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Video restoration problem

∗ h

   

St

   

+ wt

   

xt xt ∗ h St(xt ∗ h) yt

◮ (xt)16t6T ∈ R
TN : original video sequence.
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Video restoration problem

∗ h

   

St

   

+ wt

   

xt xt ∗ h St(xt ∗ h) yt

◮ (xt)16t6T ∈ R
TN : original video sequence.

◮ h ∈ R
P : convolution kernel.

◮ St ∈ R
L×N : row decimation operator with

St = So for odd values of t and St = Se for even values of t.

◮ (wt)16t6T ∈ R
TL : unknown additive noise.

◮ (yt)16t6T ∈ R
TL : interlaced blurred video sequence (N = 2L).
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Objective function

minimize
x∈RTN

F (x) = Φ(x) + Ψ(x)

Φ  least squares data fidelity term:

(∀x ∈ R
TN ) Φ(x) =

1

2

T∑

t=1

‖St(h ∗ xt)− yt‖
2,

Ψ  regularization term:

(∀x ∈ R
TN ) Ψ(x) =

T∑

t=1

Ψt(xt) + M(x),

where (∀t ∈ {1, . . . , T}) Ψt encourages spatial regularity and
domain constraints on video frame xt, and M is a temporal
regularization term between neighboring frames.



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy

LCS - 2017 5/41

Minimization strategy

∗ Minimization of F = Φ+Ψ using the PALM approach: ([Bolte et

al., 2013])

Each image xt is updated sequentially thanks to a
forward-backward iteration combining:

1. a gradient step on Φ with respect to xt,

2. a proximal step on the restriction to xt of Ψ.

CONTENT OF THIS TALK:

How to compute the proximity operator of a convex function within
a general metric, with limited memory and low computation time?
⇒ Exploit duality and preconditioned block alternation schemes!
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Outline of the talk

1. Proximal operator

2. Dual forward-backward algorithms
◮ Dual forward-backward algorithm
◮ Block preconditioned DFB algorithm
◮ Convergence results

3. Experimental results

4. Distributed strategy
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Proximal operator
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Notation and definitions

The set of symmetric definite positive matrices of RN×N will be de-
noted S+(RN ) .

Let U ∈ S+(RN ). The weighted norm induced by U is

‖ · ‖U =
√
〈· | U ·〉,

with the convention ‖ · ‖ = ‖ · ‖Id .

The conjugate of a function f : RN → ]−∞,+∞] is f∗ : RN →

[−∞,+∞] such that

(∀u ∈ R
N ) f∗(u) = sup

x∈RN

(
〈x | u〉 − f(x)

)
.
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Proximal operator http://proximity-operator.net

◮ Let Γ0(R
N ) denote the set of proper lsc convex functions

from R
N to ]−∞,+∞].

The proximal operator proxU,f (x) of f ∈ Γ0(R
N ) at x ∈ R

N relative to
the metric induced by U ∈ S+(RN ) is the unique vector ŷ ∈ R

N such
that

f(ŷ) +
1

2
‖ŷ − x‖2U = inf

y∈RN
f(y) +

1

2
〈y − x | U(y − x)〉.
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Proximal operator http://proximity-operator.net

The proximal operator proxU,f (x) of f ∈ Γ0(R
N ) at x ∈ R

N relative to
the metric induced by U ∈ S+(RN ) is the unique vector ŷ ∈ R

N such
that

f(ŷ) +
1

2
‖ŷ − x‖2U = inf

y∈RN
f(y) +

1

2
〈y − x | U(y − x)〉.

(∀x ∈ R
N ) ŷ = proxU,f (x) ⇔ x− ŷ ∈ U−1∂f(ŷ).

CHARACTERIZATION OF PROXIMAL OPERATOR

with ∂f the Moreau sub differential of f :

(∀x ∈ R
N ) ∂f(x) = {t ∈ R

N |(∀y ∈ R
N ) f(y) > f(x)+〈t|y−x〉}.
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Proximal operator http://proximity-operator.net

The proximal operator proxU,f (x) of f ∈ Γ0(R
N ) at x ∈ R

N relative to
the metric induced by U ∈ S+(RN ) is the unique vector ŷ ∈ R

N such
that

f(ŷ) +
1

2
‖ŷ − x‖2U = inf

y∈RN
f(y) +

1

2
〈y − x | U(y − x)〉.

