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Introduction and motivation

Computational regularization for large scale data problems

Integrating

REGULARIZATION and OPTIMIZATION

in inverse problems (and learning)

Computational requirements tailored to the information in the data rather
than to their raw amount
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Introduction and motivation

Inverse problems

H and G Hilbert spaces

A : H → G linear and bounded

Goal

Let y ∈ G , approximate the solution of

Ax = y ,

assuming that a solution exists.

Selection principle: given R : H → R ∪ {+∞} strongly convex, select x†,
the solution of

minR(x)

s.t. Ax = y
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Introduction and motivation

Noisy data

We do not know y ∈ G. We have access only to ŷ ∈ G such that

‖ŷ − y‖ ≤ δ, δ > 0.

Goal:

find a stable approximation of x†

using only ŷ .
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Introduction and motivation

Tikhonov regularization

Consider the regularized problem

minimize
x∈H

1

2λ
‖Ax − ŷ‖2 + R(x)

How to choose λ?
Well-established regularization theory

Theorem

Let x̂λ be the solution of the regularized problem. Then

‖x̂λ − x†‖ ≤ C

(
δ√
λ

+
√
δ +
√
λ

)
Choosing λδ ∼ δ, we derive

‖x̂λδ − x†‖ ≤ C
√
δ.

[Burger-Osher, Convergence rates of convex variational regularization, 2004]
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Introduction and motivation

Tikhonov regularization

What about computations?

Tikhonov regularization in practice:

choose an interval [λmin, λmax]
approximately solve the regularized problem for λ ∈ [λmin, λmax]
select the best λ according to a validation criterion

Theorem

Let x̂λ,ε be an ε-solution of the relaxed problem. Then choosing

‖x̂λ,ε − x†‖ ≤ C

(
δ +
√
ε√

λ
+
√
δ +
√
λ

)
.

Choosing λδ ∼ δ and εδ ∼ δ2, we derive

‖x̂λδ,εδ − x†‖ ≤ C
√
δ.
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Introduction and motivation

Iterative regularization
A (new) old idea

Solve:

min
Ax=y

R(x)

.
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Solve:
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Introduction and motivation

Iterative regularization
A (new) old idea

Solve:

min
Ax=ŷ

R(x)

and early stop the iterations.
An old idea in inverse problems for R = ‖ · ‖2/2:
Landweber [Engl-Hanke-Neubauer, inverse problems]

Recently revisited: [Osher-Burger-Yin-Cai-Resmerita-He.....∼ 2000s]
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Introduction and motivation

Iterative regularization: idea of the proof

1 Choose a convergent algorithm to solve

min
Ax=y

R(x).

Call the iterates (xt)t∈N.

2 Apply the same algorithm to

min
Ax=ŷ

R(x).

Call the iterates (x̂t)t∈N.

3 Then
‖x̂t − x†‖ ≤ ‖x̂t − xt‖︸ ︷︷ ︸

stability

+ ‖xt − x†‖︸ ︷︷ ︸
optimization
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‖x̂t − x†‖ ≤ ‖x̂t − xt‖︸ ︷︷ ︸

stability

+ ‖xt − x†‖︸ ︷︷ ︸
optimization

xt −→ xt+1 −→ . . .

−→ x†

x̂t
↘

x̂t+1

↘
. . .

↘

a solution of the noisy problem

(if it exists)
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Introduction and motivation

Iterative regularization at work

Recall that
‖x̂t − x†‖ ≤ ‖x̂t − xt‖︸ ︷︷ ︸

stability

+ ‖xt − x†‖︸ ︷︷ ︸
optimization

original image x̂t ŷ
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Quadratic data fit Derivation of the algorithm and convergence results

Dual problem - exact datum

min
Ax=y

R(x) ←→ min
w∈H

R(x) + ι{y}(Ax),

where ι{y}(u) = 0 if u = y and ι{y}(u) = +∞ otherwise.

The dual problem is

min
v∈G

d(v), d(v) = R∗(−A∗v) + 〈y , v〉.

R strongly convex ⇒ the dual is smooth

We can apply gradient method to it, or an accelerated gradient method.
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Quadratic data fit Derivation of the algorithm and convergence results

Dual gradient descent

R strongly convex ⇒

R = F +
α

2
‖ · ‖2 for some convex function F .

