Iterative regularization via proximal methods

Silvia Villa

Dipartimento di Matematica Politecnico di Milano

CosmoStat Day on Machine Learning in Astrophysics Paris, January 26th, 2018

프 ト - 프 ト

Outline

Introduction and motivation

Ξ

イロト イヨト イヨト イヨト

Outline

Introduction and motivation

Part I: Quadratic data fit Joint work with: S.Matet, L. Rosasco, B.C. Vũ

Part II: General data fit Joint work with: G. Garrigos, L. Rosasco

3

イロト イポト イヨト イヨト

Computational regularization for large scale data problems

Integrating

REGULARIZATION and **OPTIMIZATION**

in inverse problems (and learning)

(4 同) ト 4 ヨ ト 4 ヨ ト

Computational regularization for large scale data problems

Integrating

REGULARIZATION and **OPTIMIZATION**

in inverse problems (and learning)

Computational requirements tailored to the information in the data rather than to their raw amount

(4 回) トイヨト イヨト

Inverse problems

- H and G Hilbert spaces
- $A: H \rightarrow G$ linear and bounded

Goal

Let $y \in G$, approximate the solution of

$$Ax = y$$
,

assuming that a solution exists.

3

- 4 回 ト - 4 三 ト - 4 三 ト

Inverse problems

- H and G Hilbert spaces
- $A: H \rightarrow G$ linear and bounded

Goal

Let $y \in G$, approximate the solution of

$$Ax = y,$$

assuming that a solution exists.

Selection principle: given $R: H \to \mathbb{R} \cup \{+\infty\}$ strongly convex, select x^{\dagger} , the solution of

 $\min R(x)$
s.t. Ax = y

Noisy data

We do not know $y \in \mathcal{G}$. We have access only to $\widehat{y} \in \mathcal{G}$ such that

$$\|\widehat{y} - y\| \le \delta, \qquad \delta > 0.$$

Goal:

find a **stable** approximation of x^{\dagger}

using only \hat{y} .

3

イロト イポト イヨト イヨト

Consider the regularized problem

$$\underset{x \in \mathcal{H}}{\text{minimize}} \quad \frac{1}{2\lambda} \|Ax - \widehat{y}\|^2 + R(x)$$

Э

イロト イロト イヨト イヨト

Consider the regularized problem

$$\begin{array}{l} \underset{x \in \mathcal{H}}{\text{minimize}} \quad \frac{1}{2\lambda} \|Ax - \widehat{y}\|^2 + R(x) \\ \\ \hline \\ How \ to \ choose \ \lambda? \end{array}$$

Э

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト ・

Consider the regularized problem

$$\underset{x \in \mathcal{H}}{\text{minimize}} \quad \frac{1}{2\lambda} \|Ax - \widehat{y}\|^2 + R(x)$$

How to choose λ ?

Well-established regularization theory

Theorem

Let \hat{x}^{λ} be the solution of the regularized problem. Then

$$\|\widehat{x}^{\lambda} - x^{\dagger}\| \leq C\left(rac{\delta}{\sqrt{\lambda}} + \sqrt{\delta} + \sqrt{\lambda}
ight)$$

Choosing $\lambda_{\delta} \sim \delta$, we derive

$$\|\widehat{x}^{\lambda_{\delta}} - x^{\dagger}\| \leq C\sqrt{\delta}.$$

[Burger-Osher, Convergence rates of convex variational_regularization, 2004]

What about computations?

Э

イロト イヨト イヨト イヨト

What about computations?

Tikhonov regularization in practice:

- choose an interval $[\lambda_{\min},\lambda_{\max}]$
- approximately solve the regularized problem for $\lambda \in [\lambda_{\min}, \lambda_{\max}]$
- ${\, \bullet \,}$ select the best λ according to a validation criterion

(4 回) トイヨト イヨト

What about computations?

Tikhonov regularization in practice:

- choose an interval $[\lambda_{\min}, \lambda_{\max}]$
- approximately solve the regularized problem for $\lambda \in [\lambda_{\min}, \lambda_{\max}]$
- ${\, \bullet \,}$ select the best λ according to a validation criterion

Theorem

Let $\hat{x}^{\lambda,\varepsilon}$ be an ε -solution of the relaxed problem. Then choosing

$$\|\widehat{x}^{\lambda,\varepsilon} - x^{\dagger}\| \leq C\left(rac{\delta + \sqrt{\varepsilon}}{\sqrt{\lambda}} + \sqrt{\delta} + \sqrt{\lambda}
ight).$$

Choosing $\lambda_{\delta} \sim \delta$ and $\varepsilon_{\delta} \sim \delta^2$, we derive

$$\|\widehat{x}^{\lambda_{\delta},\varepsilon_{\delta}}-x^{\dagger}\|\leq C\sqrt{\delta}.$$

Iterative regularization A (new) old idea

Solve:

.