(∀x ∈ R
N ) ŷ = proxU,f (x) ⇔ x− ŷ ∈ U−1∂f(ŷ).

CHARACTERIZATION OF PROXIMAL OPERATOR

(∀x ∈ R
N ) proxU,f∗(x) = x− U−1proxU−1,f (Ux)

MOREAU’S DECOMPOSITION FORMULA
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Properties of proximal operator
f(x) proxf (x) = proxId ,f (x)

translation
f(x− z) z + proxf (x− z)

z ∈ R
N

quadratic perturbation
f(x) + α‖x‖2/2 + 〈x | z〉+ γ prox f

α+1

(

x−z
α+1

)

z ∈ R
N , α > 0, γ ∈ R

scaling ρ ∈ R
∗ f (ρx) 1

ρ
proxρ2f (ρx)

quadratic function
γ‖Lx− z‖2/2 (Id + γLL⊤)−1(x− γL∗z)

L ∈ R
M×N , γ > 0, z ∈ R

M

isomorphism
f(Lx) x− µ−1L⊤(x− proxµf (Lx)L ∈ R

M×N , LL⊤ = µId , µ > 0

reflexion f(−x) −proxf (−x)

separability
N
∑

n=1

ϕn(x
(n))

(

proxϕn
(x(n))

)

16n6N

x = (x(n))16n6N

indicator function ιC(x) PC(x)

support function ι∗C(x) = σC(x) x− PC(x)

composite function f(x) +
∑J

j=1 hj(Ajx) Iterative strategy!
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j=1 hj(Ajx) Iterative strategy!

Which strategy in the context of large scale optimization ?
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Dual forward-backward algorithms
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Primal problem

Compute proxg(x̃) with g = f + h ◦A and x̃ ∈ R
N :

minimize
x∈RN

f(x) + h(Ax) +
1

2
‖x− x̃‖2

PRIMAL PROBLEM

where
◮ f belongs to Γ0(R

N ),
◮ h belongs to Γ0(R

M ),
◮ A ∈ R

M×N .

Qualification condition: ri
(
A(dom f)

)
∩ ri (domh) 6= ∅.
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Dual problem

minimize
y∈RM

ϕ
(
−A⊤y + x̃

)
+ h∗(y),

DUAL PROBLEM

◮ ϕ =
(
f + 1

2‖ · ‖
2
)∗ is the Moreau envelope of parameter 1 of

f∗ with a nonexpansive (i.e. 1-Lipschitzian) gradient.
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Dual problem

minimize
y∈RM

ϕ
(
−A⊤y + x̃

)
+ h∗(y),

DUAL PROBLEM

◮ ϕ =
(
f + 1

2‖ · ‖
2
)∗ is the Moreau envelope of parameter 1 of

f∗ with a nonexpansive (i.e. 1-Lipschitzian) gradient.

⇒ we can apply the forward-backward algorithm:

Initialization⌊
β = ‖A‖2, ǫ ∈]0, 1], y0 ∈ R

M .

For n = 0, 1, . . .
γn ∈ [ǫβ−1, (2− ǫ)β−1]
ỹn = yn − γn∇

(
ϕ ◦ (−A⊤ ·+x̃)

)
(yn),

yn+1 = proxγnh∗(ỹn)
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Dual forward-backward algorithm

According to Moreau’s decomposition formula, and the
expression ∇ϕ = Id − proxf∗ , the previous algorithm is
equivalent to:

Initialization⌊
β = ‖A‖2, ǫ ∈]0, 1], y0 ∈ R

M .

For n = 0, 1, . . .

γn ∈ [ǫβ−1, (2− ǫ)β−1]
xn = proxf (x̃−A⊤yn)

ỹn = yn + γnAxn,

yn+1 = ỹn − γnprox
γ−1
n h

(γ−1
n ỹn).

⇒ Convergence of both (xn)n∈N and (yn)n∈N proved
in [Combettes et al., 2011].
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According to Moreau’s decomposition formula, and the
expression ∇ϕ = Id − proxf∗ , the previous algorithm is
equivalent to:

Initialization⌊
β = ‖A‖2, ǫ ∈]0, 1], y0 ∈ R

M .

For n = 0, 1, . . .

γn ∈ [ǫβ−1, (2− ǫ)β−1]
xn = proxf (x̃−A⊤yn)

ỹn = yn + γnAxn,

yn+1 = ỹn − γnprox
γ−1
n h

(γ−1
n ỹn).

