Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				1/41

Proximity operator computation for video restoration.

Émilie Chouzenoux

Center for Visual Computing - INRIA Saclay, CentraleSupélec, France Laboratoire d'Informatique Gaspard Monge - CNRS, Univ. Paris-Est Marne-la-Vallée, France

> LCS Seminar 8 December 2017

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				2/41

In collaboration with

F. Abboud

J.-H. Chenot L. Laborelli Institut National de l'Audiovisuel (INA)

Introduction •000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				3/41

Introduction •000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				3/41

Introduction •000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				3/41

 $S_t = S_o$ for odd values of t and $S_t = S_o$ for even values of t.

Introduction •000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				3/41

• $(w_t)_{1 \leq t \leq T} \in \mathbb{R}^{TL}$: unknown additive noise.

Introduction •000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				3/41

• $(y_t)_{1 \leq t \leq T} \in \mathbb{R}^{TL}$: interlaced blurred video sequence (N = 2L).

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				4/41

Objective function

$$\underset{x \in \mathbb{R}^{TN}}{\text{minimize}} \quad F(x) = \Phi(x) + \Psi(x)$$

 $\Phi \longrightarrow$ least squares data fidelity term:

$$(\forall x \in \mathbb{R}^{TN}) \quad \Phi(x) = \frac{1}{2} \sum_{t=1}^{T} \|\mathbf{S}_t(h * x_t) - y_t\|^2,$$

 $\Psi \longrightarrow$ regularization term:

$$(\forall x \in \mathbb{R}^{TN}) \quad \Psi(x) = \sum_{t=1}^{T} \Psi_t(x_t) + \mathsf{M}(x),$$

where $(\forall t \in \{1, ..., T\}) \Psi_t$ encourages spatial regularity and domain constraints on video frame x_t , and M is a temporal regularization term between neighboring frames.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				5/41

Minimization strategy

- * Minimization of $F=\Phi+\Psi$ using the PALM approach: ([Botte et al., 2013])
- Each image x_t is updated sequentially thanks to a forward-backward iteration combining:
 - 1. a gradient step on Φ with respect to x_t ,
 - 2. a proximal step on the restriction to x_t of Ψ .

CONTENT OF THIS TALK:

How to compute the proximity operator of a convex function within a general metric, with limited memory and low computation time? \Rightarrow Exploit duality and preconditioned block alternation schemes!

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				6/41

Outline of the talk

- 1. Proximal operator
- 2. Dual forward-backward algorithms
 - Dual forward-backward algorithm
 - Block preconditioned DFB algorithm
 - Convergence results
- 3. Experimental results
- 4. Distributed strategy

	tegy
LCS - 2017 7	7/41

Proximal operator

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				8/41

Notation and definitions

The set of symmetric definite positive matrices of $\mathbb{R}^{N \times N}$ will be denoted $\mathcal{S}^+(\mathbb{R}^N)$. Let $U \in \mathcal{S}^+(\mathbb{R}^N)$. The weighted norm induced by U is $\|\cdot\|_U = \sqrt{\langle \cdot | U \cdot \rangle},$ with the convention $\|\cdot\| = \|\cdot\|_{\mathrm{Id}}.$

The conjugate of a function $f \colon \mathbb{R}^N \to]-\infty, +\infty]$ is $f^* \colon \mathbb{R}^N \to [-\infty, +\infty]$ such that $(\forall u \in \mathbb{R}^N) \qquad f^*(u) = \sup_{x \in \mathbb{R}^N} (\langle x \mid u \rangle - f(x)).$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				9/41

Proximal operator http://proximity-operator.net

Let Γ₀(ℝ^N) denote the set of proper lsc convex functions from ℝ^N to] −∞, +∞].

The proximal operator $\operatorname{prox}_{U,f}(x)$ of $f \in \Gamma_0(\mathbb{R}^N)$ at $x \in \mathbb{R}^N$ relative to the metric induced by $U \in S^+(\mathbb{R}^N)$ is the unique vector $\widehat{y} \in \mathbb{R}^N$ such that

$$f(\hat{y}) + \frac{1}{2} \| \hat{y} - x \|_{U}^{2} = \inf_{y \in \mathbb{R}^{N}} f(y) + \frac{1}{2} \langle y - x | U(y - x) \rangle.$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				9/41