E

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Iterative regularization A (new) old idea

Solve:

 $\min_{Ax=\widehat{\mathbf{y}}} R(x)$

and early stop the iterations.

Э

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Iterative regularization A (new) old idea

Solve:

 $\min_{Ax=\widehat{\mathbf{y}}} R(x)$

and early stop the iterations.

An old idea in inverse problems for $R = \|\cdot\|^2/2$: Landweber [Engl-Hanke-Neubauer, inverse problems] Recently revisited: [Osher-Burger-Yin-Cai-Resmerita-He.....~ 2000s]

イロト イポト イヨト イヨト

Choose a convergent algorithm to solve

 $\min_{Ax=y} R(x).$

Call the iterates $(x_t)_{t \in \mathbb{N}}$.

2 Apply the same algorithm to

 $\min_{Ax=\widehat{y}}R(x).$

Call the iterates $(\widehat{x}_t)_{t \in \mathbb{N}}$.

3 Then

$$\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$

Recall that

$$\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{t} + \underbrace{\|x_t - x^{\dagger}\|}_{t}$$

stability optimization

 $x_t \longrightarrow x_{t+1} \longrightarrow \dots$

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Recall that

$$\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{t} + \underbrace{\|x_t - x^{\dagger}\|}_{t}$$

stability

optimization

$$x_t \longrightarrow x_{t+1} \longrightarrow \ldots \longrightarrow x^{\dagger}$$

3

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Recall that

$$\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{t} + \underbrace{\|x_t - x^{\dagger}\|}_{t}$$

stability

optimization

$$\begin{array}{ccc} x_t \longrightarrow x_{t+1} & \longrightarrow \dots & \longrightarrow x^{\dagger} \\ \widehat{x}_t & & & \\ & \searrow & & \end{array}$$

3

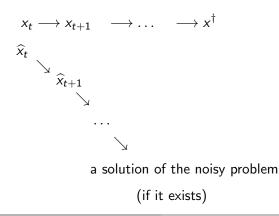
<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Recall that

$$\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{\leftarrow} + \underbrace{\|x_t - x^{\dagger}\|}_{\leftarrow}$$