Let v0 ∈ G, and let γ ∈
]
0, α‖A‖−2

[
. Iterate

vt+1 = vt − γ(∇(R∗ ◦ −A∗)(vt) + y)

= vt + γ(A proxα−1F (−α−1A∗vt)− y)

Equivalent to: {
xt = proxα−1F (−α−1A∗vt)

vt+1 = vt + γ(Axt − y)

A.k.a. linearized Bregman iteration [Yin-Osher-Burger, several papers,

Bachmayr-Burger, 2005]
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Quadratic data fit Derivation of the algorithm and convergence results

Landweber algorithm

When R = ‖ · ‖2/2, then F = 0, and

xt = −A∗vt
xt+1 = xt − γA∗(Axt − y)

= (I − γA∗A)xt + γA∗y

Gradient method applied to (1/2)‖Ax − y‖2
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Quadratic data fit Derivation of the algorithm and convergence results

Accelerated variant: FISTA on the dual

Let v0 = z−1 = z0 = 0 ∈ G, γ = α‖A‖−2, θ0 = 1 and
θt+1 = (1 +

√
1 + 4θ2

t )/2.
xt = proxα−1F (−α−1A∗zt)

rt = proxα−1F

(
− α−1A∗vt

)
zt+1 = vt + γ(Art − y)

vt+1 = zt+1 + θt−1
θt+1

(zt+1 − zt)
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Quadratic data fit Derivation of the algorithm and convergence results

Accelerated Landweber algorithm

When R = ‖ · ‖2/2, then xt = −A∗vt and rt = −A∗zt ,{
xt+1 = xt − γA∗(Art − y)

rt+1 = xt+1 + θt−1
θt+1

(xt+1 − xt)

FISTA applied to (1/2)‖Ax − y‖2
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Quadratic data fit Derivation of the algorithm and convergence results

A technical condition

1 Existence of the solution of the dual (for the exact y) needed for
convergence rates

2 From convergence on the dual to convergence on the primal

Qualification (source) condition (Only for the exact datum)

There exists q ∈ G such that

A∗q ∈ ∂R(x†)

Same condition needed for establishing rates for Tikhonov regularization.
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Quadratic data fit Derivation of the algorithm and convergence results

Convergence for dual gradient descent

Theorem

Assume qualification condition. Let v † be a solution of the dual problem.
For every t ∈ N

‖xt − x†‖ ≤ 2

α
(d(vt)− d(v †))1/2 ≤ ‖A‖‖v0 − v †‖

α
√
t
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Quadratic data fit Derivation of the algorithm and convergence results

Stability

Theorem (Matet-Rosasco-V.-Vu, 2017 )

There exists tδ ∼ δ−1 such that

‖x̂t − xt‖ ≤
2

‖A‖
√
tδ.
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Quadratic data fit Derivation of the algorithm and convergence results

Iterative regularization result

How to choose the stopping time?

Theorem (Dual gradient descent)

There exists tδ ∼ δ−1 such that

‖x̂tδ − x†‖ ≤ Cδ1/2.
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Quadratic data fit Derivation of the algorithm and convergence results

Accelerated dual gradient descent

How to choose the stopping time?

Theorem (Accelerated Dual gradient descent)

Assume the qualification condition. Then, if tδ ∼ δ−1/2,

‖x̂tδ − x†‖ ≤ Cδ1/2.

Based on the results of [Aujol-Dossal, 2016]

For R = ‖ · ‖2/2 see also [A. Neubauer, On Nesterov acceleration for

Landweber iteration of linear ill-posed problems, Nov. 2016]
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Quadratic data fit Derivation of the algorithm and convergence results

Back to the beginning: regularized inverse problems

Tikhonov regularization: original hierarchical problem is replaced by

minimize
1

λ
D(Ax , y) + R(x),

for a suitable λ > 0, and an algorithm is chosen to compute

xt+1 = Algo(xt , λ).

A diagonal approach[Lemaire 80s-90s]

xt+1 = Algo(xt , λt),

with λt → 0.
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Quadratic data fit Derivation of the algorithm and convergence results

A picture

The previous approach allows to describe:

A diagonal strategy A warm restart strategy
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Quadratic data fit Derivation of the algorithm and convergence results

A dual approach

Diagonal forward-backward: [Attouch, Cabot, Czarnecki, Peypouquet ...]