⇒ A special case is Dykstra-like algorithm [Bauschke et al, 2007],
itself generalizing the Dykstra algorithm for computing the
projection onto the intersection of convex sets.
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Dual forward-backward algorithm

According to Moreau’s decomposition formula, and the
expression ∇ϕ = Id − proxf∗ , the previous algorithm is
equivalent to:

Initialization⌊
β = ‖A‖2, ǫ ∈]0, 1], y0 ∈ R

M .

For n = 0, 1, . . .

γn ∈ [ǫβ−1, (2− ǫ)β−1]
xn = proxf (x̃−A⊤yn)

ỹn = yn + γnAxn,

yn+1 = ỹn − γnprox
γ−1
n h

(γ−1
n ỹn).

⇒ The DFB algorithm is also known, in machine learning, as
the dual ascent algorithm.
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Proposed acceleration strategy

✗ In the context of large scale problems, accelerating the DFB
algorithm is of main interest:

 A variable metric strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).

 A block-coordinate strategy is adopted for better flexibility, and
reduction of the computational cost per iteration
(∼ Gauss-Seidel methods).
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Proposed acceleration strategy

✗ In the context of large scale problems, accelerating the DFB
algorithm is of main interest:

 A variable metric strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).

 A block-coordinate strategy is adopted for better flexibility, and
reduction of the computational cost per iteration
(∼ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:
• Dual coordinate ascent algorithms [Shalev-Shwartz et al., 2013] , [Jaggi

et al., 2014] ⇒ Stochastic selection of blocks.
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Proposed acceleration strategy

✗ In the context of large scale problems, accelerating the DFB
algorithm is of main interest:

 A variable metric strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).

 A block-coordinate strategy is adopted for better flexibility, and
reduction of the computational cost per iteration
(∼ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:
• Dual coordinate ascent algorithms

• Accelerated proximal alternating descent [Chambolle et al., 2015]

⇒ FISTA-like acceleration.
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Proposed acceleration strategy

✗ In the context of large scale problems, accelerating the DFB
algorithm is of main interest:

 A variable metric strategy is introduced to improve the
convergence rate (see [Repetti et al., 2014]).

 A block-coordinate strategy is adopted for better flexibility, and
reduction of the computational cost per iteration
(∼ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:
• Dual coordinate ascent algorithms

• Accelerated proximal alternating descent

• Sparse Kaczmarz algorithm [Lorentz et al., 2014] ⇒ When f is the
ℓ1 norm, and h is the sum of indicator functions of singletons.
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Primal problem

Compute proxg(x̃) with (∀x ∈ R
N ) g(x) = f(x) +

J∑

j=1

hj(Ajx),

PRIMAL PROBLEM

where
◮ f belongs to Γ0(R

N ),
◮ (∀j ∈ {1, . . . , J}) hj belongs to Γ0(R

Mj ),
◮ (∀j ∈ {1, . . . , J}) Aj ∈ R

Mj×N .
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Primal problem

minimize
x∈RN

f(x) +
J∑

j=1

hj(Ajx) +
1

2
‖x− x̃‖2,

PRIMAL PROBLEM

where
◮ f belongs to Γ0(R

N ),
◮ (∀j ∈ {1, . . . , J}) hj belongs to Γ0(R

Mj ),
◮ (∀j ∈ {1, . . . , J}) Aj ∈ R

Mj×N .

Qualification condition:

(∀j ∈ {1, . . . , J}) ri (Aj(dom f)) ∩ ri (domhj) 6= ∅
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Dual problem

minimize
(yj)16j6J∈R

M
ϕ
(
−

J∑

j=1

A⊤
j y

j + x̃
)
+

J∑

j=1

h∗j (y
j),

DUAL PROBLEM

◮ The right part of the criterion is now separable with respect to
the dual components.

⇒ We can apply the block-coordinate variable metric strategy
from [Chouzenoux et al., 2014] to solve the dual problem:

At each iteration n ∈ N, a block index jn is selected. The
corresponding dual variable y

jn
n is updated, according to a

preconditioned forward-backward rule, while all the other dual
variables are kept unchanged.
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Dual block preconditioned forward-backward algorithm

Algorithm DBFB:

Initialization⌊
Bj ∈ R

Mj×Mj with Bj � AjA
⊤
j , ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , z0 = −

∑J
j=1A

⊤
j y

j
0.