Proximal operator http://proximity-operator.net

The proximal operator $\operatorname{prox}_{U,f}(x)$ of $f \in \Gamma_0(\mathbb{R}^N)$ at $x \in \mathbb{R}^N$ relative to the metric induced by $U \in S^+(\mathbb{R}^N)$ is the unique vector $\widehat{y} \in \mathbb{R}^N$ such that

$$f(\hat{y}) + \frac{1}{2} \| \hat{y} - x \|_{U}^{2} = \inf_{y \in \mathbb{R}^{N}} f(y) + \frac{1}{2} \langle y - x | U(y - x) \rangle.$$

CHARACTERIZATION OF PROXIMAL OPERATOR

$$(\forall x \in \mathbb{R}^N) \quad \widehat{y} = \mathrm{prox}_{U,f}(x) \Leftrightarrow x - \widehat{y} \in U^{-1} \partial f(\widehat{y}).$$

with ∂f the Moreau sub differential of f:

 $(\forall x \in \mathbb{R}^N) \quad \partial f(x) = \{t \in \mathbb{R}^N | (\forall y \in \mathbb{R}^N) f(y) \geqslant f(x) + \langle t | y - x \rangle \}.$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				9/41

Proximal operator http://proximity-operator.net

The proximal operator $\operatorname{prox}_{U,f}(x)$ of $f \in \Gamma_0(\mathbb{R}^N)$ at $x \in \mathbb{R}^N$ relative to the metric induced by $U \in S^+(\mathbb{R}^N)$ is the unique vector $\widehat{y} \in \mathbb{R}^N$ such that

$$f(\hat{y}) + \frac{1}{2} \| \hat{y} - x \|_{U}^{2} = \inf_{y \in \mathbb{R}^{N}} f(y) + \frac{1}{2} \langle y - x | U(y - x) \rangle.$$

CHARACTERIZATION OF PROXIMAL OPERATOR

$$(\forall x \in \mathbb{R}^N) \quad \widehat{y} = \operatorname{prox}_{U,f}(x) \Leftrightarrow x - \widehat{y} \in U^{-1} \partial f(\widehat{y}).$$

MOREAU'S DECOMPOSITION FORMULA

$$(\forall x \in \mathbb{R}^N) \quad \operatorname{prox}_{U,f^*}(x) = x - U^{-1}\operatorname{prox}_{U^{-1},f}(Ux)$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				10/41

Properties of proximal operator

	f(x)	$\operatorname{prox}_f(x) = \operatorname{prox}_{\operatorname{Id},f}(x)$
translation $z \in \mathbb{R}^N$	f(x-z)	$z + \operatorname{prox}_f(x - z)$
quadratic perturbation $z \in \mathbb{R}^N, \alpha > 0, \gamma \in \mathbb{R}$	$f(x) + \alpha x ^2 / 2 + \langle x \mid z \rangle + \gamma$	$\operatorname{prox}_{\frac{f}{\alpha+1}}\left(\frac{x-z}{\alpha+1}\right)$
scaling $ ho \in \mathbb{R}^*$	$f(\rho x)$	$\frac{1}{\rho} \operatorname{prox}_{\rho^2 f}(\rho x)$
quadratic function $L \in \mathbb{R}^{M \times N}, \gamma > 0, z \in \mathbb{R}^{M}$	$\gamma \ Lx - z\ ^2/2$	$(\mathrm{Id} + \gamma L L^{\top})^{-1} (x - \gamma L^* z)$
isomorphism $L \in \mathbb{R}^{M \times N}, LL^{\top} = \mu \text{Id}, \mu > 0$	f(Lx)	$x - \mu^{-1}L^{\top}(x - \operatorname{prox}_{\mu f}(Lx))$
reflexion	f(-x)	$-\operatorname{prox}_{f}(-x)$
separability	$\sum_{\substack{n=1\\x=(x^{(n)})_{1\leqslant n\leqslant N}}^{N}\varphi_n(x^{(n)})$	$\left(\mathrm{prox}_{\varphi_n}(x^{(n)})\right)_{1\leqslant n\leqslant N}$
indicator function	$\iota_{C}(x)$	$P_{C}(x)$
support function	$\iota_{C}^*(x) = \sigma_{C}(x)$	$x - P_{C}(x)$
composite function	$f(x) + \sum_{j=1}^{J} h_j(A_j x)$	Iterative strategy!

