-algebraic.

2. Forevery j € {1,...,J}, the restriction of 1 to its domain is
continuous.

3. Forevery j € {1,...,J}, matrix B; is definite positive.

4. The sequence (j,)nen IS chosen according to a quasi-cyclic
rule, i.e. there exists K > J such that, for every n € N,

{17 e 7J} C {]TL? e 7jn+K71}-

If the sequence (y,)nen = ((y%)lgjgj)neN is bounded, then this se-
guence converges to a solution to the dual problem. In addition, the
sequence (z,)nen CONverges to the proximity operator of g evalu-
ated at z.
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Convergence rate result

Suppose that the previous assumptions hold and that z and 7 are
the limits of (z,,)nen @nd (yn)n>1, respectively.
There exists o €]0, +o00[ and A €]0, +o0[ such that, for every n > 1,

[z = Z[| < AAIn™% [lyn — ¥l < An~"

In addition, if one of the following conditions is met:

1. the dual cost function is strongly convex,

2. fis Lipschitz differentiable and A is surjective,

3. forevery j € {1,...,J}, h; is Lipschitz differentiable,

4. the dual cost function is a piecewise polynomial function of
degree 2,

5. fis a quadratic function and, for every j € {1,...,J}, h}isa

piecewise polynomial function of degree 2,
then, there exists 7 € [0,1] and X' €]0, +oo[ such that, for every
n>1,
lzn = 2 < NNAlT", lyn — Gl < N7
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Parallel dual block forward-backward algorithm

» Link with the method from [Combettes et al.,2011]:

 Algorithm PDBFB:
Initialization
(wj)1<j<s €]0,1)7 such that 37 w; =1,
B = max;eq,. 5y 14517,
B = ﬂwj_lle, vie{l,...,J}
| €€10,1], (W)1cjcs ERM, 2 =% — Y] Al 9.
Forn=0,1,...
Tn € [6,2 — €]
Forj=1,...,J
T =1 + B;  Ajzn,
J _ =] _ B_*l —1B,~j
Ynt1 = Yn — TnbD; PrOX%B]_—l,hj (’7n .7y")

| T+l = Tn — Zj:1A;'r(y¥z+1 - y%)
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Experimental results
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~+ Synthetic sequences Foreman and Claire (V = 352 x 288,
resp. N = 360 x 288, T' = 50), corrupted with a blur and a white
Gaussian noise.

~» Real blurry interlaced video sequences Tachan and Au
théatre ce soir provided by INA (L = 720 x 288, T' = 80).

Minimization using PALM algorithm.

(Vte{1,....T}) Uy =nsltv+iy, . o0 v Withn > 0, sltv the
semi-local total variation [Condat, 2014}, and M is a nonsmooth
temporal regularization term [Abboud et al, 2014].

Among and , Which one is the
most efficient for the computation of the proximal inner loops?
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Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored
progressive image (bottom), of the Foreman sequence. Input SNR = 25.54dB,
output SNR = 28.95dB.



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy
0000 [e]e]e]e] 0000000000000 00080000000 0000000

LCS - 2017 27/41

Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored
progressive image (bottom), of the Claire sequence. Input SNR = 25.27dB,
output SNR = 29.21dB.
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Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored
progressive image (bottom), of Tachan sequence.



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy
0000 [e]e]e]e] 0000000000000 00000800000 0000000

LCS - 2017 29/41

Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored
progressive image (bottom), of Au théatre ce soir sequence.
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Speed

45

40
35
30

L5

1 5 10 15 20 25 30 35 40 45 50
Frame number

Averaged execution time (in s.) per Foreman frame using BDFB o, BDFBO ¢
or PBDFB o
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Speed

-

rame number

Averaged execution time (in s.) per Claire frame using BDFB o, BDFBO « or
PBDFB o
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Speed

. . .
1 5 10 15 20 25 30 35 40 45 50
Frame number

Averaged execution time (in s.) per Tachan frame using BDFB o, BDFBO ©
or PBDFB o
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Speed

0 I I I I I I
1 5 10 15 20 25 30 35 40 45 50

Frame number

Averaged execution time (in s.) per Au théatre ce soir frame using BDFB 0,
BDFBO < or PBDFB o
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Benefit of preconditioning

10* : . : : ; .

2 L L L L L L
0 2000 4000 6000 8000 10000 12000 14000
Time (s)

Average execution time per Foreman frame for proximity step in BDFB
algorithm using preconditioning, no preconditioning using exact norms and
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Distributed strategy
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Distributed formulation

— ORIGINAL PROBLEM \
4 1
Find z = argmin Z hj(Ajx) + §Hx — 7%
TER™ .
7j=1
— REFORMULATED PROBLEM \
J =
Find 2=  argmin Y hj(A;27) + 3 > wjlla? - 7%
z=(2?)1¢j<s€N  j=1 j=1
Standard coupling constraint:
:L‘l
Ay = : G]RN‘]]xlz...:a:‘]
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Local form of consensus

» We define (Vy)1<o<r0f {1,...,J} with cardinality (k¢)1<e<r,
such that

zeh & (We{l,....,L}) (2%)jev, € Ay,
» V, can be viewed as the ¢-th hyperedge of a connected

hypergraph with nodes {1, ..., J}.
» Resolution by application of BDFB to the problem:

— j NJ
azf(zﬂ)lgjg‘]eR -1

J L 7
L ; 1 L2
minimize E 1 hj(Ajz?)+ E LA, (Se az)+§ g 1 wjlla? =z ||*.
= =

where, forevery £ € {1,...,¢} S, € RN®*xNJ is some
decimation operator.
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Experimental results (Julia programming language)

| | I
12 3 4 6 8 9 12 18 24

Number of cores

Speedup w.r.t. the number of used cores for Foreman sequence:proposed
method versus linear speedup.
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Experimental results (Julia programming language)

| | I
12 3 4 6 8 9 12 18 24

Number of cores

Speedup w.r.t. the number of used cores for Claire sequence:‘proposed
method versus linear speedup.
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Deterministic primal-dual splitting algorithm to handle efficiently the
computation of the proximity operator of composite convex func-
tions.

[J Convergence guaranteed for both its primal and dual
iterates,
[J High flexibility in the selection of blocks,

[J Possibility to include sophisticated preconditioning
strategy,

[1 Good performance in the context of video restoration,

[1 Extension to distributed optimization.
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