For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
jn ∈ {1, . . . , J}
xn = proxf (x̃+ zn)

ỹ
jn
n = y

jn
n + γnB

−1
jn

Ajnxn

y
jn
n+1 = ỹ

jn
n − γnB

−1
jn

prox
γnB

−1
jn

,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = y

j
n, ∀j ∈ {1, . . . , J} \ {jn}

zn+1 = zn −A⊤
jn
(yjnn+1 − y

jn
n ).
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Proximity operator within a general metric

◮ Computation of proxC,g(x̃) with C ∈ S+(RN ) ?

Algorithm DBFB:

Initialization⌊
Bj ∈ R

Mj×Mj with Bj � AjC
−1A⊤

j , ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , z0 = −C−1

∑J
j=1A

⊤
j y

j
0.

For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
jn ∈ {1, . . . , J}
xn = proxC,f (x̃+ zn)

ỹ
jn
n = y

jn
n + γnB

−1
jn

Ajnxn

y
jn
n+1 = ỹ

jn
n − γnB

−1
jn

prox
γnB

−1
jn

,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = y

j
n, ∀j ∈ {1, . . . , J} \ {jn}

zn+1 = zn − C−1A⊤
jn
(yjnn+1 − y

jn
n ).
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Particular case when f = 0

◮When f = 0, the algorithm simplifies as follows:

Algorithm DBFB0:

Initialization⌊
Bj ∈ R

Mj×Mj with Bj � AjA
⊤
j , ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , x0 = x̃−

∑J
j=1A

⊤
j y

j
0.

For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
jn ∈ {1, . . . , J}

ỹ
jn
n = y

jn
n + γnB

−1
jn

Ajnxn

y
jn
n+1 = ỹ

jn
n − γnB

−1
jn

prox
γnB

−1
jn

,hjn

(
γ−1
n Bjn ỹ

jn
n

)

y
j
n+1 = y

j
n, ∀j ∈ {1, . . . , J} \ {jn}

xn+1 = xn −A⊤
jn
(yjnn+1 − y

jn
n ).
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Convergence result

ASSUMPTIONS:

1. The functions f and (hj)16j6J are semi-algebraic.

2. For every j ∈ {1, . . . , J}, the restriction of h∗j to its domain is
continuous.

3. For every j ∈ {1, . . . , J}, matrix Bj is definite positive.

4. The sequence (jn)n∈N is chosen according to a quasi-cyclic
rule, i.e. there exists K > J such that, for every n ∈ N,
{1, . . . , J} ⊂ {jn, . . . , jn+K−1}.

If the sequence (yn)n∈N =
(
(yjn)16j6J

)
n∈N

is bounded, then this se-
quence converges to a solution to the dual problem. In addition, the
sequence (xn)n∈N converges to the proximity operator of g evalu-
ated at x̃.
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Convergence rate result

Suppose that the previous assumptions hold and that x̂ and ŷ are
the limits of (xn)n∈N and (yn)n>1, respectively.
There exists α ∈]0,+∞[ and λ ∈]0,+∞[ such that, for every n > 1,

‖xn − x̂‖ 6 λ‖A‖n−α, ‖yn − ŷ‖ 6 λn−α.

In addition, if one of the following conditions is met:

1. the dual cost function is strongly convex,
2. f is Lipschitz differentiable and A is surjective,
3. for every j ∈ {1, . . . , J}, hj is Lipschitz differentiable,
4. the dual cost function is a piecewise polynomial function of

degree 2,
5. f is a quadratic function and, for every j ∈ {1, . . . , J}, h∗j is a

piecewise polynomial function of degree 2,

then, there exists τ ∈ [0, 1[ and λ′ ∈]0,+∞[ such that, for every
n > 1,

‖xn − x̂‖ 6 λ′‖A‖τn, ‖yn − ŷ‖ 6 λ′τn.
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Parallel dual block forward-backward algorithm

◮ Link with the method from [Combettes et al.,2011]:

Algorithm PDBFB:

Initialization

(ωj)16j6J ∈]0, 1]J such that
∑J

j=1 ωj = 1,

β > maxj∈{1,...,J} ‖Aj‖
2,

Bj = βω−1
j IMj

, ∀j ∈ {1, . . . , J}

ǫ ∈]0, 1], (yj0)16j6J ∈ R
M , x0 = x̃−

∑J
j=1A

⊤
j y

j
0.