stability

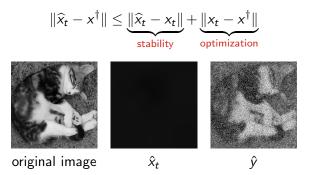
optimization



S. Villa (Polimi)

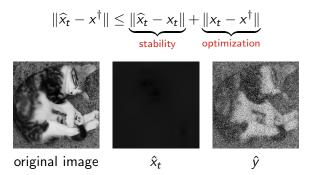
3

Recall that



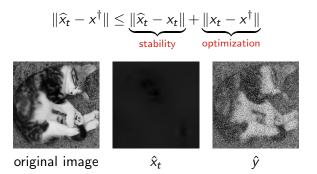
3

Recall that



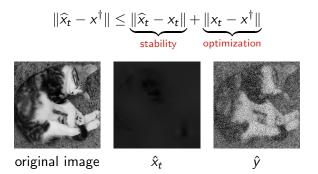
3

Recall that



3

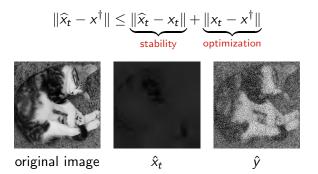
Recall that



3

ヘロト 人間ト 人注ト 人注ト

Recall that



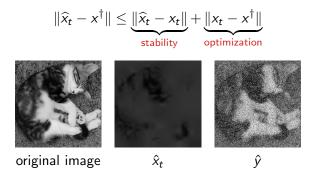
3

Recall that



3

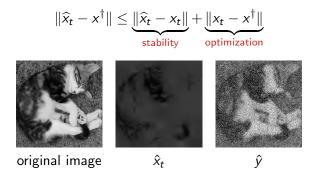
Recall that



3

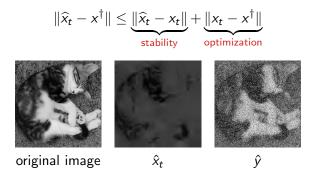
イロト イロト イヨト イヨト

Recall that



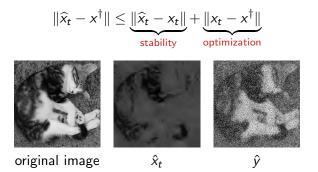
3

Recall that



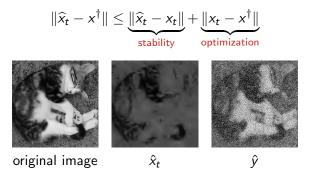
3

Recall that



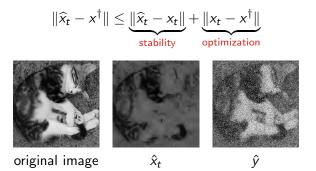
3

Recall that



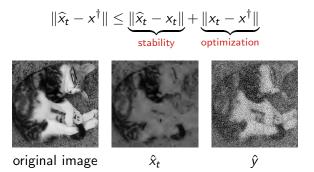
3

Recall that



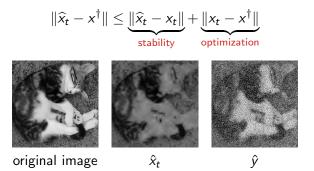
3

Recall that



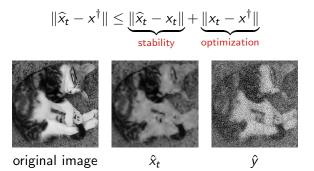
3

Recall that



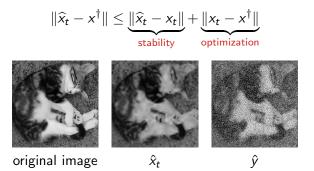
3

Recall that



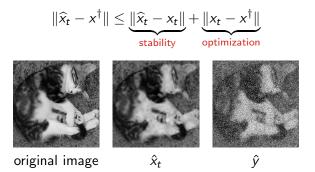
3

Recall that



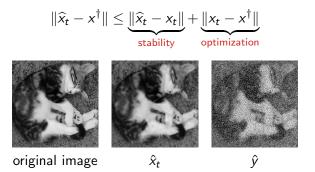
3

Recall that



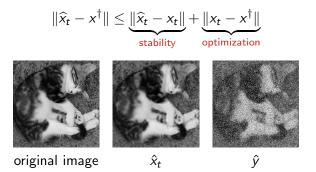
3

Recall that



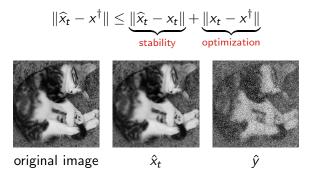
3

Recall that



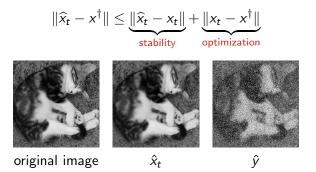
3

Recall that



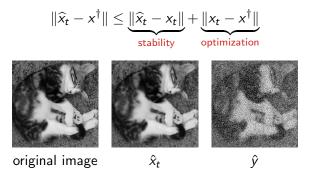
3

Recall that



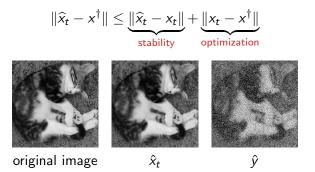
3

Recall that



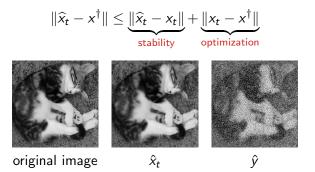
3

Recall that



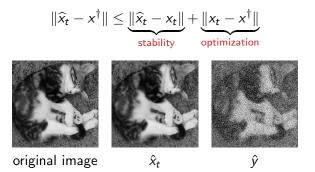
3

Recall that



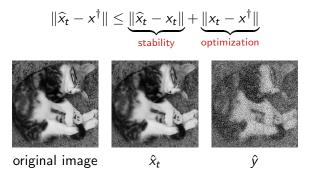
3

Recall that



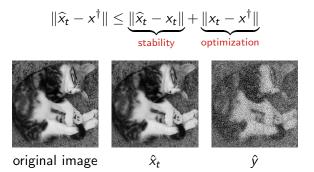
3

Recall that



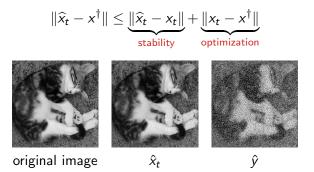
3

Recall that



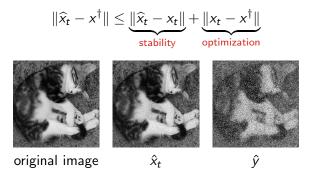
3

Recall that



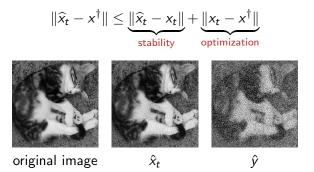
3

Recall that



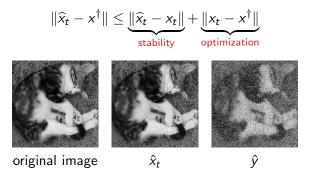
