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Introduction



Astronomical image reconstruction

Astronomical image observation

• Convolutional model : y = x ∗ p

• y is the observed image (dirty).
• x is the true image.
• p is the Point Spread Function (PSF)

• Geometry of the telescope gives the Point Spread Function (PSF).

• Some noise due to the observation is also present (Gaussian,Poisson).

• On wide field of view the PSF can be space variant (Fredholm’s integral).
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Inverse problem

Image reconstruction

min
x

L(y , x ∗ p) (1)

where L is a data fitting loss.

• We want to inverse the observation process.

• Reconstruct an estimation of the true image x from y .

• For every new observation one needs to solve the problem.

• Linear PSF interpolation for fast fft convolution [Denis et al., 2015].

Common approaches and algorithms

• Wiener filtering (inverse filtering+noise attenuation).

• [Richardson, 1972, Lucy, 1974], CLEAN [Högbom, 1974].

• Sparsity promoting regularization (iterative algo. with proximal gradient
descent).
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Proximal gradient methods

Principle of proximal gradient descent

• Minimization of convex non-smooth objective (sparsity promoting
regularization).

• Use proximity operator for non-differentiable functions.

• Can be accelerated and solved with Primal-Dual algorithm.

Optimization problem for Muffin [Deguignet et al., 2016]

min
x

1
2
‖y − x ∗ p‖2 + IR+ (x) + µs· ‖ Wsx ‖1 (2)

• Vu [Vũ, 2013] Condat [Condat, 2014] algorithm.

• Iterative approach where every iteration is O(n).

• Convergence can be slow (very sensitive to the initialization).

• Regularization parameter selected automatically [Ammanouil et al., 2017]
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Supervised deep learning

Deep neural network [LeCun et al., 2015]

f (x) = fK (fK−1(...f1(x)...)) (3)

• f is a composition of basis functions fk of the form :

fk (x) = gk (Wk x + bk ) (4)

• Wk is a linear operator and bk is a bias for layer k .

• gk is a non-linear activation function for layer k .

Supervised training of deep neural networks

min
f

∑
i

L(pi , f (xi)) (5)

• L is the prediction error.

• {pi , xi}i is the training dataset.

• Function parameters {Wk , bk}k learned with stochastic gradients.
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Convolutional neural network

• Replace the linear operator by a convolution [LeCun et al., 2010].

• Reduce image dimensionality with sub-sampling or max pooling.

• Number of parameters depends on the size fo the filter, not the image.

• Recent deep CNN use Relu activation [Glorot et al., 2011] : g(x) = max(0, x)
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Image reconstruction with
deep learning



Training for image reconstruction

Deep learning for inverse problem [McCann et al., 2017]

• Train a function f that solves approximately the inverse problem.

• Move computational complexity to the training step.

Deep network for image reconstruction [Xu et al., 2014, Flamary, 2017]

min
f

1
2N

N∑
i

‖xi − f (yi)‖2

• f is the deep network with architecture tailored for image reconstruction.

• {xi , yi}i=1...N are the training dataset.

• Optimization of f is done once.

• Reconstruction for new image is f (y).
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Network architecture

• Architecture is a classical 6 layers CNN.

• Each Layers consists in
• a convolutional layer with small 2D filters,
• a Relu activation of the form g(x) = max(0, x) [Glorot et al., 2011] .

• Exact convolution leads to an output smaller than the input (60→32).

• The network is stationary and can be adapted to any image size.

• Reconstruction can be done on patches or one large image.

• Relu is good for deep learning because it has no vanishing gradients.
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Training dataset

• Dataset is generated online from true/observed images.

• We randomly draw patches from training images and add random noise.

• Generated noise ensure that a sample is never seen twice by the network.

• We use 6 large images of size 3564x3564 from STScIDigitized Sky Survey,
HST Phase 2 dataset.

• Performance is evaluated with One-VS-All approach (train on 5 images, test on
the 6th).
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Model estimation

Estimation problem

min
f

1
2N

N∑
i

‖xi − f (yi)‖2

• The full model has ≈ 30000 parameters.

• Use a generator to draw randomly training samples.

• Optimization with stochastic gradient with minibatch.

• Two kind of minibatch for gradient computation :

• Local due to the size of the patch.
• Global due to the number of patch.

• Use Nesterov-type acceleration.

• Stop learning when the average loss do not decrease anymore.
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Implementation

Python implementation

• Implementation using Theano/Keras.

• Train and predict using NVIDIA Titan X GPU.

• One epoch takes ≈ 45 seconds.

Training parameters (tricks of the trade)

• Parameter initialization with normalised Gaussian [Glorot and Bengio, 2010].