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				10/41

Properties of proximal operator

	f(x)	$\operatorname{prox}_{f}(x) = \operatorname{prox}_{\operatorname{Id},f}(x)$
translation $z \in \mathbb{R}^N$	f(x-z)	$z + \operatorname{prox}_f(x - z)$
quadratic perturbation $z \in \mathbb{R}^N, \alpha > 0, \gamma \in \mathbb{R}$	$f(x) + \alpha x ^2 / 2 + \langle x \mid z \rangle + \gamma$	$\operatorname{prox}_{\frac{f}{\alpha+1}}\left(\frac{x-z}{\alpha+1}\right)$
scaling $ ho \in \mathbb{R}^*$	$f(\rho x)$	$\frac{1}{\rho} \operatorname{prox}_{\rho^2 f}(\rho x)$
quadratic function $L \in \mathbb{R}^{M \times N}, \gamma > 0, z \in \mathbb{R}^{M}$	$\gamma \ Lx - z\ ^2/2$	$(\mathrm{Id} + \gamma L L^{\top})^{-1} (x - \gamma L^* z)$
isomorphism $L \in \mathbb{R}^{M \times N}, LL^{\top} = \mu \text{Id}, \mu > 0$	f(Lx)	$x - \mu^{-1} L^\top (x - \mathrm{prox}_{\mu f}(Lx)$
reflexion	f(-x)	$-\operatorname{prox}_{f}(-x)$
separability	$\sum_{\substack{n=1\\x=(x^{(n)})_{1\leqslant n\leqslant N}}^{N} \varphi_n(x^{(n)})$	$\left(\mathrm{prox}_{\varphi_n}(x^{(n)})\right)_{1\leqslant n\leqslant N}$
indicator function	$\iota_{C}(x)$	$P_{C}(x)$
support function	$\iota_{C}^*(x) = \sigma_{C}(x)$	$x - P_{C}(x)$
composite function	$f(x) + \sum_{j=1}^{J} h_j(A_j x)$	Iterative strategy!

Which strategy in the context of large scale optimization ?

Introduction Proxima	operator Dual forward-backwar •00000000000	rd algorithms Experimental result	s Distributed strategy
LCS - 2017			11/41

Dual forward-backward algorithms

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				12/41

Primal problem

PRIMAL PROBLEM

Compute $\operatorname{prox}_{g}(\widetilde{x})$ with $g = f + h \circ A$ and $\widetilde{x} \in \mathbb{R}^{N}$:

$$\underset{x \in \mathbb{R}^N}{\text{minimize}} \quad f(x) + h(Ax) + \frac{1}{2} \|x - \widetilde{x}\|^2$$

where

- f belongs to $\Gamma_0(\mathbb{R}^N)$,
- *h* belongs to $\Gamma_0(\mathbb{R}^M)$,

•
$$A \in \mathbb{R}^{M \times N}$$
.

Qualification condition: ri $(A(\text{dom } f)) \cap$ ri $(\text{dom } h) \neq \emptyset$.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				13/41

Dual problem

DUAL PROBLEM

$$\underset{y \in \mathbb{R}^M}{\text{minimize}} \ \varphi \Big(- A^\top y + \widetilde{x} \Big) + h^*(y),$$

▶ $\varphi = (f + \frac{1}{2} \| \cdot \|^2)^*$ is the Moreau envelope of parameter 1 of f^* with a nonexpansive (i.e. 1-Lipschitzian) gradient.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				13/41

Dual problem

DUAL PROBLEM

$$\underset{y \in \mathbb{R}^M}{\text{minimize}} \ \varphi\Big(- A^\top y + \widetilde{x} \Big) + h^*(y),$$

▶ $\varphi = (f + \frac{1}{2} \| \cdot \|^2)^*$ is the Moreau envelope of parameter 1 of f^* with a nonexpansive (i.e. 1-Lipschitzian) gradient.

 \Rightarrow we can apply the forward-backward algorithm:

$$\begin{array}{l} \text{Initialization} \\ \mid \beta = \|A\|^2, \, \epsilon \in]0, 1], \, y_0 \in \mathbb{R}^M. \\ \text{For } n = 0, 1, \dots \\ \mid \gamma_n \in [\epsilon\beta^{-1}, (2-\epsilon)\beta^{-1}] \\ \mid \widetilde{y}_n = y_n - \gamma_n \nabla \left(\varphi \circ (-A^\top \cdot + \widetilde{x})\right)(y_n), \\ y_{n+1} = \operatorname{prox}_{\gamma_n h^*}(\widetilde{y}_n) \end{array}$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				14/41

Dual forward-backward algorithm

According to Moreau's decomposition formula, and the expression $\nabla \varphi = \text{Id} - \text{prox}_{f^*}$, the previous algorithm is equivalent to:

 $\begin{bmatrix} \text{Initialization} \\ \beta = \|A\|^2, \epsilon \in]0, 1], y_0 \in \mathbb{R}^M. \\ \text{For } n = 0, 1, \dots \\ \gamma_n \in [\epsilon\beta^{-1}, (2-\epsilon)\beta^{-1}] \\ x_n = \operatorname{prox}_f(\widetilde{x} - A^\top y_n) \\ \widetilde{y}_n = y_n + \gamma_n A x_n, \\ y_{n+1} = \widetilde{y}_n - \gamma_n \operatorname{prox}_{\gamma_n^{-1}h}(\gamma_n^{-1} \widetilde{y}_n). \end{bmatrix}$

 \Rightarrow Convergence of both $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ proved in [Combettes *et al.*, 2011].

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				14/41

Dual forward-backward algorithm

According to Moreau's decomposition formula, and the expression $\nabla \varphi = \text{Id} - \text{prox}_{f^*}$, the previous algorithm is equivalent to:

 $\begin{array}{l} \text{Initialization} \\ \mid \beta = \|A\|^2, \, \epsilon \in]0, 1], \, y_0 \in \mathbb{R}^M. \\ \text{For } n = 0, 1, \dots \\ \mid \gamma_n \in [\epsilon\beta^{-1}, (2-\epsilon)\beta^{-1}] \\ x_n = \operatorname{prox}_f(\widetilde{x} - A^\top y_n) \\ \widetilde{y}_n = y_n + \gamma_n A x_n, \\ y_{n+1} = \widetilde{y}_n - \gamma_n \operatorname{prox}_{\gamma_n^{-1}h}(\gamma_n^{-1}\widetilde{y}_n). \end{array}$

 \Rightarrow A special case is Dykstra-like algorithm [Bauschke *et al*, 2007], itself generalizing the Dykstra algorithm for computing the projection onto the intersection of convex sets.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				14/41

Dual forward-backward algorithm

According to Moreau's decomposition formula, and the expression $\nabla \varphi = \text{Id} - \text{prox}_{f^*}$, the previous algorithm is equivalent to:

 $\begin{array}{l} \text{Initialization} \\ \mid \beta = \|A\|^2, \, \epsilon \in]0, 1], \, y_0 \in \mathbb{R}^M. \\ \text{For } n = 0, 1, \dots \\ \mid \gamma_n \in [\epsilon\beta^{-1}, (2-\epsilon)\beta^{-1}] \\ x_n = \operatorname{prox}_f(\widetilde{x} - A^\top y_n) \\ \widetilde{y}_n = y_n + \gamma_n A x_n, \\ y_{n+1} = \widetilde{y}_n - \gamma_n \operatorname{prox}_{\gamma_n^{-1}h}(\gamma_n^{-1}\widetilde{y}_n). \end{array}$

 \Rightarrow The DFB algorithm is also known, in machine learning, as the dual ascent algorithm.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				15/41

- In the context of large scale problems, accelerating the DFB algorithm is of main interest:
 - → A variable metric strategy is introduced to improve the convergence rate (see [Repetti *et al.*, 2014]).
 - → A block-coordinate strategy is adopted for better flexibility, and reduction of the computational cost per iteration (~ Gauss-Seidel methods).

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				15/41

- In the context of large scale problems, accelerating the DFB algorithm is of main interest:
 - → A variable metric strategy is introduced to improve the convergence rate (see [Repetti *et al.*, 2014]).
 - → A block-coordinate strategy is adopted for better flexibility, and reduction of the computational cost per iteration (~ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:

• Dual coordinate ascent algorithms [Shalev-Shwartz *et al.*, 2013] , [Jaggi *et al.*, 2014] \Rightarrow Stochastic selection of blocks.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				15/41

- In the context of large scale problems, accelerating the DFB algorithm is of main interest:
 - → A variable metric strategy is introduced to improve the convergence rate (see [Repetti *et al.*, 2014]).
 - → A block-coordinate strategy is adopted for better flexibility, and reduction of the computational cost per iteration (~ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:

- Dual coordinate ascent algorithms
- Accelerated proximal alternating descent [Chambolle *et al.*, 2015] \Rightarrow FISTA-like acceleration.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				15/41

- In the context of large scale problems, accelerating the DFB algorithm is of main interest:
 - → A variable metric strategy is introduced to improve the convergence rate (see [Repetti *et al.*, 2014]).
 - → A block-coordinate strategy is adopted for better flexibility, and reduction of the computational cost per iteration (~ Gauss-Seidel methods).