3

Recall that



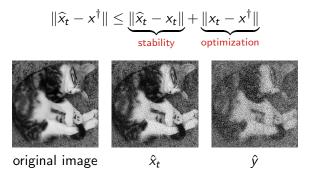
3

Recall that



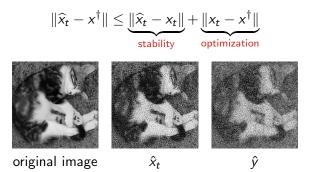
3

Recall that



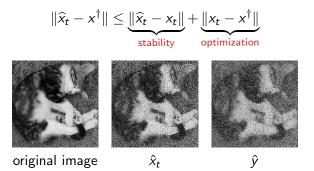
3

Recall that



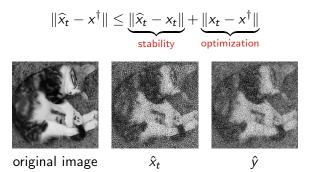
3

Recall that



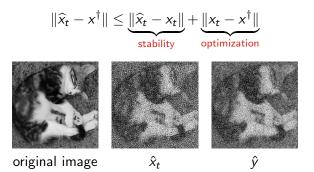
3

Recall that



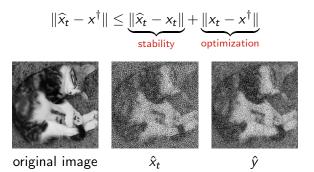
Э

Recall that



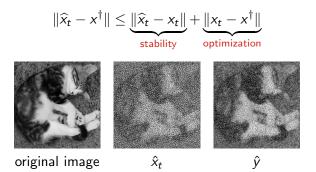
Э

Recall that



Э

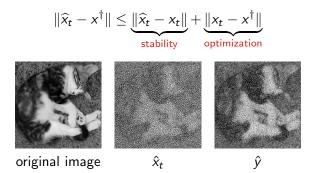
Recall that



Э

イロト イロト イヨト イヨト

Recall that



3

イロト イロト イヨト イヨト

Dual problem - exact datum

$$\min_{Ax=y} R(x) \quad \longleftrightarrow \quad \min_{w \in \mathcal{H}} R(x) + \iota_{\{y\}}(Ax),$$

where $\iota_{\{y\}}(u) = 0$ if $u = y$ and $\iota_{\{y\}}(u) = +\infty$ otherwise.

Dual problem - exact datum

$$\min_{Ax=y} R(x) \quad \longleftrightarrow \quad \min_{w \in \mathcal{H}} R(x) + \iota_{\{y\}}(Ax),$$

where $\iota_{\{y\}}(u) = 0$ if u = y and $\iota_{\{y\}}(u) = +\infty$ otherwise.

The dual problem is

$$\min_{v\in\mathcal{G}}d(v),\quad d(v)=R^*(-A^*v)+\langle y,v\rangle.$$

R strongly convex \Rightarrow **the dual is smooth**

We can apply gradient method to it, or an accelerated gradient method.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Dual gradient descent

R strongly convex \Rightarrow

$$R = F + \frac{\alpha}{2} \| \cdot \|^2$$
 for some convex function F .

Let $v_0 \in \mathcal{G}$, and let $\gamma \in \left]0, \alpha \|A\|^{-2}\right[$. Iterate

$$v_{t+1} = v_t - \gamma (\nabla (R^* \circ -A^*)(v_t) + y)$$

= $v_t + \gamma (A \operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t) - y)$

3

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

Dual gradient descent

R strongly convex \Rightarrow

$$R = F + \frac{\alpha}{2} \| \cdot \|^2$$
 for some convex function F .