For n = 0, 1, . . .

γn ∈ [ǫ, 2− ǫ]
For j = 1, . . . , J⌊

ỹ
j
n = y

j
n + γnB

−1
j Ajxn

y
j
n+1 = ỹ

j
n − γnB

−1
j prox

γnB
−1
j ,hj

(
γ−1
n Bj ỹ

j
n

)

xn+1 = xn −
∑J

j=1A
⊤
j (y

j
n+1 − y

j
n).
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Experimental results



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy

LCS - 2017 25/41

Simulation framework

Test video sequences:

 Synthetic sequences Foreman and Claire (N = 352× 288,
resp. N = 360× 288, T = 50), corrupted with a blur and a white
Gaussian noise.

 Real blurry interlaced video sequences Tachan and Au

théâtre ce soir provided by INA (L = 720× 288, T = 80).

Restoration strategy:

⋆ Minimization using PALM algorithm.

⋆ (∀t ∈ {1, . . . , T}) Ψt = η sltv+ι[xmin,xmax]N with η > 0, sltv the
semi-local total variation [Condat, 2014], and M is a nonsmooth
temporal regularization term [Abboud et al, 2014].

Among Algorithms BDFB, BDFB0 and PBDFB, which one is the
most efficient for the computation of the proximal inner loops?
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Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored

progressive image (bottom), of the Foreman sequence. Input SNR = 25.54dB,

output SNR = 28.95dB.
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Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored

progressive image (bottom), of the Claire sequence. Input SNR = 25.27dB,

output SNR = 29.21dB.
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Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored

progressive image (bottom), of Tachan sequence.



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy

LCS - 2017 29/41

Visual results

Frames extracted from the noisy blurred interlaced field (top) and restored

progressive image (bottom), of Au théâtre ce soir sequence.
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Averaged execution time (in s.) per Foreman frame using BDFB � , BDFB0 ⋄

or PBDFB ◦
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Speed
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Benefit of preconditioning

Time (s)
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Average execution time per Foreman frame for proximity step in BDFB

algorithm using preconditioning, no preconditioning using exact norms and

no preconditioning using approximate norms.



Introduction Proximal operator Dual forward-backward algorithms Experimental results Distributed strategy

LCS - 2017 35/41

Distributed strategy
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Distributed formulation

Find x̂ = argmin
x∈Rn

J∑

j=1

hj(Ajx) +
1

2
‖x− x̃‖2.

ORIGINAL PROBLEM

Find x̂ = argmin
x=(xj)16j6J∈ΛJ

J∑

j=1

hj(Ajx
j) +

1

2

J∑

j=1

ωj‖x
j − x̃‖2.

REFORMULATED PROBLEM

Standard coupling constraint:

ΛJ =







x1

...
xJ


 ∈ R

NJ | x1 = . . . = xJ





.
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Local form of consensus

◮ We define (Vℓ)16ℓ6Lof {1, . . . , J} with cardinality (κℓ)16ℓ6L
such that

x ∈ Λ ⇔ (∀ℓ ∈ {1, . . . , L}) (xj)j∈Vℓ
∈ Λκℓ

.

◮ Vℓ can be viewed as the ℓ-th hyperedge of a connected
hypergraph with nodes {1, . . . , J}.

◮ Resolution by application of BDFB to the problem:

minimize
x=(xj)16j6J∈R

NJ

J∑

j=1

hj(Ajx
j)+

L∑

ℓ=1

ιΛκℓ
(Sℓ x)+

1

2

J∑

j=1

ωj‖x
j−x̃‖2.

where, for every ℓ ∈ {1, . . . , ℓ} Sℓ ∈ R
Nκℓ×NJ is some

decimation operator.
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Experimental results (Julia programming language)
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Speedup w.r.t. the number of used cores for Foreman sequence:proposed

method versus linear speedup.
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Experimental results (Julia programming language)
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Speedup w.r.t. the number of used cores for Claire sequence:‘proposed

method versus linear speedup.
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Conclusion

Deterministic primal-dual splitting algorithm to handle efficiently the
computation of the proximity operator of composite convex func-
tions.

✓ Convergence guaranteed for both its primal and dual
iterates,

✓ High flexibility in the selection of blocks,

✓ Possibility to include sophisticated preconditioning
strategy,

✓ Good performance in the context of video restoration,

✓ Extension to distributed optimization.
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