LINK WITH EXISTING WORKS:

- Dual coordinate ascent algorithms
- Accelerated proximal alternating descent
- Sparse Kaczmarz algorithm [Lorentz *et al.*, 2014] \Rightarrow When f is the ℓ_1 norm, and h is the sum of indicator functions of singletons.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				16/41

Primal problem

PRIMAL PROBLEM

Compute
$$\operatorname{prox}_g(\widetilde{x})$$
 with $(\forall x \in \mathbb{R}^N)$ $g(x) = f(x) + \sum_{j=1}^J h_j(A_j x)$,

where

- f belongs to $\Gamma_0(\mathbb{R}^N)$,
- $(\forall j \in \{1, \ldots, J\}) h_j$ belongs to $\Gamma_0(\mathbb{R}^{M_j})$,
- $\blacktriangleright \quad (\forall j \in \{1, \dots, J\}) \ A_j \in \mathbb{R}^{M_j \times N}.$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				16/41

Primal problem

where

•
$$f$$
 belongs to $\Gamma_0(\mathbb{R}^N)$,

•
$$(\forall j \in \{1, \dots, J\}) h_j$$
 belongs to $\Gamma_0(\mathbb{R}^{M_j})$

$$\blacktriangleright \quad (\forall j \in \{1, \dots, J\}) \ A_j \in \mathbb{R}^{M_j \times N}$$

Qualification condition:

 $(\forall j \in \{1, \dots, J\}) \quad \operatorname{ri}\left(A_j(\operatorname{dom} f)\right) \cap \operatorname{ri}\left(\operatorname{dom} h_j\right) \neq \varnothing$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				17/41

Dual problem

► The right part of the criterion is now separable with respect to the dual components.

 \Rightarrow We can apply the block-coordinate variable metric strategy from [Chouzenoux *et al.*, 2014] to solve the dual problem:

At each iteration $n \in \mathbb{N}$, a block index j_n is selected. The corresponding dual variable $y_n^{j_n}$ is updated, according to a preconditioned forward-backward rule, while all the other dual variables are kept unchanged.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				18/41

Dual block preconditioned forward-backward algorithm

$$\begin{array}{l} \textbf{Algorithm DBFB:} \\ \textbf{Initialization} \\ B_{j} \in \mathbb{R}^{M_{j} \times M_{j}} \text{ with } B_{j} \succeq A_{j}A_{j}^{\top}, \quad \forall j \in \{1, \ldots, J\} \\ \epsilon \in]0, 1], \ (y_{0}^{j})_{1 \leqslant j \leqslant J} \in \mathbb{R}^{M}, \ z_{0} = -\sum_{j=1}^{J} A_{j}^{\top} y_{0}^{j}. \\ \textbf{For } n = 0, 1, \ldots \\ \gamma_{n} \in [\epsilon, 2 - \epsilon] \\ j_{n} \in \{1, \ldots, J\} \\ x_{n} = \text{prox}_{f}(\widetilde{x} + z_{n}) \\ \widetilde{y}_{n}^{j_{n}} = y_{n}^{j_{n}} + \gamma_{n} B_{j_{n}}^{-1} A_{j_{n}} x_{n} \\ y_{n+1}^{j_{n}} = \widetilde{y}_{n}^{j_{n}} - \gamma_{n} B_{j_{n}}^{-1} \text{prox}_{\gamma_{n} B_{j_{n}}^{-1}, h_{j_{n}}} \left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right) \\ y_{n+1}^{j} = y_{n}^{j}, \quad \forall j \in \{1, \ldots, J\} \setminus \{j_{n}\} \\ z_{n+1} = z_{n} - A_{j_{n}}^{\top}(y_{n+1}^{j_{n}} - y_{n}^{j_{n}}). \end{array}$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				19/41

Proximity operator within a general metric

• Computation of $\operatorname{prox}_{C,q}(\widetilde{x})$ with $C \in \mathcal{S}^+(\mathbb{R}^N)$?