Let $v_0 \in \mathcal{G}$, and let $\gamma \in \left]0, \alpha \|A\|^{-2}\right[$. Iterate

$$v_{t+1} = v_t - \gamma (\nabla (R^* \circ -A^*)(v_t) + y)$$

= $v_t + \gamma (A \underbrace{\operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t)}_{=x_t} - y)$

Equivalent to:

$$\begin{cases} x_t = \operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t) \\ v_{t+1} = v_t + \gamma(Ax_t - y) \end{cases}$$

A.k.a. linearized Bregman iteration [Yin-Osher-Burger, several papers, Bachmayr-Burger, 2005]

S. Villa (Polimi)

Landweber algorithm

When $R = \|\cdot\|^2/2$, then F = 0, and

$$x_t = -A^* v_t$$

$$x_{t+1} = x_t - \gamma A^* (A x_t - y)$$

$$= (I - \gamma A^* A) x_t + \gamma A^* y$$

Ξ

イロト イロト イヨト イヨト

Landweber algorithm

When $R = \|\cdot\|^2/2$, then F = 0, and

$$\begin{aligned} x_t &= -A^* v_t \\ x_{t+1} &= x_t - \gamma A^* (A x_t - y) \\ &= (I - \gamma A^* A) x_t + \gamma A^* y \end{aligned}$$

Gradient method applied to $(1/2) ||Ax - y||^2$

< □ > < □ > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Accelerated variant: FISTA on the dual

Let
$$v_0 = z_{-1} = z_0 = 0 \in \mathcal{G}$$
, $\gamma = \alpha ||A||^{-2}$, $\theta_0 = 1$ and $\theta_{t+1} = (1 + \sqrt{1 + 4\theta_t^2})/2$.

$$\begin{cases} x_t = \operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*z_t) \\ r_t = \operatorname{prox}_{\alpha^{-1}F}(-\alpha^{-1}A^*v_t) \\ z_{t+1} = v_t + \gamma(Ar_t - y) \\ v_{t+1} = z_{t+1} + \frac{\theta_t - 1}{\theta_{t+1}}(z_{t+1} - z_t) \end{cases}$$

E

イロト イヨト イヨト イヨト

Accelerated Landweber algorithm

When
$$R = \|\cdot\|^2/2$$
, then $x_t = -A^* v_t$ and $r_t = -A^* z_t$,

$$\begin{cases} x_{t+1} = x_t - \gamma A^* (Ar_t - y) \\ r_{t+1} = x_{t+1} + \frac{\theta_t - 1}{\theta_{t+1}} (x_{t+1} - x_t) \end{cases}$$

Ξ

イロト イヨト イヨト イヨト

Accelerated Landweber algorithm

When
$$R = \|\cdot\|^2/2$$
, then $x_t = -A^* v_t$ and $r_t = -A^* z_t$,

$$\begin{cases} x_{t+1} = x_t - \gamma A^* (Ar_t - y) \\ r_{t+1} = x_{t+1} + \frac{\theta_t - 1}{\theta_{t+1}} (x_{t+1} - x_t) \end{cases}$$

FISTA applied to $(1/2) ||Ax - y||^2$

3

<ロト < 団ト < 団ト < 団ト < 団ト < 三ト < 三ト < □ > ...

A technical condition

- Existence of the solution of the dual (for the exact y) needed for convergence rates
- ② From convergence on the dual to convergence on the primal

Qualification (source) condition (Only for the exact datum) There exists $q \in \mathcal{G}$ such that

 $A^*q \in \partial R(x^{\dagger})$

イロト イポト イヨト イヨト

A technical condition

- Existence of the solution of the dual (for the exact y) needed for convergence rates
- ② From convergence on the dual to convergence on the primal

Qualification (source) condition (Only for the exact datum) There exists $q \in \mathcal{G}$ such that

$$A^*q \in \partial R(x^{\dagger})$$

Same condition needed for establishing rates for Tikhonov regularization.