• Learning rate=0.01, momentum=0.9.

• Minibatch of size 50 patches.

• Epochs of 300 000 samples.

• Restart initialization if no change in loss after one epoch.
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Numerical experiments



Numerical comparisons

Constant PSF

• Wiener filtering with Laplacian regularization [Orieux et al., 2010].

• Richardson Lucy [Richardson, 1972, Lucy, 1974].

• Proximal gradient descent with sparse wavelet regularization and automatic
regularization estimation [Ammanouil et al., 2017].

• Shallow CNN with 1 linear Layer, supervised Wiener (CNN0).

• Proposed Deep CNN (DCNN).

Space variant PSF

• Approximate variation with linear interpolation [Denis et al., 2015].

• Adaptation of Richardson-Lucy and Proximal gradient descent using FFT.

• Comparison of DCNN learned on fixed center PSF (DCNN C) and on variant
PSF (DCNN SV).
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Constant PSF : data and protocol

• We use the central 1024x1024 pixels images for comparison.

• Data normalized to a maximum value of 1.

• PSF for a circular apperture : p(r) = I0(J1(r)/r)2

• Radius of PSF r scaled so that we have 100 rebounds in the image.

• Gaussian noise of standard deviation σ = 0.01.
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Constant PSF : numerical performances

Image

Method
Wiener RL Prox DCNN CNN0

M31 : 31.83 31.88 31.17 31.98 31.26 31.44
Hoag : 35.39 36.70 36.77 36.76 40.04 37.98
M51a : 35.81 37.29 37.16 38.39 39.89 38.16
M81 : 34.23 35.05 34.82 35.91 36.79 36.02
M101 : 34.71 35.97 36.28 36.63 39.75 37.78
M104 : 33.49 33.97 33.27 34.52 35.39 35.07

Avg. PSNR (dB) 35.14 34.91 35.70 37.18 36.11
Avg. time (s) 0.22 4.94 593.42 1.65 0.44

• DCNN has best PSNR on all images except M31.

• Importance of representative dataset.

• Prox works best of all other methods but important numerical cost.

• 1024x1024 image reconstructed in 1.65 seconds.
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Constant PSF : Visual comparison

• Visual comparison for different methods.

• PSF is zoomed and represented with its square root.
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Varying PSF : data

• PSF for circular aperture at the center of the image.

• Varying PSF corresponding to box occultation in a wide field.

• Pre-compute exact Fredholm’s integral on the images.
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Varying PSF : fast PSF Interpolation

zconv =
M−1∑
m=0

ωm � (x ∗ pm) (6)

•

• Bilinear PSF interpolation for a simple 2 by 2 grid.

• FFT can still be used for fast convolution of each base PSF.
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Varying PSF : numerical performances

Image

Method
Wiener RL RL SV9 Prox Prox SV3 Prox SV5 DCNN C DCNN SV

M31 : 18.60 18.61 18.45 18.59 18.74 18.74 18.75 18.28 23.40
Hoag : 32.66 33.37 32.61 32.91 33.62 33.58 33.62 32.26 40.45
M51a : 29.32 29.52 29.43 29.43 29.75 29.75 29.76 29.03 39.02
M81 : 33.50 34.42 33.27 33.79 34.42 34.38 34.44 32.83 35.82

M101 : 32.52 33.21 32.46 32.71 33.48 33.46 33.50 31.91 39.35
M104 : 32.30 33.01 31.38 32.45 33.16 33.12 33.17 31.16 35.15

Avg. PSNR (dB) 30.35 29.60 29.98 30.53 30.50 30.54 29.25 35.53
Avg. time (s) 0.36 1.41 133.20 1510.87 11381.24 24054.04 1.64 1.60

• Best PSNR for DCNN methods, same complexity as constant PSF.

• Only slight advantage to the PSF interpolation because of limited sampling.

• DCNN SV learn to simultaneously estimate the PSF and reconstruct a patch.

• Other kind of invariance can be incoded in dataset
(misalignement,wavefront,...).
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Varying PSF : Visual comparison
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Constant PSF : Model Interpretation
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Varying PSF : Model Interpretation
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Conclusion



Conclusion

Astronomical image reconstruction with DCNN [Flamary, 2017]

• Relatively low processing time.

• Linear complexity w.r.t. number of pixels.

• Filter interpretability.

• One-time solving of an optimization problem.

• Robustness to different PSF (if learned).

What next ?

• Residual nets for a more multiscale reconstruction.

• Fast image reconstruction for adaptive optics.

• Reconstructing hyperspectral images.
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