$$\begin{array}{l} \textbf{Algorithm DBFB:} \\ \textbf{Initialization} \\ B_{j} \in \mathbb{R}^{M_{j} \times M_{j}} \text{ with } B_{j} \succeq A_{j}C^{-1}A_{j}^{\top}, \quad \forall j \in \{1, \dots, J\} \\ \epsilon \in]0, 1], \ (y_{0}^{j})_{1 \leqslant j \leqslant J} \in \mathbb{R}^{M}, \ z_{0} = -C^{-1}\sum_{j=1}^{J}A_{j}^{\top}y_{0}^{j}. \\ \textbf{For } n = 0, 1, \dots \\ \gamma_{n} \in [\epsilon, 2 - \epsilon] \\ j_{n} \in \{1, \dots, J\} \\ x_{n} = \text{prox}_{C, f}(\widetilde{x} + z_{n}) \\ \widetilde{y}_{n}^{j_{n}} = y_{n}^{j_{n}} + \gamma_{n}B_{j_{n}}^{-1}A_{j_{n}}x_{n} \\ y_{n+1}^{j_{n}} = \widetilde{y}_{n}^{j_{n}} - \gamma_{n}B_{j_{n}}^{-1}\text{prox}_{\gamma_{n}B_{j_{n}}^{-1},h_{j_{n}}}(\gamma_{n}^{-1}B_{j_{n}}\widetilde{y}_{n}^{j_{n}}) \\ y_{n+1}^{j} = y_{n}^{j}, \quad \forall j \in \{1, \dots, J\} \setminus \{j_{n}\} \\ z_{n+1} = z_{n} - C^{-1}A_{j_{n}}^{\top}(y_{n+1}^{j_{n}} - y_{n}^{j_{n}}). \end{array}$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				20/41

Particular case when f = 0

• When f = 0, the algorithm simplifies as follows:

$$\begin{array}{l} \hline \textbf{Algorithm DBFB0:} \\ \textbf{Initialization} \\ B_{j} \in \mathbb{R}^{M_{j} \times M_{j}} \text{ with } B_{j} \succeq A_{j}A_{j}^{\top}, \quad \forall j \in \{1, \dots, J\} \\ \epsilon \in]0, 1], \ (y_{0}^{j})_{1 \leqslant j \leqslant J} \in \mathbb{R}^{M}, \ x_{0} = \widetilde{x} - \sum_{j=1}^{J} A_{j}^{\top} y_{0}^{j}. \\ \hline \textbf{For } n = 0, 1, \dots \\ \gamma_{n} \in [\epsilon, 2 - \epsilon] \\ j_{n} \in \{1, \dots, J\} \\ \widetilde{y}_{n}^{j_{n}} = y_{n}^{j_{n}} + \gamma_{n} B_{j_{n}}^{-1} A_{j_{n}} x_{n} \\ y_{n+1}^{j_{n}} = \widetilde{y}_{n}^{j_{n}} - \gamma_{n} B_{j_{n}}^{-1} \operatorname{prox}_{\gamma_{n} B_{j_{n}}^{-1}, h_{j_{n}}} \left(\gamma_{n}^{-1} B_{j_{n}} \widetilde{y}_{n}^{j_{n}}\right) \\ y_{n+1}^{j} = y_{n}^{j}, \quad \forall j \in \{1, \dots, J\} \setminus \{j_{n}\} \\ x_{n+1} = x_{n} - A_{j_{n}}^{\top} (y_{n+1}^{j_{n}} - y_{n}^{j_{n}}). \end{array}$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				21/41

Convergence result

ASSUMPTIONS:

- 1. The functions f and $(h_j)_{1 \le j \le J}$ are semi-algebraic.
- 2. For every $j \in \{1, \dots, J\}$, the restriction of h_j^* to its domain is continuous.
- 3. For every $j \in \{1, ..., J\}$, matrix B_j is definite positive.
- 4. The sequence $(j_n)_{n \in \mathbb{N}}$ is chosen according to a quasi-cyclic rule, i.e. there exists $K \ge J$ such that, for every $n \in \mathbb{N}$, $\{1, \ldots, J\} \subset \{j_n, \ldots, j_{n+K-1}\}.$

If the sequence $(y_n)_{n \in \mathbb{N}} = ((y_n^j)_{1 \le j \le J})_{n \in \mathbb{N}}$ is bounded, then this sequence converges to a solution to the dual problem. In addition, the sequence $(x_n)_{n \in \mathbb{N}}$ converges to the proximity operator of g evaluated at \tilde{x} .