イロト イポト イヨト イヨト

Convergence for dual gradient descent

Theorem

Assume qualification condition. Let v^{\dagger} be a solution of the dual problem. For every $t\in\mathbb{N}$

$$\|x_t - x^{\dagger}\| \leq rac{2}{lpha} (d(v_t) - d(v^{\dagger}))^{1/2} \leq rac{\|A\| \|v_0 - v^{\dagger}\|}{lpha \sqrt{t}}$$

Stability

Theorem (Matet-Rosasco-V.-Vu, 2017) There exists $t_{\delta} \sim \delta^{-1}$ such that $\|\widehat{x}_t - x_t\| \leq \frac{2}{\|A\|} \sqrt{t} \delta.$

3

ヘロト 人間ト 人団ト 人団ト

Iterative regularization result

How to choose the stopping time?

Theorem (Dual gradient descent)

There exists $t_{\delta} \sim \delta^{-1}$ such that

$$\|\widehat{x}_{t_{\delta}}-x^{\dagger}\|\leq C\delta^{1/2}.$$

3

Accelerated dual gradient descent

How to choose the stopping time?

Theorem (Accelerated Dual gradient descent)

Assume the qualification condition. Then, if $t_{\delta} \sim \delta^{-1/2}$,

$$\|\widehat{x}_{t_{\delta}}-x^{\dagger}\|\leq C\delta^{1/2}.$$

Based on the results of [Aujol-Dossal, 2016]

(4 回) トイヨト イヨト

Accelerated dual gradient descent

How to choose the stopping time?

Theorem (Accelerated Dual gradient descent)

Assume the qualification condition. Then, if $t_{\delta} \sim \delta^{-1/2}$,

$$\|\widehat{x}_{t_{\delta}}-x^{\dagger}\|\leq C\delta^{1/2}.$$

Based on the results of [Aujol-Dossal, 2016] For $R = \|\cdot\|^2/2$ see also [A. Neubauer, On Nesterov acceleration for Landweber iteration of linear ill-posed problems, Nov. 2016]

Back to the beginning: regularized inverse problems

Tikhonov regularization: original hierarchical problem is replaced by

minimize
$$\frac{1}{\lambda}D(Ax, y) + R(x)$$
,

for a suitable $\lambda > 0$, and an algorithm is chosen to compute

$$x_{t+1} = Algo(x_t, \lambda).$$

Back to the beginning: regularized inverse problems

Tikhonov regularization: original hierarchical problem is replaced by

minimize
$$\frac{1}{\lambda}D(Ax, y) + R(x)$$
,

for a suitable $\lambda > 0$, and an algorithm is chosen to compute

$$x_{t+1} = \operatorname{Algo}(x_t, \lambda).$$

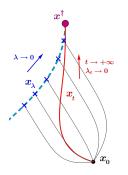
A diagonal approach[Lemaire 80s-90s]

$$x_{t+1} = \operatorname{Algo}(x_t, \frac{\lambda_t}{\lambda_t}),$$

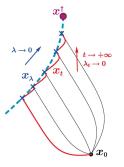
with $\lambda_t \rightarrow 0$.

A picture

The previous approach allows to describe:



A diagonal strategy



A warm restart strategy

 $\exists \rightarrow$

A dual approach

Diagonal forward-backward: [Attouch, Cabot, Czarnecki, Peypouquet ...]

3

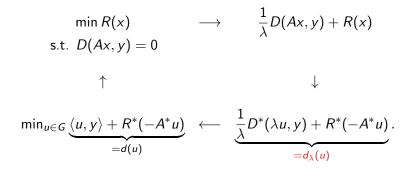
A dual approach

Diagonal forward-backward: [Attouch, Cabot, Czarnecki, Peypouquet \dots] Not well-suited if D is not smooth.

3

A dual approach

Diagonal forward-backward: [Attouch, Cabot, Czarnecki, Peypouquet ...] Not well-suited if *D* is not smooth.



イロト イロト イヨト イヨト 二日

Dual diagonal descent algorithm (3D)

If $R = F + (\sigma_R/2) \| \cdot \|^2$ is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^{*}(-A^{*}u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^{*}(\lambda u, y)}_{nonsmooth}$$

We can use the forward-backward splitting algorithm on the dual.

$$u_0 \in G, \ \lambda_t \to \mathbf{0}, \tau = \sigma_R / ||A||^2$$
$$z_{t+1} = u_t + \tau A \nabla R^* (-A^* u_t)$$
$$u_{t+1} = \operatorname{prox}_{\tau \lambda_t^{-1} D^* (\lambda_t, y)} (z_{t+1}).$$