Not well-suited if D is not smooth.

minR(x) −→ 1

λ
D(Ax , y) + R(x)

s.t. D(Ax , y) = 0

↑ ↓

minu∈G 〈u, y〉+ R∗(−A∗u)︸ ︷︷ ︸
=d(u)

←− 1

λ
D∗(λu, y) + R∗(−A∗u)︸ ︷︷ ︸

=dλ(u)

.
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Quadratic data fit Derivation of the algorithm and convergence results

Dual diagonal descent algorithm (3D)

If R = F + (σR/2)‖ · ‖2 is strongly convex:

dλ(u) = R∗(−A∗u)︸ ︷︷ ︸
smooth

+
1

λ
D∗(λu, y)︸ ︷︷ ︸
nonsmooth

We can use the forward-backward splitting algorithm on the dual.

u0 ∈ G , λt → 0, τ = σR/‖A‖2

zt+1 = ut + τA∇R∗(−A∗ut)

ut+1 = proxτλ−1
t D∗(λt ·,y)(zt+1).
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Quadratic data fit Derivation of the algorithm and convergence results

Convergence of diagonal dual descent algorithm

AD1) D : G × G → [0,+∞] and D(u, y) = 0 ⇐⇒ u = y .

AD2) Let p ∈ [1,+∞]. D(·, y) is p-well conditioned

AR) There exists a solution x̄ such that Ax̄ = y x̄ ∈ domR.

Theorem [Garrigos-Rosasco-V. 2017]

Suppose that λt ∈ `1/(p−1)(N). Let x† be the solution of (P). Assume that
there exists q ∈ G such that

A∗q ∈ ∂R(x†)

Then ‖xt − x†‖ = o(t−1/2)
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Quadratic data fit Derivation of the algorithm and convergence results

Stability

‖x̂t − x†‖ ≤ ‖x̂t − xt‖︸ ︷︷ ︸
stability

+ ‖xt − x†‖︸ ︷︷ ︸
optimization

Stability Theorem [Garrigos-Rosasco-V. 2017]

Assume that the source/qualification condition holds. Let ŷ ∈ Y , with
‖ŷ − y‖ ≤ δ. Let (x̂t , ût) be the sequence generated by the (3D) algorithm
with y = ŷ and û0 = u0. Suppose that

(λt) ∈ `1/(p−1)(N).

Then
‖xt − x̂t‖ ≤ Cδt.

For simplicity here D(u, y) = L(u − y). But this is not needed.
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Quadratic data fit Derivation of the algorithm and convergence results

Stability with respect to errors = iterative regularization
results

Theorem (Early-stopping) [Garrigos-Rosasco-V. 2017]

Assume that the source/qualification condition holds. Let ŷ ∈ Y , with
‖ŷ − y‖ ≤ δ. Let (x̂t , ût) be the sequence generated by the (3D) algorithm
with y = ŷ and û0 = u0. Suppose that

(λt) ∈ `1/(p−1)(N)

Then there exists an early stopping rule t(δ) = dcδ−2/3e which verifies

‖x̂t(δ) − x†‖ = O(δ
1
3 ) when δ → 0.
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Quadratic data fit Experimental results

Setting

deblurring and denoising (salt and pepper, gaussian, gaussian+salt
and pepper, Poisson) of 512 x 512 images

comparison between the two versions: diagonal and warm restart

diagonal:
one parameter = (λt)= n. iter.

warm restart:
two parameters: (λt); accuracy
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Quadratic data fit Experimental results

Diagonal works as well as warm restart (i.e. Tikhonov)

Euclidean distance from the true image

Dotted lines: diagonal with 103 and 104 iterations
Dashed lines: warm restart with 30 λs and accuracy : 10−3, 10−4, 10−5
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Quadratic data fit Experimental results

Diagonal works better than(?) warm restart (i.e.
Tikhonov)

Total number of iterations as a function of (λt)

Dotted lines: diagonal
Dashed lines: warm restart with 30 λs and accuracy: 10−3, 10−4, 10−5
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Quadratic data fit Experimental results

Parameter selection

using the true image

using SURE (and the ideas in : Deladalle-Vaiter-Fadili-Peyré 2014 to
compute it)

budget of 103 iterations for diagonal and warm restart
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Quadratic data fit Experimental results

Results

Blurring + Salt and pepper 35%. D(u, y) = ‖u − y‖1,
R(x) = ‖Wx‖1 + ‖x‖2 or ‖x‖TV + ‖x‖2

noisy image, reconstruction with diagonal and warm restart using true image,

reconstruction with diagonal and warm restart using SURE
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Quadratic data fit Experimental results

Results

Blurring + Poisson noise. D(u, y) = KL(y ; u + b), R(x) = ‖x‖TV + ‖x‖2
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Conclusions

Concluding remarks ad future perspecitves

Concluding remarks

use the number of iterations as regularization parameters

iterative regularization as an alternative to Tikhonov regularization

optimization perspective: stability with respect to errors as a way to
prove regularization results

Future perspectives

accelerated version of diagonal Tikhonov

remove strong convexity

better use of conditioning?
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Conclusions

The end

Merci pour votre attention
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