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				22/41

Convergence rate result

Suppose that the previous assumptions hold and that \hat{x} and \hat{y} are the limits of $(x_n)_{n\in\mathbb{N}}$ and $(y_n)_{n\geq 1}$, respectively. There exists $\alpha \in [0, +\infty[$ and $\lambda \in]0, +\infty[$ such that, for every $n \geq 1$,

 $||x_n - \hat{x}|| \leq \lambda ||A|| n^{-\alpha}, ||y_n - \hat{y}|| \leq \lambda n^{-\alpha}.$

In addition, if one of the following conditions is met:

- 1. the dual cost function is strongly convex,
- 2. f is Lipschitz differentiable and A is surjective,
- 3. for every $j \in \{1, \ldots, J\}$, h_j is Lipschitz differentiable,
- the dual cost function is a piecewise polynomial function of degree 2,
- 5. f is a quadratic function and, for every $j \in \{1, ..., J\}$, h_j^* is a piecewise polynomial function of degree 2,

then, there exists $\tau \in [0,1[$ and $\lambda' \in]0,+\infty[$ such that, for every $n \geqslant 1,$

 $||x_n - \widehat{x}|| \leq \lambda' ||A|| \tau^n, \quad ||y_n - \widehat{y}|| \leq \lambda' \tau^n.$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				23/41

Parallel dual block forward-backward algorithm

► Link with the method from [Combettes et al.,2011]:

$$\begin{array}{l} \textbf{Algorithm PDBFB:} \\ \textbf{Initialization} \\ (\omega_j)_{1\leqslant j\leqslant J} \in]0,1]^J \text{ such that } \sum_{j=1}^J \omega_j = 1, \\ \beta \geqslant \max_{j\in \{1,\ldots,J\}} \|A_j\|^2, \\ B_j = \beta \omega_j^{-1} I_{M_j}, \quad \forall j\in \{1,\ldots,J\} \\ \epsilon \in]0,1], (y_0^j)_{1\leqslant j\leqslant J} \in \mathbb{R}^M, x_0 = \widetilde{x} - \sum_{j=1}^J A_j^\top y_0^j. \\ \textbf{For } n = 0,1,\ldots \\ \\ \gamma_n \in [\epsilon, 2-\epsilon] \\ \textbf{For } j = 1,\ldots,J \\ \\ \left[\begin{array}{c} \widetilde{y}_n^j = y_n^j + \gamma_n B_j^{-1} A_j x_n \\ y_{n+1}^j = \widetilde{y}_n^j - \gamma_n B_j^{-1} \operatorname{prox}_{\gamma_n B_j^{-1},h_j} \left(\gamma_n^{-1} B_j \widetilde{y}_n^j\right) \\ x_{n+1} = x_n - \sum_{j=1}^J A_j^\top (y_{n+1}^j - y_n^j). \end{array} \right] \end{array}$$

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				24/41

Experimental results

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				25/41

Simulation framework

Test video sequences:

- → Synthetic sequences Foreman and Claire ($N = 352 \times 288$, resp. $N = 360 \times 288$, T = 50), corrupted with a blur and a white Gaussian noise.
- \rightarrow Real blurry interlaced video sequences **Tachan** and **Au** théâtre ce soir provided by INA (*L* = 720 × 288, *T* = 80).

Restoration strategy:

* Minimization using PALM algorithm.

* $(\forall t \in \{1, \ldots, T\}) \Psi_t = \eta \text{ sltv} + \iota_{[x_{\min}, x_{\max}]^N}$ with $\eta > 0$, sltv the semi-local total variation [Condat, 2014], and M is a nonsmooth temporal regularization term [Abboud *et al*, 2014].

Among Algorithms BDFB, BDFB0 and PBDFB, which one is the most efficient for the computation of the proximal inner loops?

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				26/41

Frames extracted from the noisy blurred interlaced field (top) and restored progressive image (bottom), of the Foreman sequence. Input SNR = 25.54dB, output SNR = 28.95dB.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				27/41

Frames extracted from the noisy blurred interlaced field (top) and restored progressive image (bottom), of the Claire sequence. Input SNR = 25.27dB, output SNR = 29.21dB.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				28/41

Frames extracted from the noisy blurred interlaced field (top) and restored progressive image (bottom), of **Tachan** sequence.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				29/41

Frames extracted from the noisy blurred interlaced field (top) and restored progressive image (bottom), of **Au théâtre ce soir** sequence.

	Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017 30/4	LCS - 2017				30/41

Averaged execution time (in s.) per **Foreman** frame using BDFB □, BDFB0 or PBDFB ∘

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				31/41

Averaged execution time (in s.) per Claire frame using BDFB \Box , BDFB0 \diamond or PBDFB \circ

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				32/41

Averaged execution time (in s.) per **Tachan** frame using BDFB □, BDFB0 or PBDFB ∘

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				33/41

Averaged execution time (in s.) per **Au théâtre ce soir** frame using BDFB □, BDFB0 ◊ or PBDFB ◊

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				34/41

Benefit of preconditioning

Average execution time per **Foreman** frame for proximity step in BDFB algorithm using preconditioning, no preconditioning using exact norms and no preconditioning using approximate norms.