S. Villa (Polimi)

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Dual diagonal descent algorithm (3D)

If $R = F + (\sigma_R/2) \| \cdot \|^2$ is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^{*}(-A^{*}u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^{*}(\lambda u, y)}_{nonsmooth}$$

We can use the forward-backward splitting algorithm on the dual.

$$u_0 \in G, \ \lambda_t \to \mathbf{0}, \tau = \sigma_R / \|A\|^2$$
$$z_{t+1} = u_t + \tau A \nabla R^* (-A^* u_t)$$
$$u_{t+1} = z_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_t)^{-1} D(\cdot, y)} (\tau^{-1} z_{t+1})$$

Dual diagonal descent algorithm (3D)

If $R = F + (\sigma_R/2) \| \cdot \|^2$ is strongly convex:

$$d_{\lambda}(u) = \underbrace{R^{*}(-A^{*}u)}_{smooth} + \underbrace{\frac{1}{\lambda}D^{*}(\lambda u, y)}_{nonsmooth}$$

We can use the forward-backward splitting algorithm on the dual.

$$\begin{vmatrix} u_0 \in G, \ \lambda_t \to \mathbf{0}, \tau = \sigma_R / \|A\|^2 \\ x_t = \nabla R^* (-A^* u_t) = \operatorname{prox}_{\sigma_R^{-1} F} (-A^* u_t) \\ z_{t+1} = u_t + \tau A x_t \\ u_{t+1} = z_{t+1} - \tau \operatorname{prox}_{(\tau \lambda_t)^{-1} D(\cdot, y)} (\tau^{-1} z_{t+1}) \end{vmatrix}$$

<ロト <回ト < 注ト < 注ト = 注

AD1) $D: G \times G \rightarrow [0, +\infty]$ and $D(u, y) = 0 \iff u = y$.

3

AD1) $D: G \times G \rightarrow [0, +\infty]$ and $D(u, y) = 0 \iff u = y$. AD2) Let $p \in [1, +\infty]$. $D(\cdot, y)$ is *p*-well conditioned

- AD1) $D: G \times G \rightarrow [0, +\infty]$ and $D(u, y) = 0 \iff u = y$.
- AD2) Let $p \in [1, +\infty]$. $D(\cdot, y)$ is p-well conditioned
 - AR) There exists a solution \bar{x} such that $A\bar{x} = y$ $\bar{x} \in \text{dom}R$.

AD1)
$$D: G \times G \rightarrow [0, +\infty]$$
 and $D(u, y) = 0 \iff u = y$.

AD2) Let $p \in [1, +\infty]$. $D(\cdot, y)$ is *p*-well conditioned

AR) There exists a solution \bar{x} such that $A\bar{x} = y$ $\bar{x} \in \text{dom}R$.

Theorem [Garrigos-Rosasco-V. 2017]

Suppose that $\lambda_t \in \ell^{1/(p-1)}(\mathbb{N})$. Let x^{\dagger} be the solution of (P). Assume that there exists $q \in \mathcal{G}$ such that

 $A^*q \in \partial R(x^{\dagger})$

Then $||x_t - x^{\dagger}|| = o(t^{-1/2})$

Stability

 $\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{t} + \underbrace{\|x_t - x^{\dagger}\|}_{t}$ stability optimization

E

ヘロト 人間ト 人団ト 人団ト

Stability

$$\|\widehat{x}_t - x^{\dagger}\| \leq \underbrace{\|\widehat{x}_t - x_t\|}_{\text{stability}} + \underbrace{\|x_t - x^{\dagger}\|}_{\text{optimization}}$$

Stability Theorem [Garrigos-Rosasco-V. 2017]

Assume that the source/qualification condition holds. Let $\hat{y} \in Y$, with $\|\hat{y} - y\| \le \delta$. Let (\hat{x}_t, \hat{u}_t) be the sequence generated by the (3D) algorithm with $y = \hat{y}$ and $\hat{u}_0 = u_0$. Suppose that

$$(\lambda_t) \in \ell^{1/(p-1)}(\mathbb{N}).$$

Then

$$\|x_t - \hat{x}_t\| \le C\delta t.$$

For simplicity here D(u, y) = L(u - y). But this is not needed.