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy •000000
LCS - 2017				35/41

Distributed strategy

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				36/41

Distributed formulation

Standard coupling constraint:

$$\Lambda_J = \left\{ \begin{bmatrix} x^1 \\ \vdots \\ x^J \end{bmatrix} \in \mathbb{R}^{NJ} \mid x^1 = \ldots = x^J \right\}$$

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				37/41

Local form of consensus

► We define $(\mathbb{V}_{\ell})_{1 \leq \ell \leq L}$ of $\{1, \ldots, J\}$ with cardinality $(\kappa_{\ell})_{1 \leq \ell \leq L}$ such that

$$\boldsymbol{x} \in \Lambda \quad \Leftrightarrow \quad (\forall \ell \in \{1, \dots, L\}) \quad (x^j)_{j \in \mathbb{V}_\ell} \in \Lambda_{\kappa_\ell}.$$

- ▶ V_ℓ can be viewed as the ℓ-th hyperedge of a connected hypergraph with nodes {1,..., J}.
- Resolution by application of BDFB to the problem:

$$\underset{\boldsymbol{x}=(x^j)_{1\leqslant j\leqslant J}\in\mathbb{R}^{NJ}}{\text{minimize}} \quad \sum_{j=1}^{J} h_j(A_j x^j) + \sum_{\ell=1}^{L} \iota_{\Lambda_{\kappa_\ell}}(\boldsymbol{S}_\ell \, \boldsymbol{x}) + \frac{1}{2} \sum_{j=1}^{J} \omega_j \|x^j - \widetilde{x}\|^2.$$

where, for every $\ell \in \{1, ..., \ell\}$ $S_{\ell} \in \mathbb{R}^{N \kappa_{\ell} \times NJ}$ is some decimation operator.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				38/41

Experimental results (Julia programming language)

Speedup w.r.t. the number of used cores for **Foreman** sequence:proposed method versus linear speedup.

Introduction 0000	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy
LCS - 2017				39/41

Experimental results (Julia programming language)

Speedup w.r.t. the number of used cores for **Claire** sequence: 'proposed method versus linear speedup.

Introduction	Proximal operator	Dual forward-backward algorithms	Experimental results	Distributed strategy 00000●0
LCS - 2017				40/41

Conclusion

Deterministic primal-dual splitting algorithm to handle efficiently the computation of the proximity operator of composite convex functions.

- Convergence guaranteed for both its primal and dual iterates,
- ✓ High flexibility in the selection of blocks,
- Possibility to include sophisticated preconditioning strategy,
- ✓ Good performance in the context of video restoration,
- ✓ Extension to distributed optimization.

41/41

Some of our references ...

F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chenot and L. Laborelli

Dual Block Coordinate Forward-Backward Algorithm with Application to Deconvolution and Deinterlacing of Video Sequences

Journal of Mathematical Imaging and Vision, (to appear), 2017.

F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chenot and L. Laborelli

A Distributed Strategy for Computing Proximity Operators 49th Asilomar Conference on Signals, Systems and Computers, Asilomar, California, United States, 8-11 Nov 2015

F. Abboud, E. Chouzenoux, J.-C. Pesquet, J.-H. Chenot and L. Laborelli

A Hybrid Alternating Proximal Method for Blind Video Restoration European Signal Processing Conference (EUSIPCO 2014), pp. 1811-1815, Lisboa, Portugal, 1-5 Sep. 2014.

E. Chouzenoux, J.-C. Pesquet and A. Repetti

A Block Coordinate Variable Metric Forward-Backward Algorithm Journal of Global Optimization, Vol. 66, No. 3, pages 457-485, 2016.

P. L. Combettes and J.-C. Pesquet

Proximal Splitting methods in Signal Processing

in Fixed-Point Algorithms for Inverse Problems in Science and Engineering, H. H. Bauschke, R. Burachik, P. L, Combettes, V, Elser, D, R, Luke, and H, Wolkowicz editors, Springer-Verlag, New York, pp. 185-212, 2011.

N. Komodakis and J.-C. Pesquet

Plaving with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems IEEE Signal Processing Magazine, vol. 32, no. 6, pp. 31-54, 2015.