Stability with respect to errors = iterative regularization results

Theorem (Early-stopping) [Garrigos-Rosasco-V. 2017]

Assume that the source/qualification condition holds. Let $\hat{y} \in Y$, with $\|\hat{y} - y\| \leq \delta$. Let (\hat{x}_t, \hat{u}_t) be the sequence generated by the (3D) algorithm with $y = \hat{y}$ and $\hat{u}_0 = u_0$. Suppose that

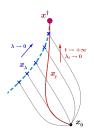
$$(\lambda_t) \in \ell^{1/(p-1)}(\mathbb{N})$$

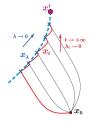
Then there exists an early stopping rule $t(\delta) = \lceil c \delta^{-2/3} \rceil$ which verifies

$$\|\hat{x}_{t(\delta)} - x^{\dagger}\| = O(\delta^{rac{1}{3}})$$
 when $\delta o 0$.

Setting

- deblurring and denoising (salt and pepper, gaussian, gaussian+salt and pepper, Poisson) of 512 × 512 images
- comparison between the two versions: diagonal and warm restart

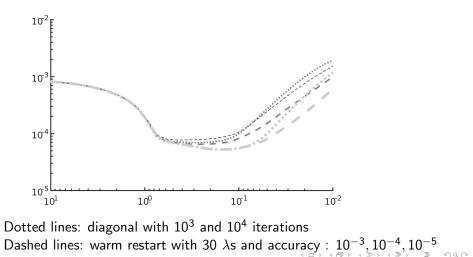




diagonal: one parameter = (λ_t) = n. iter. warm restart: two parameters: (λ_t) ; accuracy

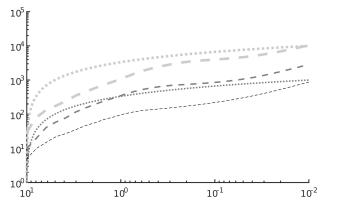
Diagonal works as well as warm restart (i.e. Tikhonov)

Euclidean distance from the true image



Diagonal works better than(?) warm restart (i.e. Tikhonov)

Total number of iterations as a function of (λ_t)



Dotted lines: diagonal Dashed lines: warm restart with 30 λ s and accuracy: 10^{-3} , 10^{-4} , 10^{-5} and 10^{-5} and 10^{-5} and 10^{-5} .

S. Villa (Polimi)

Proximal iterative regularization

Parameter selection

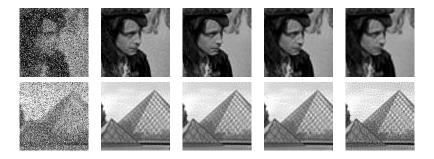
using the true image

• using SURE (and the ideas in : Deladalle-Vaiter-Fadili-Peyré 2014 to compute it)

 \bullet budget of 10^3 iterations for diagonal and warm restart

Results

Blurring + Salt and pepper 35%.
$$D(u, y) = ||u - y||_1$$
,
 $R(x) = ||Wx||_1 + ||x||^2$ or $||x||_{TV} + ||x||^2$

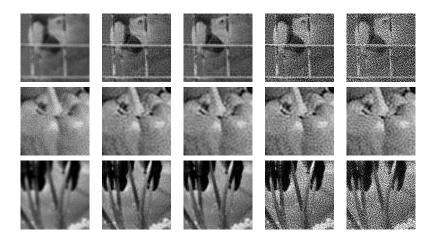


noisy image, reconstruction with diagonal and warm restart using true image, reconstruction with diagonal and warm restart using SURE

- 4 同下 - 4 三下 - 4

Results

Blurring + Poisson noise. D(u, y) = KL(y; u + b), $R(x) = ||x||_{TV} + ||x||^2$



3

Concluding remarks ad future perspecitves

Concluding remarks

- use the number of iterations as regularization parameters
- iterative regularization as an alternative to Tikhonov regularization
- optimization perspective: stability with respect to errors as a way to prove regularization results

Concluding remarks ad future perspecitves

Concluding remarks

- use the number of iterations as regularization parameters
- iterative regularization as an alternative to Tikhonov regularization
- optimization perspective: stability with respect to errors as a way to prove regularization results

Future perspectives

- accelerated version of diagonal Tikhonov
- remove strong convexity
- better use of conditioning?

References

- S. Matet, L. Rosasco, B. C. Vũ, Don't relax: early stopping for convex regularization, arxiv 2016.
- G. Garrigos, L. Rosasco, and S. Villa, Iterative regularization via dual diagonal descent, JMIV 2017

The end

Merci pour votre attention

Ξ